// SPDX-License-Identifier: GPL-2.0+ /* Copyright (c) 2016-2017 Hisilicon Limited. */ #include "hclge_err.h" static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = { { .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err" }, { .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = { { .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err" }, { .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" }, { .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" }, { .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" }, { .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" }, { .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" }, { .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" }, { .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" }, { .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = { { .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "tqp_int_ctrl_odd_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "tx_que_scan_int_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "rx_que_scan_int_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = { { .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_igu_int[] = { { .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = { { .int_msk = BIT(0), .msg = "rx_buf_overflow" }, { .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow" }, { .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow" }, { .int_msk = BIT(3), .msg = "tx_buf_overflow" }, { .int_msk = BIT(4), .msg = "tx_buf_underrun" }, { .int_msk = BIT(5), .msg = "rx_stp_buf_overflow" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ncsi_err_int[] = { { .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = { { .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err" }, { .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_mbit_err" }, { .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_mbit_err" }, { .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_mbit_err" }, { .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_mbit_err" }, { .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_mbit_err" }, { .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_m1bit_err" }, { .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_mbit_err" }, { .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_mbit_err" }, { .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_mbit_err" }, { .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_mbit_err" }, { .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_mbit_err" }, { .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_mbit_err" }, { .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_mbit_err" }, { .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_mbit_err" }, { .int_msk = BIT(27), .msg = "flow_director_ad_mem0_ecc_mbit_err" }, { .int_msk = BIT(28), .msg = "flow_director_ad_mem1_ecc_mbit_err" }, { .int_msk = BIT(29), .msg = "rx_vlan_tag_memory_ecc_mbit_err" }, { .int_msk = BIT(30), .msg = "Tx_UP_mapping_config_mem_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = { { .int_msk = BIT(0), .msg = "tx_vlan_tag_err" }, { .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = { { .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err" }, { .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_tm_sch_rint[] = { { .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err" }, { .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err" }, { .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err" }, { .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err" }, { .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err" }, { .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err" }, { .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err" }, { .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err" }, { .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err" }, { .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err" }, { .int_msk = BIT(12), .msg = "tm_sch_port_shap_offset_fifo_wr_err" }, { .int_msk = BIT(13), .msg = "tm_sch_port_shap_offset_fifo_rd_err" }, { .int_msk = BIT(14), .msg = "tm_sch_pg_pshap_offset_fifo_wr_err" }, { .int_msk = BIT(15), .msg = "tm_sch_pg_pshap_offset_fifo_rd_err" }, { .int_msk = BIT(16), .msg = "tm_sch_pg_cshap_offset_fifo_wr_err" }, { .int_msk = BIT(17), .msg = "tm_sch_pg_cshap_offset_fifo_rd_err" }, { .int_msk = BIT(18), .msg = "tm_sch_pri_pshap_offset_fifo_wr_err" }, { .int_msk = BIT(19), .msg = "tm_sch_pri_pshap_offset_fifo_rd_err" }, { .int_msk = BIT(20), .msg = "tm_sch_pri_cshap_offset_fifo_wr_err" }, { .int_msk = BIT(21), .msg = "tm_sch_pri_cshap_offset_fifo_rd_err" }, { .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err" }, { .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err" }, { .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err" }, { .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err" }, { .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err" }, { .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err" }, { .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err" }, { .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err" }, { .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err" }, { .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_qcn_fifo_rint[] = { { .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err" }, { .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err" }, { .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err" }, { .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err" }, { .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err" }, { .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err" }, { .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err" }, { .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err" }, { .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err" }, { .int_msk = BIT(9), .msg = "qcn_shap_gp0_offset_fifo_wr_err" }, { .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err" }, { .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err" }, { .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err" }, { .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err" }, { .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err" }, { .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err" }, { .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err" }, { .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_qcn_ecc_rint[] = { { .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err" }, { .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err" }, { .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err" }, { .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err" }, { .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err" }, { .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = { { .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err" }, { .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err" }, { .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err" }, { .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err" }, { .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err" }, { .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err" }, { .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err" }, { .int_msk = BIT(8), .msg = "cge_igu_afifo_overflow_err" }, { .int_msk = BIT(9), .msg = "lge_igu_afifo_overflow_err" }, { .int_msk = BIT(10), .msg = "egu_cge_afifo_underrun_err" }, { .int_msk = BIT(11), .msg = "egu_lge_afifo_underrun_err" }, { .int_msk = BIT(12), .msg = "egu_ge_afifo_underrun_err" }, { .int_msk = BIT(13), .msg = "ge_igu_afifo_overflow_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = { { .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err" }, { .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err" }, { .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err" }, { .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err" }, { .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err" }, { .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err" }, { .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err" }, { .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err" }, { .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err" }, { .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err" }, { .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err" }, { .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err" }, { .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err" }, { .int_msk = BIT(26), .msg = "rd_bus_err" }, { .int_msk = BIT(27), .msg = "wr_bus_err" }, { .int_msk = BIT(28), .msg = "reg_search_miss" }, { .int_msk = BIT(29), .msg = "rx_q_search_miss" }, { .int_msk = BIT(30), .msg = "ooo_ecc_err_detect" }, { .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = { { .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err" }, { .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err" }, { .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err" }, { .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = { { .int_msk = BIT(0), .msg = "over_8bd_no_fe" }, { .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err" }, { .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err" }, { .int_msk = BIT(3), .msg = "tx_rd_fbd_poison" }, { .int_msk = BIT(4), .msg = "rx_rd_ebd_poison" }, { .int_msk = BIT(5), .msg = "buf_wait_timeout" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ssu_com_err_int[] = { { .int_msk = BIT(0), .msg = "buf_sum_err" }, { .int_msk = BIT(1), .msg = "ppp_mb_num_err" }, { .int_msk = BIT(2), .msg = "ppp_mbid_err" }, { .int_msk = BIT(3), .msg = "ppp_rlt_mac_err" }, { .int_msk = BIT(4), .msg = "ppp_rlt_host_err" }, { .int_msk = BIT(5), .msg = "cks_edit_position_err" }, { .int_msk = BIT(6), .msg = "cks_edit_condition_err" }, { .int_msk = BIT(7), .msg = "vlan_edit_condition_err" }, { .int_msk = BIT(8), .msg = "vlan_num_ot_err" }, { .int_msk = BIT(9), .msg = "vlan_num_in_err" }, { /* sentinel */ } }; #define HCLGE_SSU_MEM_ECC_ERR(x) \ { .int_msk = BIT(x), .msg = "ssu_mem" #x "_ecc_mbit_err" } static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = { HCLGE_SSU_MEM_ECC_ERR(0), HCLGE_SSU_MEM_ECC_ERR(1), HCLGE_SSU_MEM_ECC_ERR(2), HCLGE_SSU_MEM_ECC_ERR(3), HCLGE_SSU_MEM_ECC_ERR(4), HCLGE_SSU_MEM_ECC_ERR(5), HCLGE_SSU_MEM_ECC_ERR(6), HCLGE_SSU_MEM_ECC_ERR(7), HCLGE_SSU_MEM_ECC_ERR(8), HCLGE_SSU_MEM_ECC_ERR(9), HCLGE_SSU_MEM_ECC_ERR(10), HCLGE_SSU_MEM_ECC_ERR(11), HCLGE_SSU_MEM_ECC_ERR(12), HCLGE_SSU_MEM_ECC_ERR(13), HCLGE_SSU_MEM_ECC_ERR(14), HCLGE_SSU_MEM_ECC_ERR(15), HCLGE_SSU_MEM_ECC_ERR(16), HCLGE_SSU_MEM_ECC_ERR(17), HCLGE_SSU_MEM_ECC_ERR(18), HCLGE_SSU_MEM_ECC_ERR(19), HCLGE_SSU_MEM_ECC_ERR(20), HCLGE_SSU_MEM_ECC_ERR(21), HCLGE_SSU_MEM_ECC_ERR(22), HCLGE_SSU_MEM_ECC_ERR(23), HCLGE_SSU_MEM_ECC_ERR(24), HCLGE_SSU_MEM_ECC_ERR(25), HCLGE_SSU_MEM_ECC_ERR(26), HCLGE_SSU_MEM_ECC_ERR(27), HCLGE_SSU_MEM_ECC_ERR(28), HCLGE_SSU_MEM_ECC_ERR(29), HCLGE_SSU_MEM_ECC_ERR(30), HCLGE_SSU_MEM_ECC_ERR(31), { /* sentinel */ } }; static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = { { .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" }, { .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port" }, { .int_msk = BIT(2), .msg = "igu_pkt_without_key_port" }, { .int_msk = BIT(3), .msg = "roc_eof_mis_match_port" }, { .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port" }, { .int_msk = BIT(5), .msg = "igu_eof_mis_match_port" }, { .int_msk = BIT(6), .msg = "roc_sof_mis_match_port" }, { .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port" }, { .int_msk = BIT(8), .msg = "igu_sof_mis_match_port" }, { .int_msk = BIT(11), .msg = "ets_rd_int_rx_port" }, { .int_msk = BIT(12), .msg = "ets_wr_int_rx_port" }, { .int_msk = BIT(13), .msg = "ets_rd_int_tx_port" }, { .int_msk = BIT(14), .msg = "ets_wr_int_tx_port" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = { { .int_msk = BIT(0), .msg = "ig_mac_inf_int" }, { .int_msk = BIT(1), .msg = "ig_host_inf_int" }, { .int_msk = BIT(2), .msg = "ig_roc_buf_int" }, { .int_msk = BIT(3), .msg = "ig_host_data_fifo_int" }, { .int_msk = BIT(4), .msg = "ig_host_key_fifo_int" }, { .int_msk = BIT(5), .msg = "tx_qcn_fifo_int" }, { .int_msk = BIT(6), .msg = "rx_qcn_fifo_int" }, { .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int" }, { .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int" }, { .int_msk = BIT(9), .msg = "qm_eof_fifo_int" }, { .int_msk = BIT(10), .msg = "mb_rlt_fifo_int" }, { .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int" }, { .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int" }, { .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int" }, { .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int" }, { .int_msk = BIT(15), .msg = "host_cmd_fifo_int" }, { .int_msk = BIT(16), .msg = "mac_cmd_fifo_int" }, { .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int" }, { .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int" }, { .int_msk = BIT(19), .msg = "dup_bitmap_empty_int" }, { .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int" }, { .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int" }, { .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int" }, { .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = { { .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg" }, { .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg" }, { .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg" }, { .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = { { .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" }, { .int_msk = BIT(9), .msg = "low_water_line_err_port" }, { .int_msk = BIT(10), .msg = "hi_water_line_err_port" }, { /* sentinel */ } }; static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = { { .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" }, { .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" }, { .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" }, { .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" }, { .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" }, { .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" }, { .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" }, { .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" }, { .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" }, { .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" }, { .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" }, { .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" }, { .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" }, { .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" }, { .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" }, { .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" }, { .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" }, { .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" }, { .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" }, { .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" }, { /* sentinel */ } }; static void hclge_log_error(struct device *dev, char *reg, const struct hclge_hw_error *err, u32 err_sts) { while (err->msg) { if (err->int_msk & err_sts) dev_warn(dev, "%s %s found [error status=0x%x]\n", reg, err->msg, err_sts); err++; } } /* hclge_cmd_query_error: read the error information * @hdev: pointer to struct hclge_dev * @desc: descriptor for describing the command * @cmd: command opcode * @flag: flag for extended command structure * @w_num: offset for setting the read interrupt type. * @int_type: select which type of the interrupt for which the error * info will be read(RAS-CE/RAS-NFE/RAS-FE etc). * * This function query the error info from hw register/s using command */ static int hclge_cmd_query_error(struct hclge_dev *hdev, struct hclge_desc *desc, u32 cmd, u16 flag, u8 w_num, enum hclge_err_int_type int_type) { struct device *dev = &hdev->pdev->dev; int num = 1; int ret; hclge_cmd_setup_basic_desc(&desc[0], cmd, true); if (flag) { desc[0].flag |= cpu_to_le16(flag); hclge_cmd_setup_basic_desc(&desc[1], cmd, true); num = 2; } if (w_num) desc[0].data[w_num] = cpu_to_le32(int_type); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) dev_err(dev, "query error cmd failed (%d)\n", ret); return ret; } static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; /* configure common error interrupts */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false); if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN); desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN | HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN); desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN); desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN | HCLGE_MSIX_SRAM_ECC_ERR_INT_EN); desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN); } desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK); desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK | HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK); desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK); desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK | HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK); desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) dev_err(dev, "fail(%d) to configure common err interrupts\n", ret); return ret; } static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; if (hdev->pdev->revision < 0x21) return 0; /* configure NCSI error interrupts */ hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "fail(%d) to configure NCSI error interrupts\n", ret); return ret; } static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* configure IGU,EGU error interrupts */ hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN); desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "fail(%d) to configure IGU common interrupts\n", ret); return ret; } hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN); desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "fail(%d) to configure IGU-EGU TNL interrupts\n", ret); return ret; } ret = hclge_config_ncsi_hw_err_int(hdev, en); return ret; } static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; /* configure PPP error interrupts */ hclge_cmd_setup_basic_desc(&desc[0], cmd, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], cmd, false); if (cmd == HCLGE_PPP_CMD0_INT_CMD) { if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN); desc[0].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN); desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN); } desc[1].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK); if (hdev->pdev->revision >= 0x21) desc[1].data[2] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK); } else if (cmd == HCLGE_PPP_CMD1_INT_CMD) { if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN); desc[0].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN); } desc[1].data[0] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK); } ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) dev_err(dev, "fail(%d) to configure PPP error intr\n", ret); return ret; } static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en) { int ret; ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD, en); if (ret) return ret; ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD, en); return ret; } static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* configure TM SCH hw errors */ hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) { dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret); return ret; } /* configure TM QCN hw errors */ ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG, 0, 0, 0); if (ret) { dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret); return ret; } hclge_cmd_reuse_desc(&desc, false); if (en) desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "fail(%d) to configure TM QCN mem errors\n", ret); return ret; } static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; /* configure MAC common error interrupts */ hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false); if (en) desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN); desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "fail(%d) to configure MAC COMMON error intr\n", ret); return ret; } static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int num = 1; int ret; /* configure PPU error interrupts */ if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) { hclge_cmd_setup_basic_desc(&desc[0], cmd, false); desc[0].flag |= HCLGE_CMD_FLAG_NEXT; hclge_cmd_setup_basic_desc(&desc[1], cmd, false); if (en) { desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN; desc[0].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN; desc[1].data[3] = HCLGE_PPU_MPF_ABNORMAL_INT3_EN; desc[1].data[4] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN; } desc[1].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK; desc[1].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK; desc[1].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK; desc[1].data[3] |= HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK; num = 2; } else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) { hclge_cmd_setup_basic_desc(&desc[0], cmd, false); if (en) desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2; desc[0].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK; } else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) { hclge_cmd_setup_basic_desc(&desc[0], cmd, false); if (en) desc[0].data[0] = HCLGE_PPU_PF_ABNORMAL_INT_EN; desc[0].data[2] = HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK; } else { dev_err(dev, "Invalid cmd to configure PPU error interrupts\n"); return -EINVAL; } ret = hclge_cmd_send(&hdev->hw, &desc[0], num); return ret; } static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; int ret; ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD, en); if (ret) { dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n", ret); return ret; } ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_OTHER_INT_CMD, en); if (ret) { dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret); return ret; } ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_PF_OTHER_INT_CMD, en); if (ret) dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n", ret); return ret; } static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; /* configure SSU ecc error interrupts */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false); if (en) { desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN); desc[0].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN); desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN); } desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK); desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) { dev_err(dev, "fail(%d) to configure SSU ECC error interrupt\n", ret); return ret; } /* configure SSU common error interrupts */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false); if (en) { if (hdev->pdev->revision >= 0x21) desc[0].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN); else desc[0].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5)); desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN); desc[0].data[2] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN); } desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK | HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK); desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc[0], 2); if (ret) dev_err(dev, "fail(%d) to configure SSU COMMON error intr\n", ret); return ret; } #define HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type) \ do { \ if (ae_dev->ops->set_default_reset_request) \ ae_dev->ops->set_default_reset_request(ae_dev, \ reset_type); \ } while (0) /* hclge_handle_mpf_ras_error: handle all main PF RAS errors * @hdev: pointer to struct hclge_dev * @desc: descriptor for describing the command * @num: number of extended command structures * * This function handles all the main PF RAS errors in the * hw register/s using command. */ static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev, struct hclge_desc *desc, int num) { struct hnae3_ae_dev *ae_dev = hdev->ae_dev; struct device *dev = &hdev->pdev->dev; __le32 *desc_data; u32 status; int ret; /* query all main PF RAS errors */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT, true); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) { dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret); return ret; } /* log HNS common errors */ status = le32_to_cpu(desc[0].data[0]); if (status) { hclge_log_error(dev, "IMP_TCM_ECC_INT_STS", &hclge_imp_tcm_ecc_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } status = le32_to_cpu(desc[0].data[1]); if (status) { hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS", &hclge_cmdq_nic_mem_ecc_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } if ((le32_to_cpu(desc[0].data[2])) & BIT(0)) { dev_warn(dev, "imp_rd_data_poison_err found\n"); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } status = le32_to_cpu(desc[0].data[3]); if (status) { hclge_log_error(dev, "TQP_INT_ECC_INT_STS", &hclge_tqp_int_ecc_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(desc[0].data[4]); if (status) { hclge_log_error(dev, "MSIX_ECC_INT_STS", &hclge_msix_sram_ecc_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } /* log SSU(Storage Switch Unit) errors */ desc_data = (__le32 *)&desc[2]; status = le32_to_cpu(*(desc_data + 2)); if (status) { hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0", &hclge_ssu_mem_ecc_err_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(*(desc_data + 3)) & BIT(0); if (status) { dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n", status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK; if (status) { hclge_log_error(dev, "SSU_COMMON_ERR_INT", &hclge_ssu_com_err_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } /* log IGU(Ingress Unit) errors */ desc_data = (__le32 *)&desc[3]; status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK; if (status) hclge_log_error(dev, "IGU_INT_STS", &hclge_igu_int[0], status); /* log PPP(Programmable Packet Process) errors */ desc_data = (__le32 *)&desc[4]; status = le32_to_cpu(*(desc_data + 1)); if (status) hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1", &hclge_ppp_mpf_abnormal_int_st1[0], status); status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK; if (status) hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3", &hclge_ppp_mpf_abnormal_int_st3[0], status); /* log PPU(RCB) errors */ desc_data = (__le32 *)&desc[5]; status = le32_to_cpu(*(desc_data + 1)); if (status) { dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST1 %s found\n", "rpu_rx_pkt_ecc_mbit_err"); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(*(desc_data + 2)); if (status) { hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2", &hclge_ppu_mpf_abnormal_int_st2[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK; if (status) { hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3", &hclge_ppu_mpf_abnormal_int_st3[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } /* log TM(Traffic Manager) errors */ desc_data = (__le32 *)&desc[6]; status = le32_to_cpu(*desc_data); if (status) { hclge_log_error(dev, "TM_SCH_RINT", &hclge_tm_sch_rint[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } /* log QCN(Quantized Congestion Control) errors */ desc_data = (__le32 *)&desc[7]; status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK; if (status) { hclge_log_error(dev, "QCN_FIFO_RINT", &hclge_qcn_fifo_rint[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK; if (status) { hclge_log_error(dev, "QCN_ECC_RINT", &hclge_qcn_ecc_rint[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } /* log NCSI errors */ desc_data = (__le32 *)&desc[9]; status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK; if (status) { hclge_log_error(dev, "NCSI_ECC_INT_RPT", &hclge_ncsi_err_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET); } /* clear all main PF RAS errors */ hclge_cmd_reuse_desc(&desc[0], false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret); return ret; } /* hclge_handle_pf_ras_error: handle all PF RAS errors * @hdev: pointer to struct hclge_dev * @desc: descriptor for describing the command * @num: number of extended command structures * * This function handles all the PF RAS errors in the * hw register/s using command. */ static int hclge_handle_pf_ras_error(struct hclge_dev *hdev, struct hclge_desc *desc, int num) { struct hnae3_ae_dev *ae_dev = hdev->ae_dev; struct device *dev = &hdev->pdev->dev; __le32 *desc_data; u32 status; int ret; /* query all PF RAS errors */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT, true); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) { dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret); return ret; } /* log SSU(Storage Switch Unit) errors */ status = le32_to_cpu(desc[0].data[0]); if (status) { hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT", &hclge_ssu_port_based_err_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } status = le32_to_cpu(desc[0].data[1]); if (status) { hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT", &hclge_ssu_fifo_overflow_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } status = le32_to_cpu(desc[0].data[2]); if (status) { hclge_log_error(dev, "SSU_ETS_TCG_INT", &hclge_ssu_ets_tcg_int[0], status); HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET); } /* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */ desc_data = (__le32 *)&desc[1]; status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK; if (status) hclge_log_error(dev, "IGU_EGU_TNL_INT_STS", &hclge_igu_egu_tnl_int[0], status); /* log PPU(RCB) errors */ desc_data = (__le32 *)&desc[3]; status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK; if (status) hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0", &hclge_ppu_pf_abnormal_int[0], status); /* clear all PF RAS errors */ hclge_cmd_reuse_desc(&desc[0], false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], num); if (ret) dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret); return ret; } static int hclge_handle_all_ras_errors(struct hclge_dev *hdev) { struct device *dev = &hdev->pdev->dev; u32 mpf_bd_num, pf_bd_num, bd_num; struct hclge_desc desc_bd; struct hclge_desc *desc; int ret; /* query the number of registers in the RAS int status */ hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_RAS_INT_STS_BD_NUM, true); ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1); if (ret) { dev_err(dev, "fail(%d) to query ras int status bd num\n", ret); return ret; } mpf_bd_num = le32_to_cpu(desc_bd.data[0]); pf_bd_num = le32_to_cpu(desc_bd.data[1]); bd_num = max_t(u32, mpf_bd_num, pf_bd_num); desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL); if (!desc) return -ENOMEM; /* handle all main PF RAS errors */ ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num); if (ret) { kfree(desc); return ret; } memset(desc, 0, bd_num * sizeof(struct hclge_desc)); /* handle all PF RAS errors */ ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num); kfree(desc); return ret; } static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; int ret; /* read overflow error status */ ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret); return ret; } /* log overflow error */ if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) { const struct hclge_hw_error *err; u32 err_sts; err = &hclge_rocee_qmm_ovf_err_int[0]; err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK & le32_to_cpu(desc[0].data[0]); while (err->msg) { if (err->int_msk == err_sts) { dev_warn(dev, "%s [error status=0x%x] found\n", err->msg, le32_to_cpu(desc[0].data[0])); break; } err++; } } if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) { dev_warn(dev, "ROCEE TSP OVF [error status=0x%x] found\n", le32_to_cpu(desc[0].data[1])); } if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) { dev_warn(dev, "ROCEE SCC OVF [error status=0x%x] found\n", le32_to_cpu(desc[0].data[2])); } return 0; } static enum hnae3_reset_type hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev) { enum hnae3_reset_type reset_type = HNAE3_NONE_RESET; struct device *dev = &hdev->pdev->dev; struct hclge_desc desc[2]; unsigned int status; int ret; /* read RAS error interrupt status */ ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0, 0, 0); if (ret) { dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret); /* reset everything for now */ return HNAE3_GLOBAL_RESET; } status = le32_to_cpu(desc[0].data[0]); if (status & HCLGE_ROCEE_RERR_INT_MASK) { dev_warn(dev, "ROCEE RAS AXI rresp error\n"); reset_type = HNAE3_FUNC_RESET; } if (status & HCLGE_ROCEE_BERR_INT_MASK) { dev_warn(dev, "ROCEE RAS AXI bresp error\n"); reset_type = HNAE3_FUNC_RESET; } if (status & HCLGE_ROCEE_ECC_INT_MASK) { dev_warn(dev, "ROCEE RAS 2bit ECC error\n"); reset_type = HNAE3_GLOBAL_RESET; } if (status & HCLGE_ROCEE_OVF_INT_MASK) { ret = hclge_log_rocee_ovf_error(hdev); if (ret) { dev_err(dev, "failed(%d) to process ovf error\n", ret); /* reset everything for now */ return HNAE3_GLOBAL_RESET; } reset_type = HNAE3_FUNC_RESET; } /* clear error status */ hclge_cmd_reuse_desc(&desc[0], false); ret = hclge_cmd_send(&hdev->hw, &desc[0], 1); if (ret) { dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret); /* reset everything for now */ return HNAE3_GLOBAL_RESET; } return reset_type; } static int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en) { struct device *dev = &hdev->pdev->dev; struct hclge_desc desc; int ret; if (hdev->pdev->revision < 0x21 || !hnae3_dev_roce_supported(hdev)) return 0; hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false); if (en) { /* enable ROCEE hw error interrupts */ desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN); desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN); hclge_log_and_clear_rocee_ras_error(hdev); } desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK); desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK); ret = hclge_cmd_send(&hdev->hw, &desc, 1); if (ret) dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret); return ret; } static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev) { enum hnae3_reset_type reset_type = HNAE3_NONE_RESET; struct hclge_dev *hdev = ae_dev->priv; if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || hdev->pdev->revision < 0x21) return; reset_type = hclge_log_and_clear_rocee_ras_error(hdev); if (reset_type != HNAE3_NONE_RESET) HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type); } static const struct hclge_hw_blk hw_blk[] = { { .msk = BIT(0), .name = "IGU_EGU", .config_err_int = hclge_config_igu_egu_hw_err_int, }, { .msk = BIT(1), .name = "PPP", .config_err_int = hclge_config_ppp_hw_err_int, }, { .msk = BIT(2), .name = "SSU", .config_err_int = hclge_config_ssu_hw_err_int, }, { .msk = BIT(3), .name = "PPU", .config_err_int = hclge_config_ppu_hw_err_int, }, { .msk = BIT(4), .name = "TM", .config_err_int = hclge_config_tm_hw_err_int, }, { .msk = BIT(5), .name = "COMMON", .config_err_int = hclge_config_common_hw_err_int, }, { .msk = BIT(8), .name = "MAC", .config_err_int = hclge_config_mac_err_int, }, { /* sentinel */ } }; int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state) { const struct hclge_hw_blk *module = hw_blk; struct device *dev = &hdev->pdev->dev; int ret = 0; while (module->name) { if (module->config_err_int) { ret = module->config_err_int(hdev, state); if (ret) return ret; } module++; } ret = hclge_config_rocee_ras_interrupt(hdev, state); if (ret) dev_err(dev, "fail(%d) to configure ROCEE err int\n", ret); return ret; } pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev) { struct hclge_dev *hdev = ae_dev->priv; struct device *dev = &hdev->pdev->dev; u32 status; status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG); /* Handling Non-fatal HNS RAS errors */ if (status & HCLGE_RAS_REG_NFE_MASK) { dev_warn(dev, "HNS Non-Fatal RAS error(status=0x%x) identified\n", status); hclge_handle_all_ras_errors(hdev); } else { if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || hdev->pdev->revision < 0x21) return PCI_ERS_RESULT_RECOVERED; } if (status & HCLGE_RAS_REG_ROCEE_ERR_MASK) { dev_warn(dev, "ROCEE uncorrected RAS error identified\n"); hclge_handle_rocee_ras_error(ae_dev); } if (status & HCLGE_RAS_REG_NFE_MASK || status & HCLGE_RAS_REG_ROCEE_ERR_MASK) return PCI_ERS_RESULT_NEED_RESET; return PCI_ERS_RESULT_RECOVERED; } int hclge_handle_hw_msix_error(struct hclge_dev *hdev, unsigned long *reset_requests) { struct device *dev = &hdev->pdev->dev; u32 mpf_bd_num, pf_bd_num, bd_num; struct hclge_desc desc_bd; struct hclge_desc *desc; __le32 *desc_data; int ret = 0; u32 status; /* set default handling */ set_bit(HNAE3_FUNC_RESET, reset_requests); /* query the number of bds for the MSIx int status */ hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_MSIX_INT_STS_BD_NUM, true); ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1); if (ret) { dev_err(dev, "fail(%d) to query msix int status bd num\n", ret); /* reset everything for now */ set_bit(HNAE3_GLOBAL_RESET, reset_requests); return ret; } mpf_bd_num = le32_to_cpu(desc_bd.data[0]); pf_bd_num = le32_to_cpu(desc_bd.data[1]); bd_num = max_t(u32, mpf_bd_num, pf_bd_num); desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL); if (!desc) goto out; /* query all main PF MSIx errors */ hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT, true); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num); if (ret) { dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret); /* reset everything for now */ set_bit(HNAE3_GLOBAL_RESET, reset_requests); goto msi_error; } /* log MAC errors */ desc_data = (__le32 *)&desc[1]; status = le32_to_cpu(*desc_data); if (status) { hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R", &hclge_mac_afifo_tnl_int[0], status); set_bit(HNAE3_GLOBAL_RESET, reset_requests); } /* log PPU(RCB) MPF errors */ desc_data = (__le32 *)&desc[5]; status = le32_to_cpu(*(desc_data + 2)) & HCLGE_PPU_MPF_INT_ST2_MSIX_MASK; if (status) { hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2", &hclge_ppu_mpf_abnormal_int_st2[0], status); set_bit(HNAE3_CORE_RESET, reset_requests); } /* clear all main PF MSIx errors */ hclge_cmd_reuse_desc(&desc[0], false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num); if (ret) { dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret); /* reset everything for now */ set_bit(HNAE3_GLOBAL_RESET, reset_requests); goto msi_error; } /* query all PF MSIx errors */ memset(desc, 0, bd_num * sizeof(struct hclge_desc)); hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT, true); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num); if (ret) { dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret); /* reset everything for now */ set_bit(HNAE3_GLOBAL_RESET, reset_requests); goto msi_error; } /* log SSU PF errors */ status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK; if (status) { hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT", &hclge_ssu_port_based_pf_int[0], status); set_bit(HNAE3_GLOBAL_RESET, reset_requests); } /* read and log PPP PF errors */ desc_data = (__le32 *)&desc[2]; status = le32_to_cpu(*desc_data); if (status) hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0", &hclge_ppp_pf_abnormal_int[0], status); /* log PPU(RCB) PF errors */ desc_data = (__le32 *)&desc[3]; status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK; if (status) hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST", &hclge_ppu_pf_abnormal_int[0], status); /* clear all PF MSIx errors */ hclge_cmd_reuse_desc(&desc[0], false); desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT); ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num); if (ret) { dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret); /* reset everything for now */ set_bit(HNAE3_GLOBAL_RESET, reset_requests); } msi_error: kfree(desc); out: return ret; }