/* * Combined Ethernet driver for Motorola MPC8xx and MPC82xx. * * Copyright (c) 2003 Intracom S.A. * by Pantelis Antoniou * * 2005 (c) MontaVista Software, Inc. * Vitaly Bordug * * Heavily based on original FEC driver by Dan Malek * and modifications by Joakim Tjernlund * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fs_enet.h" /*************************************************/ MODULE_AUTHOR("Pantelis Antoniou "); MODULE_DESCRIPTION("Freescale Ethernet Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_MODULE_VERSION); static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */ module_param(fs_enet_debug, int, 0); MODULE_PARM_DESC(fs_enet_debug, "Freescale bitmapped debugging message enable value"); #define RX_RING_SIZE 32 #define TX_RING_SIZE 64 #ifdef CONFIG_NET_POLL_CONTROLLER static void fs_enet_netpoll(struct net_device *dev); #endif static void fs_set_multicast_list(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); (*fep->ops->set_multicast_list)(dev); } static void skb_align(struct sk_buff *skb, int align) { int off = ((unsigned long)skb->data) & (align - 1); if (off) skb_reserve(skb, align - off); } /* NAPI function */ static int fs_enet_napi(struct napi_struct *napi, int budget) { struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi); struct net_device *dev = fep->ndev; const struct fs_platform_info *fpi = fep->fpi; cbd_t __iomem *bdp; struct sk_buff *skb, *skbn; int received = 0; u16 pkt_len, sc; int curidx; int dirtyidx, do_wake, do_restart; int tx_left = TX_RING_SIZE; spin_lock(&fep->tx_lock); bdp = fep->dirty_tx; /* clear status bits for napi*/ (*fep->ops->napi_clear_event)(dev); do_wake = do_restart = 0; while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) { dirtyidx = bdp - fep->tx_bd_base; if (fep->tx_free == fep->tx_ring) break; skb = fep->tx_skbuff[dirtyidx]; /* * Check for errors. */ if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) { if (sc & BD_ENET_TX_HB) /* No heartbeat */ dev->stats.tx_heartbeat_errors++; if (sc & BD_ENET_TX_LC) /* Late collision */ dev->stats.tx_window_errors++; if (sc & BD_ENET_TX_RL) /* Retrans limit */ dev->stats.tx_aborted_errors++; if (sc & BD_ENET_TX_UN) /* Underrun */ dev->stats.tx_fifo_errors++; if (sc & BD_ENET_TX_CSL) /* Carrier lost */ dev->stats.tx_carrier_errors++; if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { dev->stats.tx_errors++; do_restart = 1; } } else dev->stats.tx_packets++; if (sc & BD_ENET_TX_READY) { dev_warn(fep->dev, "HEY! Enet xmit interrupt and TX_READY.\n"); } /* * Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (sc & BD_ENET_TX_DEF) dev->stats.collisions++; /* unmap */ if (fep->mapped_as_page[dirtyidx]) dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp), CBDR_DATLEN(bdp), DMA_TO_DEVICE); else dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), CBDR_DATLEN(bdp), DMA_TO_DEVICE); /* * Free the sk buffer associated with this last transmit. */ if (skb) { dev_kfree_skb(skb); fep->tx_skbuff[dirtyidx] = NULL; } /* * Update pointer to next buffer descriptor to be transmitted. */ if ((sc & BD_ENET_TX_WRAP) == 0) bdp++; else bdp = fep->tx_bd_base; /* * Since we have freed up a buffer, the ring is no longer * full. */ if (++fep->tx_free == MAX_SKB_FRAGS) do_wake = 1; tx_left--; } fep->dirty_tx = bdp; if (do_restart) (*fep->ops->tx_restart)(dev); spin_unlock(&fep->tx_lock); if (do_wake) netif_wake_queue(dev); /* * First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = fep->cur_rx; while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 && received < budget) { curidx = bdp - fep->rx_bd_base; /* * Since we have allocated space to hold a complete frame, * the last indicator should be set. */ if ((sc & BD_ENET_RX_LAST) == 0) dev_warn(fep->dev, "rcv is not +last\n"); /* * Check for errors. */ if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL | BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) { dev->stats.rx_errors++; /* Frame too long or too short. */ if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) dev->stats.rx_length_errors++; /* Frame alignment */ if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL)) dev->stats.rx_frame_errors++; /* CRC Error */ if (sc & BD_ENET_RX_CR) dev->stats.rx_crc_errors++; /* FIFO overrun */ if (sc & BD_ENET_RX_OV) dev->stats.rx_crc_errors++; skbn = fep->rx_skbuff[curidx]; } else { skb = fep->rx_skbuff[curidx]; /* * Process the incoming frame. */ dev->stats.rx_packets++; pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */ dev->stats.rx_bytes += pkt_len + 4; if (pkt_len <= fpi->rx_copybreak) { /* +2 to make IP header L1 cache aligned */ skbn = netdev_alloc_skb(dev, pkt_len + 2); if (skbn != NULL) { skb_reserve(skbn, 2); /* align IP header */ skb_copy_from_linear_data(skb, skbn->data, pkt_len); swap(skb, skbn); dma_sync_single_for_cpu(fep->dev, CBDR_BUFADDR(bdp), L1_CACHE_ALIGN(pkt_len), DMA_FROM_DEVICE); } } else { skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE); if (skbn) { dma_addr_t dma; skb_align(skbn, ENET_RX_ALIGN); dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), DMA_FROM_DEVICE); dma = dma_map_single(fep->dev, skbn->data, L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), DMA_FROM_DEVICE); CBDW_BUFADDR(bdp, dma); } } if (skbn != NULL) { skb_put(skb, pkt_len); /* Make room */ skb->protocol = eth_type_trans(skb, dev); received++; netif_receive_skb(skb); } else { dev->stats.rx_dropped++; skbn = skb; } } fep->rx_skbuff[curidx] = skbn; CBDW_DATLEN(bdp, 0); CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY); /* * Update BD pointer to next entry. */ if ((sc & BD_ENET_RX_WRAP) == 0) bdp++; else bdp = fep->rx_bd_base; (*fep->ops->rx_bd_done)(dev); } fep->cur_rx = bdp; if (received < budget && tx_left) { /* done */ napi_complete_done(napi, received); (*fep->ops->napi_enable)(dev); return received; } return budget; } /* * The interrupt handler. * This is called from the MPC core interrupt. */ static irqreturn_t fs_enet_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct fs_enet_private *fep; const struct fs_platform_info *fpi; u32 int_events; u32 int_clr_events; int nr, napi_ok; int handled; fep = netdev_priv(dev); fpi = fep->fpi; nr = 0; while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) { nr++; int_clr_events = int_events; int_clr_events &= ~fep->ev_napi; (*fep->ops->clear_int_events)(dev, int_clr_events); if (int_events & fep->ev_err) (*fep->ops->ev_error)(dev, int_events); if (int_events & fep->ev) { napi_ok = napi_schedule_prep(&fep->napi); (*fep->ops->napi_disable)(dev); (*fep->ops->clear_int_events)(dev, fep->ev_napi); /* NOTE: it is possible for FCCs in NAPI mode */ /* to submit a spurious interrupt while in poll */ if (napi_ok) __napi_schedule(&fep->napi); } } handled = nr > 0; return IRQ_RETVAL(handled); } void fs_init_bds(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); cbd_t __iomem *bdp; struct sk_buff *skb; int i; fs_cleanup_bds(dev); fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; fep->tx_free = fep->tx_ring; fep->cur_rx = fep->rx_bd_base; /* * Initialize the receive buffer descriptors. */ for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE); if (skb == NULL) break; skb_align(skb, ENET_RX_ALIGN); fep->rx_skbuff[i] = skb; CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data, L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), DMA_FROM_DEVICE)); CBDW_DATLEN(bdp, 0); /* zero */ CBDW_SC(bdp, BD_ENET_RX_EMPTY | ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP)); } /* * if we failed, fillup remainder */ for (; i < fep->rx_ring; i++, bdp++) { fep->rx_skbuff[i] = NULL; CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP); } /* * ...and the same for transmit. */ for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { fep->tx_skbuff[i] = NULL; CBDW_BUFADDR(bdp, 0); CBDW_DATLEN(bdp, 0); CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP); } } void fs_cleanup_bds(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); struct sk_buff *skb; cbd_t __iomem *bdp; int i; /* * Reset SKB transmit buffers. */ for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) { if ((skb = fep->tx_skbuff[i]) == NULL) continue; /* unmap */ dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), skb->len, DMA_TO_DEVICE); fep->tx_skbuff[i] = NULL; dev_kfree_skb(skb); } /* * Reset SKB receive buffers */ for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) { if ((skb = fep->rx_skbuff[i]) == NULL) continue; /* unmap */ dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), DMA_FROM_DEVICE); fep->rx_skbuff[i] = NULL; dev_kfree_skb(skb); } } /**********************************************************************************/ #ifdef CONFIG_FS_ENET_MPC5121_FEC /* * MPC5121 FEC requeries 4-byte alignment for TX data buffer! */ static struct sk_buff *tx_skb_align_workaround(struct net_device *dev, struct sk_buff *skb) { struct sk_buff *new_skb; if (skb_linearize(skb)) return NULL; /* Alloc new skb */ new_skb = netdev_alloc_skb(dev, skb->len + 4); if (!new_skb) return NULL; /* Make sure new skb is properly aligned */ skb_align(new_skb, 4); /* Copy data to new skb ... */ skb_copy_from_linear_data(skb, new_skb->data, skb->len); skb_put(new_skb, skb->len); /* ... and free an old one */ dev_kfree_skb_any(skb); return new_skb; } #endif static netdev_tx_t fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); cbd_t __iomem *bdp; int curidx; u16 sc; int nr_frags; skb_frag_t *frag; int len; #ifdef CONFIG_FS_ENET_MPC5121_FEC int is_aligned = 1; int i; if (!IS_ALIGNED((unsigned long)skb->data, 4)) { is_aligned = 0; } else { nr_frags = skb_shinfo(skb)->nr_frags; frag = skb_shinfo(skb)->frags; for (i = 0; i < nr_frags; i++, frag++) { if (!IS_ALIGNED(skb_frag_off(frag), 4)) { is_aligned = 0; break; } } } if (!is_aligned) { skb = tx_skb_align_workaround(dev, skb); if (!skb) { /* * We have lost packet due to memory allocation error * in tx_skb_align_workaround(). Hopefully original * skb is still valid, so try transmit it later. */ return NETDEV_TX_BUSY; } } #endif spin_lock(&fep->tx_lock); /* * Fill in a Tx ring entry */ bdp = fep->cur_tx; nr_frags = skb_shinfo(skb)->nr_frags; if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) { netif_stop_queue(dev); spin_unlock(&fep->tx_lock); /* * Ooops. All transmit buffers are full. Bail out. * This should not happen, since the tx queue should be stopped. */ dev_warn(fep->dev, "tx queue full!.\n"); return NETDEV_TX_BUSY; } curidx = bdp - fep->tx_bd_base; len = skb->len; dev->stats.tx_bytes += len; if (nr_frags) len -= skb->data_len; fep->tx_free -= nr_frags + 1; /* * Push the data cache so the CPM does not get stale memory data. */ CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data, len, DMA_TO_DEVICE)); CBDW_DATLEN(bdp, len); fep->mapped_as_page[curidx] = 0; frag = skb_shinfo(skb)->frags; while (nr_frags) { CBDC_SC(bdp, BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); CBDS_SC(bdp, BD_ENET_TX_READY); if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) bdp++, curidx++; else bdp = fep->tx_bd_base, curidx = 0; len = skb_frag_size(frag); CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len, DMA_TO_DEVICE)); CBDW_DATLEN(bdp, len); fep->tx_skbuff[curidx] = NULL; fep->mapped_as_page[curidx] = 1; frag++; nr_frags--; } /* Trigger transmission start */ sc = BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC; /* note that while FEC does not have this bit * it marks it as available for software use * yay for hw reuse :) */ if (skb->len <= 60) sc |= BD_ENET_TX_PAD; CBDC_SC(bdp, BD_ENET_TX_STATS); CBDS_SC(bdp, sc); /* Save skb pointer. */ fep->tx_skbuff[curidx] = skb; /* If this was the last BD in the ring, start at the beginning again. */ if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) bdp++; else bdp = fep->tx_bd_base; fep->cur_tx = bdp; if (fep->tx_free < MAX_SKB_FRAGS) netif_stop_queue(dev); skb_tx_timestamp(skb); (*fep->ops->tx_kickstart)(dev); spin_unlock(&fep->tx_lock); return NETDEV_TX_OK; } static void fs_timeout_work(struct work_struct *work) { struct fs_enet_private *fep = container_of(work, struct fs_enet_private, timeout_work); struct net_device *dev = fep->ndev; unsigned long flags; int wake = 0; dev->stats.tx_errors++; spin_lock_irqsave(&fep->lock, flags); if (dev->flags & IFF_UP) { phy_stop(dev->phydev); (*fep->ops->stop)(dev); (*fep->ops->restart)(dev); } phy_start(dev->phydev); wake = fep->tx_free >= MAX_SKB_FRAGS && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY); spin_unlock_irqrestore(&fep->lock, flags); if (wake) netif_wake_queue(dev); } static void fs_timeout(struct net_device *dev, unsigned int txqueue) { struct fs_enet_private *fep = netdev_priv(dev); schedule_work(&fep->timeout_work); } /*----------------------------------------------------------------------------- * generic link-change handler - should be sufficient for most cases *-----------------------------------------------------------------------------*/ static void generic_adjust_link(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); struct phy_device *phydev = dev->phydev; int new_state = 0; if (phydev->link) { /* adjust to duplex mode */ if (phydev->duplex != fep->oldduplex) { new_state = 1; fep->oldduplex = phydev->duplex; } if (phydev->speed != fep->oldspeed) { new_state = 1; fep->oldspeed = phydev->speed; } if (!fep->oldlink) { new_state = 1; fep->oldlink = 1; } if (new_state) fep->ops->restart(dev); } else if (fep->oldlink) { new_state = 1; fep->oldlink = 0; fep->oldspeed = 0; fep->oldduplex = -1; } if (new_state && netif_msg_link(fep)) phy_print_status(phydev); } static void fs_adjust_link(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&fep->lock, flags); if(fep->ops->adjust_link) fep->ops->adjust_link(dev); else generic_adjust_link(dev); spin_unlock_irqrestore(&fep->lock, flags); } static int fs_init_phy(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); struct phy_device *phydev; phy_interface_t iface; fep->oldlink = 0; fep->oldspeed = 0; fep->oldduplex = -1; iface = fep->fpi->use_rmii ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII; phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0, iface); if (!phydev) { dev_err(&dev->dev, "Could not attach to PHY\n"); return -ENODEV; } return 0; } static int fs_enet_open(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); int r; int err; /* to initialize the fep->cur_rx,... */ /* not doing this, will cause a crash in fs_enet_napi */ fs_init_bds(fep->ndev); napi_enable(&fep->napi); /* Install our interrupt handler. */ r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED, "fs_enet-mac", dev); if (r != 0) { dev_err(fep->dev, "Could not allocate FS_ENET IRQ!"); napi_disable(&fep->napi); return -EINVAL; } err = fs_init_phy(dev); if (err) { free_irq(fep->interrupt, dev); napi_disable(&fep->napi); return err; } phy_start(dev->phydev); netif_start_queue(dev); return 0; } static int fs_enet_close(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); unsigned long flags; netif_stop_queue(dev); netif_carrier_off(dev); napi_disable(&fep->napi); cancel_work_sync(&fep->timeout_work); phy_stop(dev->phydev); spin_lock_irqsave(&fep->lock, flags); spin_lock(&fep->tx_lock); (*fep->ops->stop)(dev); spin_unlock(&fep->tx_lock); spin_unlock_irqrestore(&fep->lock, flags); /* release any irqs */ phy_disconnect(dev->phydev); free_irq(fep->interrupt, dev); return 0; } /*************************************************************************/ static void fs_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version)); } static int fs_get_regs_len(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); return (*fep->ops->get_regs_len)(dev); } static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { struct fs_enet_private *fep = netdev_priv(dev); unsigned long flags; int r, len; len = regs->len; spin_lock_irqsave(&fep->lock, flags); r = (*fep->ops->get_regs)(dev, p, &len); spin_unlock_irqrestore(&fep->lock, flags); if (r == 0) regs->version = 0; } static u32 fs_get_msglevel(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); return fep->msg_enable; } static void fs_set_msglevel(struct net_device *dev, u32 value) { struct fs_enet_private *fep = netdev_priv(dev); fep->msg_enable = value; } static int fs_get_tunable(struct net_device *dev, const struct ethtool_tunable *tuna, void *data) { struct fs_enet_private *fep = netdev_priv(dev); struct fs_platform_info *fpi = fep->fpi; int ret = 0; switch (tuna->id) { case ETHTOOL_RX_COPYBREAK: *(u32 *)data = fpi->rx_copybreak; break; default: ret = -EINVAL; break; } return ret; } static int fs_set_tunable(struct net_device *dev, const struct ethtool_tunable *tuna, const void *data) { struct fs_enet_private *fep = netdev_priv(dev); struct fs_platform_info *fpi = fep->fpi; int ret = 0; switch (tuna->id) { case ETHTOOL_RX_COPYBREAK: fpi->rx_copybreak = *(u32 *)data; break; default: ret = -EINVAL; break; } return ret; } static const struct ethtool_ops fs_ethtool_ops = { .get_drvinfo = fs_get_drvinfo, .get_regs_len = fs_get_regs_len, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_msglevel = fs_get_msglevel, .set_msglevel = fs_set_msglevel, .get_regs = fs_get_regs, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_tunable = fs_get_tunable, .set_tunable = fs_set_tunable, }; static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { if (!netif_running(dev)) return -EINVAL; return phy_mii_ioctl(dev->phydev, rq, cmd); } extern int fs_mii_connect(struct net_device *dev); extern void fs_mii_disconnect(struct net_device *dev); /**************************************************************************************/ #ifdef CONFIG_FS_ENET_HAS_FEC #define IS_FEC(match) ((match)->data == &fs_fec_ops) #else #define IS_FEC(match) 0 #endif static const struct net_device_ops fs_enet_netdev_ops = { .ndo_open = fs_enet_open, .ndo_stop = fs_enet_close, .ndo_start_xmit = fs_enet_start_xmit, .ndo_tx_timeout = fs_timeout, .ndo_set_rx_mode = fs_set_multicast_list, .ndo_do_ioctl = fs_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = fs_enet_netpoll, #endif }; static const struct of_device_id fs_enet_match[]; static int fs_enet_probe(struct platform_device *ofdev) { const struct of_device_id *match; struct net_device *ndev; struct fs_enet_private *fep; struct fs_platform_info *fpi; const u32 *data; struct clk *clk; int err; const u8 *mac_addr; const char *phy_connection_type; int privsize, len, ret = -ENODEV; match = of_match_device(fs_enet_match, &ofdev->dev); if (!match) return -EINVAL; fpi = kzalloc(sizeof(*fpi), GFP_KERNEL); if (!fpi) return -ENOMEM; if (!IS_FEC(match)) { data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len); if (!data || len != 4) goto out_free_fpi; fpi->cp_command = *data; } fpi->rx_ring = RX_RING_SIZE; fpi->tx_ring = TX_RING_SIZE; fpi->rx_copybreak = 240; fpi->napi_weight = 17; fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0); if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) { err = of_phy_register_fixed_link(ofdev->dev.of_node); if (err) goto out_free_fpi; /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ fpi->phy_node = of_node_get(ofdev->dev.of_node); } if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) { phy_connection_type = of_get_property(ofdev->dev.of_node, "phy-connection-type", NULL); if (phy_connection_type && !strcmp("rmii", phy_connection_type)) fpi->use_rmii = 1; } /* make clock lookup non-fatal (the driver is shared among platforms), * but require enable to succeed when a clock was specified/found, * keep a reference to the clock upon successful acquisition */ clk = devm_clk_get(&ofdev->dev, "per"); if (!IS_ERR(clk)) { ret = clk_prepare_enable(clk); if (ret) goto out_deregister_fixed_link; fpi->clk_per = clk; } privsize = sizeof(*fep) + sizeof(struct sk_buff **) * (fpi->rx_ring + fpi->tx_ring) + sizeof(char) * fpi->tx_ring; ndev = alloc_etherdev(privsize); if (!ndev) { ret = -ENOMEM; goto out_put; } SET_NETDEV_DEV(ndev, &ofdev->dev); platform_set_drvdata(ofdev, ndev); fep = netdev_priv(ndev); fep->dev = &ofdev->dev; fep->ndev = ndev; fep->fpi = fpi; fep->ops = match->data; ret = fep->ops->setup_data(ndev); if (ret) goto out_free_dev; fep->rx_skbuff = (struct sk_buff **)&fep[1]; fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring; fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring + fpi->tx_ring); spin_lock_init(&fep->lock); spin_lock_init(&fep->tx_lock); mac_addr = of_get_mac_address(ofdev->dev.of_node); if (!IS_ERR(mac_addr)) ether_addr_copy(ndev->dev_addr, mac_addr); ret = fep->ops->allocate_bd(ndev); if (ret) goto out_cleanup_data; fep->rx_bd_base = fep->ring_base; fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring; fep->tx_ring = fpi->tx_ring; fep->rx_ring = fpi->rx_ring; ndev->netdev_ops = &fs_enet_netdev_ops; ndev->watchdog_timeo = 2 * HZ; INIT_WORK(&fep->timeout_work, fs_timeout_work); netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight); ndev->ethtool_ops = &fs_ethtool_ops; netif_carrier_off(ndev); ndev->features |= NETIF_F_SG; ret = register_netdev(ndev); if (ret) goto out_free_bd; pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr); return 0; out_free_bd: fep->ops->free_bd(ndev); out_cleanup_data: fep->ops->cleanup_data(ndev); out_free_dev: free_netdev(ndev); out_put: if (fpi->clk_per) clk_disable_unprepare(fpi->clk_per); out_deregister_fixed_link: of_node_put(fpi->phy_node); if (of_phy_is_fixed_link(ofdev->dev.of_node)) of_phy_deregister_fixed_link(ofdev->dev.of_node); out_free_fpi: kfree(fpi); return ret; } static int fs_enet_remove(struct platform_device *ofdev) { struct net_device *ndev = platform_get_drvdata(ofdev); struct fs_enet_private *fep = netdev_priv(ndev); unregister_netdev(ndev); fep->ops->free_bd(ndev); fep->ops->cleanup_data(ndev); dev_set_drvdata(fep->dev, NULL); of_node_put(fep->fpi->phy_node); if (fep->fpi->clk_per) clk_disable_unprepare(fep->fpi->clk_per); if (of_phy_is_fixed_link(ofdev->dev.of_node)) of_phy_deregister_fixed_link(ofdev->dev.of_node); free_netdev(ndev); return 0; } static const struct of_device_id fs_enet_match[] = { #ifdef CONFIG_FS_ENET_HAS_SCC { .compatible = "fsl,cpm1-scc-enet", .data = (void *)&fs_scc_ops, }, { .compatible = "fsl,cpm2-scc-enet", .data = (void *)&fs_scc_ops, }, #endif #ifdef CONFIG_FS_ENET_HAS_FCC { .compatible = "fsl,cpm2-fcc-enet", .data = (void *)&fs_fcc_ops, }, #endif #ifdef CONFIG_FS_ENET_HAS_FEC #ifdef CONFIG_FS_ENET_MPC5121_FEC { .compatible = "fsl,mpc5121-fec", .data = (void *)&fs_fec_ops, }, { .compatible = "fsl,mpc5125-fec", .data = (void *)&fs_fec_ops, }, #else { .compatible = "fsl,pq1-fec-enet", .data = (void *)&fs_fec_ops, }, #endif #endif {} }; MODULE_DEVICE_TABLE(of, fs_enet_match); static struct platform_driver fs_enet_driver = { .driver = { .name = "fs_enet", .of_match_table = fs_enet_match, }, .probe = fs_enet_probe, .remove = fs_enet_remove, }; #ifdef CONFIG_NET_POLL_CONTROLLER static void fs_enet_netpoll(struct net_device *dev) { disable_irq(dev->irq); fs_enet_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif module_platform_driver(fs_enet_driver);