// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2015 EZchip Technologies. */ #include #include #include #include #include #include #include #include "nps_enet.h" #define DRV_NAME "nps_mgt_enet" static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv) { u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT; return (!tx_ctrl_ct && priv->tx_skb); } static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32)); /* Empty Rx FIFO buffer by reading all words */ for (i = 0; i < len; i++) nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); } static void nps_enet_read_rx_fifo(struct net_device *ndev, unsigned char *dst, u32 length) { struct nps_enet_priv *priv = netdev_priv(ndev); s32 i, last = length & (sizeof(u32) - 1); u32 *reg = (u32 *)dst, len = length / sizeof(u32); bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32)); /* In case dst is not aligned we need an intermediate buffer */ if (dst_is_aligned) { ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len); reg += len; } else { /* !dst_is_aligned */ for (i = 0; i < len; i++, reg++) { u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); put_unaligned_be32(buf, reg); } } /* copy last bytes (if any) */ if (last) { u32 buf; ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1); memcpy((u8 *)reg, &buf, last); } } static u32 nps_enet_rx_handler(struct net_device *ndev) { u32 frame_len, err = 0; u32 work_done = 0; struct nps_enet_priv *priv = netdev_priv(ndev); struct sk_buff *skb; u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT; u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT; frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT; /* Check if we got RX */ if (!rx_ctrl_cr) return work_done; /* If we got here there is a work for us */ work_done++; /* Check Rx error */ if (rx_ctrl_er) { ndev->stats.rx_errors++; err = 1; } /* Check Rx CRC error */ if (rx_ctrl_crc) { ndev->stats.rx_crc_errors++; ndev->stats.rx_dropped++; err = 1; } /* Check Frame length Min 64b */ if (unlikely(frame_len < ETH_ZLEN)) { ndev->stats.rx_length_errors++; ndev->stats.rx_dropped++; err = 1; } if (err) goto rx_irq_clean; /* Skb allocation */ skb = netdev_alloc_skb_ip_align(ndev, frame_len); if (unlikely(!skb)) { ndev->stats.rx_errors++; ndev->stats.rx_dropped++; goto rx_irq_clean; } /* Copy frame from Rx fifo into the skb */ nps_enet_read_rx_fifo(ndev, skb->data, frame_len); skb_put(skb, frame_len); skb->protocol = eth_type_trans(skb, ndev); skb->ip_summed = CHECKSUM_UNNECESSARY; ndev->stats.rx_packets++; ndev->stats.rx_bytes += frame_len; netif_receive_skb(skb); goto rx_irq_frame_done; rx_irq_clean: /* Clean Rx fifo */ nps_enet_clean_rx_fifo(ndev, frame_len); rx_irq_frame_done: /* Ack Rx ctrl register */ nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0); return work_done; } static void nps_enet_tx_handler(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT; u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT; /* Check if we got TX */ if (!nps_enet_is_tx_pending(priv)) return; /* Ack Tx ctrl register */ nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0); /* Check Tx transmit error */ if (unlikely(tx_ctrl_et)) { ndev->stats.tx_errors++; } else { ndev->stats.tx_packets++; ndev->stats.tx_bytes += tx_ctrl_nt; } dev_kfree_skb(priv->tx_skb); priv->tx_skb = NULL; if (netif_queue_stopped(ndev)) netif_wake_queue(ndev); } /** * nps_enet_poll - NAPI poll handler. * @napi: Pointer to napi_struct structure. * @budget: How many frames to process on one call. * * returns: Number of processed frames */ static int nps_enet_poll(struct napi_struct *napi, int budget) { struct net_device *ndev = napi->dev; struct nps_enet_priv *priv = netdev_priv(ndev); u32 work_done; nps_enet_tx_handler(ndev); work_done = nps_enet_rx_handler(ndev); if ((work_done < budget) && napi_complete_done(napi, work_done)) { u32 buf_int_enable_value = 0; /* set tx_done and rx_rdy bits */ buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, buf_int_enable_value); /* in case we will get a tx interrupt while interrupts * are masked, we will lose it since the tx is edge interrupt. * specifically, while executing the code section above, * between nps_enet_tx_handler and the interrupts enable, all * tx requests will be stuck until we will get an rx interrupt. * the two code lines below will solve this situation by * re-adding ourselves to the poll list. */ if (nps_enet_is_tx_pending(priv)) { nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); napi_reschedule(napi); } } return work_done; } /** * nps_enet_irq_handler - Global interrupt handler for ENET. * @irq: irq number. * @dev_instance: device instance. * * returns: IRQ_HANDLED for all cases. * * EZchip ENET has 2 interrupt causes, and depending on bits raised in * CTRL registers we may tell what is a reason for interrupt to fire up. * We got one for RX and the other for TX (completion). */ static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance) { struct net_device *ndev = dev_instance; struct nps_enet_priv *priv = netdev_priv(ndev); u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr) if (likely(napi_schedule_prep(&priv->napi))) { nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); __napi_schedule(&priv->napi); } return IRQ_HANDLED; } static void nps_enet_set_hw_mac_address(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 ge_mac_cfg_1_value = 0; u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; /* set MAC address in HW */ ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT; ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT; ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT; ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT; *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK) | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT; *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK) | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1, ge_mac_cfg_1_value); nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, *ge_mac_cfg_2_value); } /** * nps_enet_hw_reset - Reset the network device. * @ndev: Pointer to the network device. * * This function reset the PCS and TX fifo. * The programming model is to set the relevant reset bits * wait for some time for this to propagate and then unset * the reset bits. This way we ensure that reset procedure * is done successfully by device. */ static void nps_enet_hw_reset(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 ge_rst_value = 0, phase_fifo_ctl_value = 0; /* Pcs reset sequence*/ ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); usleep_range(10, 20); ge_rst_value = 0; nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); /* Tx fifo reset sequence */ phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT; phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, phase_fifo_ctl_value); usleep_range(10, 20); phase_fifo_ctl_value = 0; nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, phase_fifo_ctl_value); } static void nps_enet_hw_enable_control(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0; u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value; s32 max_frame_length; /* Enable Rx and Tx statistics */ *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK) | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT; /* Discard packets with different MAC address */ *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; /* Discard multicast packets */ *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, *ge_mac_cfg_2_value); /* Discard Packets bigger than max frame length */ max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN; if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) { *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK) | max_frame_length << CFG_3_MAX_LEN_SHIFT; } /* Enable interrupts */ buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, buf_int_enable_value); /* Write device MAC address to HW */ nps_enet_set_hw_mac_address(ndev); /* Rx and Tx HW features */ ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT; /* IFG configuration */ ge_mac_cfg_0_value |= NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT; /* preamble configuration */ ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT; /* enable flow control frames */ ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT; *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK) | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT; /* Enable Rx and Tx */ ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT; ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT; nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3, *ge_mac_cfg_3_value); nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, ge_mac_cfg_0_value); } static void nps_enet_hw_disable_control(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); /* Disable interrupts */ nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); /* Disable Rx and Tx */ nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0); } static void nps_enet_send_frame(struct net_device *ndev, struct sk_buff *skb) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 tx_ctrl_value = 0; short length = skb->len; u32 i, len = DIV_ROUND_UP(length, sizeof(u32)); u32 *src = (void *)skb->data; bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32)); /* In case src is not aligned we need an intermediate buffer */ if (src_is_aligned) iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len); else /* !src_is_aligned */ for (i = 0; i < len; i++, src++) nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF, get_unaligned_be32(src)); /* Write the length of the Frame */ tx_ctrl_value |= length << TX_CTL_NT_SHIFT; tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT; /* Send Frame */ nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value); } /** * nps_enet_set_mac_address - Set the MAC address for this device. * @ndev: Pointer to net_device structure. * @p: 6 byte Address to be written as MAC address. * * This function copies the HW address from the sockaddr structure to the * net_device structure and updates the address in HW. * * returns: -EBUSY if the net device is busy or 0 if the address is set * successfully. */ static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p) { struct sockaddr *addr = p; s32 res; if (netif_running(ndev)) return -EBUSY; res = eth_mac_addr(ndev, p); if (!res) { ether_addr_copy(ndev->dev_addr, addr->sa_data); nps_enet_set_hw_mac_address(ndev); } return res; } /** * nps_enet_set_rx_mode - Change the receive filtering mode. * @ndev: Pointer to the network device. * * This function enables/disables promiscuous mode */ static void nps_enet_set_rx_mode(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value; if (ndev->flags & IFF_PROMISC) { ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT; ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT; } else { ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; } nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value); } /** * nps_enet_open - Open the network device. * @ndev: Pointer to the network device. * * returns: 0, on success or non-zero error value on failure. * * This function sets the MAC address, requests and enables an IRQ * for the ENET device and starts the Tx queue. */ static s32 nps_enet_open(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); s32 err; /* Reset private variables */ priv->tx_skb = NULL; priv->ge_mac_cfg_2_value = 0; priv->ge_mac_cfg_3_value = 0; /* ge_mac_cfg_3 default values */ priv->ge_mac_cfg_3_value |= NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT; priv->ge_mac_cfg_3_value |= NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT; /* Disable HW device */ nps_enet_hw_disable_control(ndev); /* irq Rx allocation */ err = request_irq(priv->irq, nps_enet_irq_handler, 0, "enet-rx-tx", ndev); if (err) return err; napi_enable(&priv->napi); /* Enable HW device */ nps_enet_hw_reset(ndev); nps_enet_hw_enable_control(ndev); netif_start_queue(ndev); return 0; } /** * nps_enet_stop - Close the network device. * @ndev: Pointer to the network device. * * This function stops the Tx queue, disables interrupts for the ENET device. */ static s32 nps_enet_stop(struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); napi_disable(&priv->napi); netif_stop_queue(ndev); nps_enet_hw_disable_control(ndev); free_irq(priv->irq, ndev); return 0; } /** * nps_enet_start_xmit - Starts the data transmission. * @skb: sk_buff pointer that contains data to be Transmitted. * @ndev: Pointer to net_device structure. * * returns: NETDEV_TX_OK, on success * NETDEV_TX_BUSY, if any of the descriptors are not free. * * This function is invoked from upper layers to initiate transmission. */ static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct nps_enet_priv *priv = netdev_priv(ndev); /* This driver handles one frame at a time */ netif_stop_queue(ndev); priv->tx_skb = skb; /* make sure tx_skb is actually written to the memory * before the HW is informed and the IRQ is fired. */ wmb(); nps_enet_send_frame(ndev, skb); return NETDEV_TX_OK; } #ifdef CONFIG_NET_POLL_CONTROLLER static void nps_enet_poll_controller(struct net_device *ndev) { disable_irq(ndev->irq); nps_enet_irq_handler(ndev->irq, ndev); enable_irq(ndev->irq); } #endif static const struct net_device_ops nps_netdev_ops = { .ndo_open = nps_enet_open, .ndo_stop = nps_enet_stop, .ndo_start_xmit = nps_enet_start_xmit, .ndo_set_mac_address = nps_enet_set_mac_address, .ndo_set_rx_mode = nps_enet_set_rx_mode, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = nps_enet_poll_controller, #endif }; static s32 nps_enet_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct net_device *ndev; struct nps_enet_priv *priv; s32 err = 0; const char *mac_addr; if (!dev->of_node) return -ENODEV; ndev = alloc_etherdev(sizeof(struct nps_enet_priv)); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, dev); priv = netdev_priv(ndev); /* The EZ NET specific entries in the device structure. */ ndev->netdev_ops = &nps_netdev_ops; ndev->watchdog_timeo = (400 * HZ / 1000); /* FIXME :: no multicast support yet */ ndev->flags &= ~IFF_MULTICAST; priv->regs_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->regs_base)) { err = PTR_ERR(priv->regs_base); goto out_netdev; } dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base); /* set kernel MAC address to dev */ mac_addr = of_get_mac_address(dev->of_node); if (!IS_ERR(mac_addr)) ether_addr_copy(ndev->dev_addr, mac_addr); else eth_hw_addr_random(ndev); /* Get IRQ number */ priv->irq = platform_get_irq(pdev, 0); if (!priv->irq) { dev_err(dev, "failed to retrieve value from device tree\n"); err = -ENODEV; goto out_netdev; } netif_napi_add(ndev, &priv->napi, nps_enet_poll, NPS_ENET_NAPI_POLL_WEIGHT); /* Register the driver. Should be the last thing in probe */ err = register_netdev(ndev); if (err) { dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n", ndev->name, (s32)err); goto out_netif_api; } dev_info(dev, "(rx/tx=%d)\n", priv->irq); return 0; out_netif_api: netif_napi_del(&priv->napi); out_netdev: if (err) free_netdev(ndev); return err; } static s32 nps_enet_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct nps_enet_priv *priv = netdev_priv(ndev); unregister_netdev(ndev); free_netdev(ndev); netif_napi_del(&priv->napi); return 0; } static const struct of_device_id nps_enet_dt_ids[] = { { .compatible = "ezchip,nps-mgt-enet" }, { /* Sentinel */ } }; MODULE_DEVICE_TABLE(of, nps_enet_dt_ids); static struct platform_driver nps_enet_driver = { .probe = nps_enet_probe, .remove = nps_enet_remove, .driver = { .name = DRV_NAME, .of_match_table = nps_enet_dt_ids, }, }; module_platform_driver(nps_enet_driver); MODULE_AUTHOR("EZchip Semiconductor"); MODULE_LICENSE("GPL v2");