// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2019 Intel Corporation. */ #include "fm10k_pf.h" #include "fm10k_vf.h" /** * fm10k_reset_hw_pf - PF hardware reset * @hw: pointer to hardware structure * * This function should return the hardware to a state similar to the * one it is in after being powered on. **/ static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw) { s32 err; u32 reg; u16 i; /* Disable interrupts */ fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL)); /* Lock ITR2 reg 0 into itself and disable interrupt moderation */ fm10k_write_reg(hw, FM10K_ITR2(0), 0); fm10k_write_reg(hw, FM10K_INT_CTRL, 0); /* We assume here Tx and Rx queue 0 are owned by the PF */ /* Shut off VF access to their queues forcing them to queue 0 */ for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) { fm10k_write_reg(hw, FM10K_TQMAP(i), 0); fm10k_write_reg(hw, FM10K_RQMAP(i), 0); } /* shut down all rings */ err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES); if (err == FM10K_ERR_REQUESTS_PENDING) { hw->mac.reset_while_pending++; goto force_reset; } else if (err) { return err; } /* Verify that DMA is no longer active */ reg = fm10k_read_reg(hw, FM10K_DMA_CTRL); if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE)) return FM10K_ERR_DMA_PENDING; force_reset: /* Inititate data path reset */ reg = FM10K_DMA_CTRL_DATAPATH_RESET; fm10k_write_reg(hw, FM10K_DMA_CTRL, reg); /* Flush write and allow 100us for reset to complete */ fm10k_write_flush(hw); udelay(FM10K_RESET_TIMEOUT); /* Verify we made it out of reset */ reg = fm10k_read_reg(hw, FM10K_IP); if (!(reg & FM10K_IP_NOTINRESET)) return FM10K_ERR_RESET_FAILED; return 0; } /** * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support * @hw: pointer to hardware structure * * Looks at the ARI hierarchy bit to determine whether ARI is supported or not. **/ static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw) { u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL); return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI); } /** * fm10k_init_hw_pf - PF hardware initialization * @hw: pointer to hardware structure * **/ static s32 fm10k_init_hw_pf(struct fm10k_hw *hw) { u32 dma_ctrl, txqctl; u16 i; /* Establish default VSI as valid */ fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0); fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default), FM10K_DGLORTMAP_ANY); /* Invalidate all other GLORT entries */ for (i = 1; i < FM10K_DGLORT_COUNT; i++) fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE); /* reset ITR2(0) to point to itself */ fm10k_write_reg(hw, FM10K_ITR2(0), 0); /* reset VF ITR2(0) to point to 0 avoid PF registers */ fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0); /* loop through all PF ITR2 registers pointing them to the previous */ for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++) fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); /* Enable interrupt moderator if not already enabled */ fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); /* compute the default txqctl configuration */ txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT); for (i = 0; i < FM10K_MAX_QUEUES; i++) { /* configure rings for 256 Queue / 32 Descriptor cache mode */ fm10k_write_reg(hw, FM10K_TQDLOC(i), (i * FM10K_TQDLOC_BASE_32_DESC) | FM10K_TQDLOC_SIZE_32_DESC); fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); /* configure rings to provide TPH processing hints */ fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i), FM10K_TPH_TXCTRL_DESC_TPHEN | FM10K_TPH_TXCTRL_DESC_RROEN | FM10K_TPH_TXCTRL_DESC_WROEN | FM10K_TPH_TXCTRL_DATA_RROEN); fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i), FM10K_TPH_RXCTRL_DESC_TPHEN | FM10K_TPH_RXCTRL_DESC_RROEN | FM10K_TPH_RXCTRL_DATA_WROEN | FM10K_TPH_RXCTRL_HDR_WROEN); } /* set max hold interval to align with 1.024 usec in all modes and * store ITR scale */ switch (hw->bus.speed) { case fm10k_bus_speed_2500: dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1; hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN1; break; case fm10k_bus_speed_5000: dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2; hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN2; break; case fm10k_bus_speed_8000: dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3; hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; break; default: dma_ctrl = 0; /* just in case, assume Gen3 ITR scale */ hw->mac.itr_scale = FM10K_TDLEN_ITR_SCALE_GEN3; break; } /* Configure TSO flags */ fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW); fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI); /* Enable DMA engine * Set Rx Descriptor size to 32 * Set Minimum MSS to 64 * Set Maximum number of Rx queues to 256 / 32 Descriptor */ dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE | FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 | FM10K_DMA_CTRL_32_DESC; fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl); /* record maximum queue count, we limit ourselves to 128 */ hw->mac.max_queues = FM10K_MAX_QUEUES_PF; /* We support either 64 VFs or 7 VFs depending on if we have ARI */ hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7; return 0; } /** * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table * @hw: pointer to hardware structure * @vid: VLAN ID to add to table * @vsi: Index indicating VF ID or PF ID in table * @set: Indicates if this is a set or clear operation * * This function adds or removes the corresponding VLAN ID from the VLAN * filter table for the corresponding function. In addition to the * standard set/clear that supports one bit a multi-bit write is * supported to set 64 bits at a time. **/ static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set) { u32 vlan_table, reg, mask, bit, len; /* verify the VSI index is valid */ if (vsi > FM10K_VLAN_TABLE_VSI_MAX) return FM10K_ERR_PARAM; /* VLAN multi-bit write: * The multi-bit write has several parts to it. * 24 16 8 0 * 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | RSVD0 | Length |C|RSVD0| VLAN ID | * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * VLAN ID: Vlan Starting value * RSVD0: Reserved section, must be 0 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message) * Length: Number of times to repeat the bit being set */ len = vid >> 16; vid = (vid << 17) >> 17; /* verify the reserved 0 fields are 0 */ if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX) return FM10K_ERR_PARAM; /* Loop through the table updating all required VLANs */ for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32; len < FM10K_VLAN_TABLE_VID_MAX; len -= 32 - bit, reg++, bit = 0) { /* record the initial state of the register */ vlan_table = fm10k_read_reg(hw, reg); /* truncate mask if we are at the start or end of the run */ mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit; /* make necessary modifications to the register */ mask &= set ? ~vlan_table : vlan_table; if (mask) fm10k_write_reg(hw, reg, vlan_table ^ mask); } return 0; } /** * fm10k_read_mac_addr_pf - Read device MAC address * @hw: pointer to the HW structure * * Reads the device MAC address from the SM_AREA and stores the value. **/ static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw) { u8 perm_addr[ETH_ALEN]; u32 serial_num; serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1)); /* last byte should be all 1's */ if ((~serial_num) << 24) return FM10K_ERR_INVALID_MAC_ADDR; perm_addr[0] = (u8)(serial_num >> 24); perm_addr[1] = (u8)(serial_num >> 16); perm_addr[2] = (u8)(serial_num >> 8); serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0)); /* first byte should be all 1's */ if ((~serial_num) >> 24) return FM10K_ERR_INVALID_MAC_ADDR; perm_addr[3] = (u8)(serial_num >> 16); perm_addr[4] = (u8)(serial_num >> 8); perm_addr[5] = (u8)(serial_num); ether_addr_copy(hw->mac.perm_addr, perm_addr); ether_addr_copy(hw->mac.addr, perm_addr); return 0; } /** * fm10k_glort_valid_pf - Validate that the provided glort is valid * @hw: pointer to the HW structure * @glort: base glort to be validated * * This function will return an error if the provided glort is invalid **/ bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort) { glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT; return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE); } /** * fm10k_update_xc_addr_pf - Update device addresses * @hw: pointer to the HW structure * @glort: base resource tag for this request * @mac: MAC address to add/remove from table * @vid: VLAN ID to add/remove from table * @add: Indicates if this is an add or remove operation * @flags: flags field to indicate add and secure * * This function generates a message to the Switch API requesting * that the given logical port add/remove the given L2 MAC/VLAN address. **/ static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort, const u8 *mac, u16 vid, bool add, u8 flags) { struct fm10k_mbx_info *mbx = &hw->mbx; struct fm10k_mac_update mac_update; u32 msg[5]; /* clear set bit from VLAN ID */ vid &= ~FM10K_VLAN_CLEAR; /* if glort or VLAN are not valid return error */ if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX) return FM10K_ERR_PARAM; /* record fields */ mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) | ((u32)mac[3] << 16) | ((u32)mac[4] << 8) | ((u32)mac[5])); mac_update.mac_upper = cpu_to_le16(((u16)mac[0] << 8) | ((u16)mac[1])); mac_update.vlan = cpu_to_le16(vid); mac_update.glort = cpu_to_le16(glort); mac_update.action = add ? 0 : 1; mac_update.flags = flags; /* populate mac_update fields */ fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE); fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE, &mac_update, sizeof(mac_update)); /* load onto outgoing mailbox */ return mbx->ops.enqueue_tx(hw, mbx, msg); } /** * fm10k_update_uc_addr_pf - Update device unicast addresses * @hw: pointer to the HW structure * @glort: base resource tag for this request * @mac: MAC address to add/remove from table * @vid: VLAN ID to add/remove from table * @add: Indicates if this is an add or remove operation * @flags: flags field to indicate add and secure * * This function is used to add or remove unicast addresses for * the PF. **/ static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort, const u8 *mac, u16 vid, bool add, u8 flags) { /* verify MAC address is valid */ if (!is_valid_ether_addr(mac)) return FM10K_ERR_PARAM; return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags); } /** * fm10k_update_mc_addr_pf - Update device multicast addresses * @hw: pointer to the HW structure * @glort: base resource tag for this request * @mac: MAC address to add/remove from table * @vid: VLAN ID to add/remove from table * @add: Indicates if this is an add or remove operation * * This function is used to add or remove multicast MAC addresses for * the PF. **/ static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort, const u8 *mac, u16 vid, bool add) { /* verify multicast address is valid */ if (!is_multicast_ether_addr(mac)) return FM10K_ERR_PARAM; return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0); } /** * fm10k_update_xcast_mode_pf - Request update of multicast mode * @hw: pointer to hardware structure * @glort: base resource tag for this request * @mode: integer value indicating mode being requested * * This function will attempt to request a higher mode for the port * so that it can enable either multicast, multicast promiscuous, or * promiscuous mode of operation. **/ static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode) { struct fm10k_mbx_info *mbx = &hw->mbx; u32 msg[3], xcast_mode; if (mode > FM10K_XCAST_MODE_NONE) return FM10K_ERR_PARAM; /* if glort is not valid return error */ if (!fm10k_glort_valid_pf(hw, glort)) return FM10K_ERR_PARAM; /* write xcast mode as a single u32 value, * lower 16 bits: glort * upper 16 bits: mode */ xcast_mode = ((u32)mode << 16) | glort; /* generate message requesting to change xcast mode */ fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES); fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode); /* load onto outgoing mailbox */ return mbx->ops.enqueue_tx(hw, mbx, msg); } /** * fm10k_update_int_moderator_pf - Update interrupt moderator linked list * @hw: pointer to hardware structure * * This function walks through the MSI-X vector table to determine the * number of active interrupts and based on that information updates the * interrupt moderator linked list. **/ static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw) { u32 i; /* Disable interrupt moderator */ fm10k_write_reg(hw, FM10K_INT_CTRL, 0); /* loop through PF from last to first looking enabled vectors */ for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) { if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) break; } /* always reset VFITR2[0] to point to last enabled PF vector */ fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i); /* reset ITR2[0] to point to last enabled PF vector */ if (!hw->iov.num_vfs) fm10k_write_reg(hw, FM10K_ITR2(0), i); /* Enable interrupt moderator */ fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR); } /** * fm10k_update_lport_state_pf - Notify the switch of a change in port state * @hw: pointer to the HW structure * @glort: base resource tag for this request * @count: number of logical ports being updated * @enable: boolean value indicating enable or disable * * This function is used to add/remove a logical port from the switch. **/ static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort, u16 count, bool enable) { struct fm10k_mbx_info *mbx = &hw->mbx; u32 msg[3], lport_msg; /* do nothing if we are being asked to create or destroy 0 ports */ if (!count) return 0; /* if glort is not valid return error */ if (!fm10k_glort_valid_pf(hw, glort)) return FM10K_ERR_PARAM; /* reset multicast mode if deleting lport */ if (!enable) fm10k_update_xcast_mode_pf(hw, glort, FM10K_XCAST_MODE_NONE); /* construct the lport message from the 2 pieces of data we have */ lport_msg = ((u32)count << 16) | glort; /* generate lport create/delete message */ fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE : FM10K_PF_MSG_ID_LPORT_DELETE); fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg); /* load onto outgoing mailbox */ return mbx->ops.enqueue_tx(hw, mbx, msg); } /** * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues * @hw: pointer to hardware structure * @dglort: pointer to dglort configuration structure * * Reads the configuration structure contained in dglort_cfg and uses * that information to then populate a DGLORTMAP/DEC entry and the queues * to which it has been assigned. **/ static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw, struct fm10k_dglort_cfg *dglort) { u16 glort, queue_count, vsi_count, pc_count; u16 vsi, queue, pc, q_idx; u32 txqctl, dglortdec, dglortmap; /* verify the dglort pointer */ if (!dglort) return FM10K_ERR_PARAM; /* verify the dglort values */ if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) || (dglort->vsi_l > 6) || (dglort->vsi_b > 64) || (dglort->queue_l > 8) || (dglort->queue_b >= 256)) return FM10K_ERR_PARAM; /* determine count of VSIs and queues */ queue_count = BIT(dglort->rss_l + dglort->pc_l); vsi_count = BIT(dglort->vsi_l + dglort->queue_l); glort = dglort->glort; q_idx = dglort->queue_b; /* configure SGLORT for queues */ for (vsi = 0; vsi < vsi_count; vsi++, glort++) { for (queue = 0; queue < queue_count; queue++, q_idx++) { if (q_idx >= FM10K_MAX_QUEUES) break; fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort); fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort); } } /* determine count of PCs and queues */ queue_count = BIT(dglort->queue_l + dglort->rss_l + dglort->vsi_l); pc_count = BIT(dglort->pc_l); /* configure PC for Tx queues */ for (pc = 0; pc < pc_count; pc++) { q_idx = pc + dglort->queue_b; for (queue = 0; queue < queue_count; queue++) { if (q_idx >= FM10K_MAX_QUEUES) break; txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx)); txqctl &= ~FM10K_TXQCTL_PC_MASK; txqctl |= pc << FM10K_TXQCTL_PC_SHIFT; fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl); q_idx += pc_count; } } /* configure DGLORTDEC */ dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) | ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) | ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) | ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) | ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) | ((u32)(dglort->queue_l)); if (dglort->inner_rss) dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE; /* configure DGLORTMAP */ dglortmap = (dglort->idx == fm10k_dglort_default) ? FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO; dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l; dglortmap |= dglort->glort; /* write values to hardware */ fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec); fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap); return 0; } u16 fm10k_queues_per_pool(struct fm10k_hw *hw) { u16 num_pools = hw->iov.num_pools; return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ? 8 : FM10K_MAX_QUEUES_POOL; } u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx) { u16 num_vfs = hw->iov.num_vfs; u16 vf_q_idx = FM10K_MAX_QUEUES; vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx); return vf_q_idx; } static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw) { u16 num_pools = hw->iov.num_pools; return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 : FM10K_MAX_VECTORS_POOL; } static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx) { u16 vf_v_idx = FM10K_MAX_VECTORS_PF; vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx; return vf_v_idx; } /** * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization * @hw: pointer to the HW structure * @num_vfs: number of VFs to be allocated * @num_pools: number of virtualization pools to be allocated * * Allocates queues and traffic classes to virtualization entities to prepare * the PF for SR-IOV and VMDq **/ static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs, u16 num_pools) { u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx; u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT; int i, j; /* hardware only supports up to 64 pools */ if (num_pools > 64) return FM10K_ERR_PARAM; /* the number of VFs cannot exceed the number of pools */ if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs)) return FM10K_ERR_PARAM; /* record number of virtualization entities */ hw->iov.num_vfs = num_vfs; hw->iov.num_pools = num_pools; /* determine qmap offsets and counts */ qmap_stride = (num_vfs > 8) ? 32 : 256; qpp = fm10k_queues_per_pool(hw); vpp = fm10k_vectors_per_pool(hw); /* calculate starting index for queues */ vf_q_idx = fm10k_vf_queue_index(hw, 0); qmap_idx = 0; /* establish TCs with -1 credits and no quanta to prevent transmit */ for (i = 0; i < num_vfs; i++) { fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0); fm10k_write_reg(hw, FM10K_TC_RATE(i), 0); fm10k_write_reg(hw, FM10K_TC_CREDIT(i), FM10K_TC_CREDIT_CREDIT_MASK); } /* zero out all mbmem registers */ for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;) fm10k_write_reg(hw, FM10K_MBMEM(i), 0); /* clear event notification of VF FLR */ fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0); fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0); /* loop through unallocated rings assigning them back to PF */ for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) { fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW | vid); fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF); } /* PF should have already updated VFITR2[0] */ /* update all ITR registers to flow to VFITR2[0] */ for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) { if (!(i & (vpp - 1))) fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp); else fm10k_write_reg(hw, FM10K_ITR2(i), i - 1); } /* update PF ITR2[0] to reference the last vector */ fm10k_write_reg(hw, FM10K_ITR2(0), fm10k_vf_vector_index(hw, num_vfs - 1)); /* loop through rings populating rings and TCs */ for (i = 0; i < num_vfs; i++) { /* record index for VF queue 0 for use in end of loop */ vf_q_idx0 = vf_q_idx; for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) { /* assign VF and locked TC to queues */ fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx), (i << FM10K_TXQCTL_TC_SHIFT) | i | FM10K_TXQCTL_VF | vid); fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx), FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | FM10K_RXDCTL_DROP_ON_EMPTY); fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx), (i << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF); /* map queue pair to VF */ fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx); } /* repeat the first ring for all of the remaining VF rings */ for (; j < qmap_stride; j++, qmap_idx++) { fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0); fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0); } } /* loop through remaining indexes assigning all to queue 0 */ while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) { fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0); qmap_idx++; } return 0; } /** * fm10k_iov_configure_tc_pf - Configure the shaping group for VF * @hw: pointer to the HW structure * @vf_idx: index of VF receiving GLORT * @rate: Rate indicated in Mb/s * * Configured the TC for a given VF to allow only up to a given number * of Mb/s of outgoing Tx throughput. **/ static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate) { /* configure defaults */ u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3; u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK; /* verify vf is in range */ if (vf_idx >= hw->iov.num_vfs) return FM10K_ERR_PARAM; /* set interval to align with 4.096 usec in all modes */ switch (hw->bus.speed) { case fm10k_bus_speed_2500: interval = FM10K_TC_RATE_INTERVAL_4US_GEN1; break; case fm10k_bus_speed_5000: interval = FM10K_TC_RATE_INTERVAL_4US_GEN2; break; default: break; } if (rate) { if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN) return FM10K_ERR_PARAM; /* The quanta is measured in Bytes per 4.096 or 8.192 usec * The rate is provided in Mbits per second * To tralslate from rate to quanta we need to multiply the * rate by 8.192 usec and divide by 8 bits/byte. To avoid * dealing with floating point we can round the values up * to the nearest whole number ratio which gives us 128 / 125. */ tc_rate = (rate * 128) / 125; /* try to keep the rate limiting accurate by increasing * the number of credits and interval for rates less than 4Gb/s */ if (rate < 4000) interval <<= 1; else tc_rate >>= 1; } /* update rate limiter with new values */ fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval); fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K); return 0; } /** * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list * @hw: pointer to the HW structure * @vf_idx: index of VF receiving GLORT * * Update the interrupt moderator linked list to include any MSI-X * interrupts which the VF has enabled in the MSI-X vector table. **/ static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx) { u16 vf_v_idx, vf_v_limit, i; /* verify vf is in range */ if (vf_idx >= hw->iov.num_vfs) return FM10K_ERR_PARAM; /* determine vector offset and count */ vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); /* search for first vector that is not masked */ for (i = vf_v_limit - 1; i > vf_v_idx; i--) { if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i))) break; } /* reset linked list so it now includes our active vectors */ if (vf_idx == (hw->iov.num_vfs - 1)) fm10k_write_reg(hw, FM10K_ITR2(0), i); else fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i); return 0; } /** * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF * @hw: pointer to the HW structure * @vf_info: pointer to VF information structure * * Assign a MAC address and default VLAN to a VF and notify it of the update **/ static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw, struct fm10k_vf_info *vf_info) { u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i; u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0; s32 err = 0; u16 vf_idx, vf_vid; /* verify vf is in range */ if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs) return FM10K_ERR_PARAM; /* determine qmap offsets and counts */ qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; queues_per_pool = fm10k_queues_per_pool(hw); /* calculate starting index for queues */ vf_idx = vf_info->vf_idx; vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); qmap_idx = qmap_stride * vf_idx; /* Determine correct default VLAN ID. The FM10K_VLAN_OVERRIDE bit is * used here to indicate to the VF that it will not have privilege to * write VLAN_TABLE. All policy is enforced on the PF but this allows * the VF to correctly report errors to userspace requests. */ if (vf_info->pf_vid) vf_vid = vf_info->pf_vid | FM10K_VLAN_OVERRIDE; else vf_vid = vf_info->sw_vid; /* generate MAC_ADDR request */ fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN); fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC, vf_info->mac, vf_vid); /* Configure Queue control register with new VLAN ID. The TXQCTL * register is RO from the VF, so the PF must do this even in the * case of notifying the VF of a new VID via the mailbox. */ txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) & FM10K_TXQCTL_VID_MASK; txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) | FM10K_TXQCTL_VF | vf_idx; for (i = 0; i < queues_per_pool; i++) fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl); /* try loading a message onto outgoing mailbox first */ if (vf_info->mbx.ops.enqueue_tx) { err = vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); if (err != FM10K_MBX_ERR_NO_MBX) return err; err = 0; } /* If we aren't connected to a mailbox, this is most likely because * the VF driver is not running. It should thus be safe to re-map * queues and use the registers to pass the MAC address so that the VF * driver gets correct information during its initialization. */ /* MAP Tx queue back to 0 temporarily, and disable it */ fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0); fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0); /* verify ring has disabled before modifying base address registers */ txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) { /* limit ourselves to a 1ms timeout */ if (timeout == 10) { err = FM10K_ERR_DMA_PENDING; goto err_out; } usleep_range(100, 200); txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx)); } /* Update base address registers to contain MAC address */ if (is_valid_ether_addr(vf_info->mac)) { tdbal = (((u32)vf_info->mac[3]) << 24) | (((u32)vf_info->mac[4]) << 16) | (((u32)vf_info->mac[5]) << 8); tdbah = (((u32)0xFF) << 24) | (((u32)vf_info->mac[0]) << 16) | (((u32)vf_info->mac[1]) << 8) | ((u32)vf_info->mac[2]); } /* Record the base address into queue 0 */ fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal); fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah); /* Provide the VF the ITR scale, using software-defined fields in TDLEN * to pass the information during VF initialization. See definition of * FM10K_TDLEN_ITR_SCALE_SHIFT for more details. */ fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx), hw->mac.itr_scale << FM10K_TDLEN_ITR_SCALE_SHIFT); err_out: /* restore the queue back to VF ownership */ fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx); return err; } /** * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF * @hw: pointer to the HW structure * @vf_info: pointer to VF information structure * * Reassign the interrupts and queues to a VF following an FLR **/ static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw, struct fm10k_vf_info *vf_info) { u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx; u32 tdbal = 0, tdbah = 0, txqctl, rxqctl; u16 vf_v_idx, vf_v_limit, vf_vid; u8 vf_idx = vf_info->vf_idx; int i; /* verify vf is in range */ if (vf_idx >= hw->iov.num_vfs) return FM10K_ERR_PARAM; /* clear event notification of VF FLR */ fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), BIT(vf_idx % 32)); /* force timeout and then disconnect the mailbox */ vf_info->mbx.timeout = 0; if (vf_info->mbx.ops.disconnect) vf_info->mbx.ops.disconnect(hw, &vf_info->mbx); /* determine vector offset and count */ vf_v_idx = fm10k_vf_vector_index(hw, vf_idx); vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw); /* determine qmap offsets and counts */ qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256; queues_per_pool = fm10k_queues_per_pool(hw); qmap_idx = qmap_stride * vf_idx; /* make all the queues inaccessible to the VF */ for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) { fm10k_write_reg(hw, FM10K_TQMAP(i), 0); fm10k_write_reg(hw, FM10K_RQMAP(i), 0); } /* calculate starting index for queues */ vf_q_idx = fm10k_vf_queue_index(hw, vf_idx); /* determine correct default VLAN ID */ if (vf_info->pf_vid) vf_vid = vf_info->pf_vid; else vf_vid = vf_info->sw_vid; /* configure Queue control register */ txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) | (vf_idx << FM10K_TXQCTL_TC_SHIFT) | FM10K_TXQCTL_VF | vf_idx; rxqctl = (vf_idx << FM10K_RXQCTL_VF_SHIFT) | FM10K_RXQCTL_VF; /* stop further DMA and reset queue ownership back to VF */ for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) { fm10k_write_reg(hw, FM10K_TXDCTL(i), 0); fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl); fm10k_write_reg(hw, FM10K_RXDCTL(i), FM10K_RXDCTL_WRITE_BACK_MIN_DELAY | FM10K_RXDCTL_DROP_ON_EMPTY); fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl); } /* reset TC with -1 credits and no quanta to prevent transmit */ fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0); fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0); fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_CREDIT_CREDIT_MASK); /* update our first entry in the table based on previous VF */ if (!vf_idx) hw->mac.ops.update_int_moderator(hw); else hw->iov.ops.assign_int_moderator(hw, vf_idx - 1); /* reset linked list so it now includes our active vectors */ if (vf_idx == (hw->iov.num_vfs - 1)) fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx); else fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx); /* link remaining vectors so that next points to previous */ for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++) fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1); /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */ for (i = FM10K_VFMBMEM_LEN; i--;) fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0); for (i = FM10K_VLAN_TABLE_SIZE; i--;) fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0); for (i = FM10K_RETA_SIZE; i--;) fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0); for (i = FM10K_RSSRK_SIZE; i--;) fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0); fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0); /* Update base address registers to contain MAC address */ if (is_valid_ether_addr(vf_info->mac)) { tdbal = (((u32)vf_info->mac[3]) << 24) | (((u32)vf_info->mac[4]) << 16) | (((u32)vf_info->mac[5]) << 8); tdbah = (((u32)0xFF) << 24) | (((u32)vf_info->mac[0]) << 16) | (((u32)vf_info->mac[1]) << 8) | ((u32)vf_info->mac[2]); } /* map queue pairs back to VF from last to first */ for (i = queues_per_pool; i--;) { fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal); fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah); /* See definition of FM10K_TDLEN_ITR_SCALE_SHIFT for an * explanation of how TDLEN is used. */ fm10k_write_reg(hw, FM10K_TDLEN(vf_q_idx + i), hw->mac.itr_scale << FM10K_TDLEN_ITR_SCALE_SHIFT); fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i); fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i); } /* repeat the first ring for all the remaining VF rings */ for (i = queues_per_pool; i < qmap_stride; i++) { fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx); fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx); } return 0; } /** * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF * @hw: pointer to hardware structure * @vf_info: pointer to VF information structure * @lport_idx: Logical port offset from the hardware glort * @flags: Set of capability flags to extend port beyond basic functionality * * This function allows enabling a VF port by assigning it a GLORT and * setting the flags so that it can enable an Rx mode. **/ static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw, struct fm10k_vf_info *vf_info, u16 lport_idx, u8 flags) { u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE; /* if glort is not valid return error */ if (!fm10k_glort_valid_pf(hw, glort)) return FM10K_ERR_PARAM; vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE; vf_info->glort = glort; return 0; } /** * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF * @hw: pointer to hardware structure * @vf_info: pointer to VF information structure * * This function disables a VF port by stripping it of a GLORT and * setting the flags so that it cannot enable any Rx mode. **/ static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw, struct fm10k_vf_info *vf_info) { u32 msg[1]; /* need to disable the port if it is already enabled */ if (FM10K_VF_FLAG_ENABLED(vf_info)) { /* notify switch that this port has been disabled */ fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); /* generate port state response to notify VF it is not ready */ fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg); } /* clear flags and glort if it exists */ vf_info->vf_flags = 0; vf_info->glort = 0; } /** * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs * @hw: pointer to hardware structure * @q: stats for all queues of a VF * @vf_idx: index of VF * * This function collects queue stats for VFs. **/ static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw, struct fm10k_hw_stats_q *q, u16 vf_idx) { u32 idx, qpp; /* get stats for all of the queues */ qpp = fm10k_queues_per_pool(hw); idx = fm10k_vf_queue_index(hw, vf_idx); fm10k_update_hw_stats_q(hw, q, idx, qpp); } /** * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF * @hw: Pointer to hardware structure * @results: Pointer array to message, results[0] is pointer to message * @mbx: Pointer to mailbox information structure * * This function is a default handler for MSI-X requests from the VF. The * assumption is that in this case it is acceptable to just directly * hand off the message from the VF to the underlying shared code. **/ s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 __always_unused **results, struct fm10k_mbx_info *mbx) { struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; u8 vf_idx = vf_info->vf_idx; return hw->iov.ops.assign_int_moderator(hw, vf_idx); } /** * fm10k_iov_select_vid - Select correct default VLAN ID * @vf_info: pointer to VF information structure * @vid: VLAN ID to correct * * Will report an error if the VLAN ID is out of range. For VID = 0, it will * return either the pf_vid or sw_vid depending on which one is set. */ s32 fm10k_iov_select_vid(struct fm10k_vf_info *vf_info, u16 vid) { if (!vid) return vf_info->pf_vid ? vf_info->pf_vid : vf_info->sw_vid; else if (vf_info->pf_vid && vid != vf_info->pf_vid) return FM10K_ERR_PARAM; else return vid; } /** * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF * @hw: Pointer to hardware structure * @results: Pointer array to message, results[0] is pointer to message * @mbx: Pointer to mailbox information structure * * This function is a default handler for MAC/VLAN requests from the VF. * The assumption is that in this case it is acceptable to just directly * hand off the message from the VF to the underlying shared code. **/ s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info *mbx) { struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; u8 mac[ETH_ALEN]; u32 *result; int err = 0; bool set; u16 vlan; u32 vid; /* we shouldn't be updating rules on a disabled interface */ if (!FM10K_VF_FLAG_ENABLED(vf_info)) err = FM10K_ERR_PARAM; if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) { result = results[FM10K_MAC_VLAN_MSG_VLAN]; /* record VLAN id requested */ err = fm10k_tlv_attr_get_u32(result, &vid); if (err) return err; set = !(vid & FM10K_VLAN_CLEAR); vid &= ~FM10K_VLAN_CLEAR; /* if the length field has been set, this is a multi-bit * update request. For multi-bit requests, simply disallow * them when the pf_vid has been set. In this case, the PF * should have already cleared the VLAN_TABLE, and if we * allowed them, it could allow a rogue VF to receive traffic * on a VLAN it was not assigned. In the single-bit case, we * need to modify requests for VLAN 0 to use the default PF or * SW vid when assigned. */ if (vid >> 16) { /* prevent multi-bit requests when PF has * administratively set the VLAN for this VF */ if (vf_info->pf_vid) return FM10K_ERR_PARAM; } else { err = fm10k_iov_select_vid(vf_info, (u16)vid); if (err < 0) return err; vid = err; } /* update VSI info for VF in regards to VLAN table */ err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi, set); } if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) { result = results[FM10K_MAC_VLAN_MSG_MAC]; /* record unicast MAC address requested */ err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); if (err) return err; /* block attempts to set MAC for a locked device */ if (is_valid_ether_addr(vf_info->mac) && !ether_addr_equal(mac, vf_info->mac)) return FM10K_ERR_PARAM; set = !(vlan & FM10K_VLAN_CLEAR); vlan &= ~FM10K_VLAN_CLEAR; err = fm10k_iov_select_vid(vf_info, vlan); if (err < 0) return err; vlan = (u16)err; /* notify switch of request for new unicast address */ err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan, set, 0); } if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) { result = results[FM10K_MAC_VLAN_MSG_MULTICAST]; /* record multicast MAC address requested */ err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan); if (err) return err; /* verify that the VF is allowed to request multicast */ if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED)) return FM10K_ERR_PARAM; set = !(vlan & FM10K_VLAN_CLEAR); vlan &= ~FM10K_VLAN_CLEAR; err = fm10k_iov_select_vid(vf_info, vlan); if (err < 0) return err; vlan = (u16)err; /* notify switch of request for new multicast address */ err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac, vlan, set); } return err; } /** * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode * @vf_info: VF info structure containing capability flags * @mode: Requested xcast mode * * This function outputs the mode that most closely matches the requested * mode. If not modes match it will request we disable the port **/ static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info, u8 mode) { u8 vf_flags = vf_info->vf_flags; /* match up mode to capabilities as best as possible */ switch (mode) { case FM10K_XCAST_MODE_PROMISC: if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE) return FM10K_XCAST_MODE_PROMISC; /* fall through */ case FM10K_XCAST_MODE_ALLMULTI: if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE) return FM10K_XCAST_MODE_ALLMULTI; /* fall through */ case FM10K_XCAST_MODE_MULTI: if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE) return FM10K_XCAST_MODE_MULTI; /* fall through */ case FM10K_XCAST_MODE_NONE: if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE) return FM10K_XCAST_MODE_NONE; /* fall through */ default: break; } /* disable interface as it should not be able to request any */ return FM10K_XCAST_MODE_DISABLE; } /** * fm10k_iov_msg_lport_state_pf - Message handler for port state requests * @hw: Pointer to hardware structure * @results: Pointer array to message, results[0] is pointer to message * @mbx: Pointer to mailbox information structure * * This function is a default handler for port state requests. The port * state requests for now are basic and consist of enabling or disabling * the port. **/ s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info *mbx) { struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx; s32 err = 0; u32 msg[2]; u8 mode = 0; /* verify VF is allowed to enable even minimal mode */ if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)) return FM10K_ERR_PARAM; if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) { u32 *result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE]; /* XCAST mode update requested */ err = fm10k_tlv_attr_get_u8(result, &mode); if (err) return FM10K_ERR_PARAM; /* prep for possible demotion depending on capabilities */ mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode); /* if mode is not currently enabled, enable it */ if (!(FM10K_VF_FLAG_ENABLED(vf_info) & BIT(mode))) fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode); /* swap mode back to a bit flag */ mode = FM10K_VF_FLAG_SET_MODE(mode); } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) { /* need to disable the port if it is already enabled */ if (FM10K_VF_FLAG_ENABLED(vf_info)) err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false); /* we need to clear VF_FLAG_ENABLED flags in order to ensure * that we actually re-enable the LPORT state below. Note that * this has no impact if the VF is already disabled, as the * flags are already cleared. */ if (!err) vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info); /* when enabling the port we should reset the rate limiters */ hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate); /* set mode for minimal functionality */ mode = FM10K_VF_FLAG_SET_MODE_NONE; /* generate port state response to notify VF it is ready */ fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE); fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY); mbx->ops.enqueue_tx(hw, mbx, msg); } /* if enable state toggled note the update */ if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode)) err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1, !!mode); /* if state change succeeded, then update our stored state */ mode |= FM10K_VF_FLAG_CAPABLE(vf_info); if (!err) vf_info->vf_flags = mode; return err; } /** * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF * @hw: pointer to hardware structure * @stats: pointer to the stats structure to update * * This function collects and aggregates global and per queue hardware * statistics. **/ static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw, struct fm10k_hw_stats *stats) { u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop; u32 id, id_prev; /* Use Tx queue 0 as a canary to detect a reset */ id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); /* Read Global Statistics */ do { timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT, &stats->timeout); ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur); ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca); um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um); xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec); vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP, &stats->vlan_drop); loopback_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_LOOPBACK_DROP, &stats->loopback_drop); nodesc_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_NODESC_DROP, &stats->nodesc_drop); /* if value has not changed then we have consistent data */ id_prev = id; id = fm10k_read_reg(hw, FM10K_TXQCTL(0)); } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK); /* drop non-ID bits and set VALID ID bit */ id &= FM10K_TXQCTL_ID_MASK; id |= FM10K_STAT_VALID; /* Update Global Statistics */ if (stats->stats_idx == id) { stats->timeout.count += timeout; stats->ur.count += ur; stats->ca.count += ca; stats->um.count += um; stats->xec.count += xec; stats->vlan_drop.count += vlan_drop; stats->loopback_drop.count += loopback_drop; stats->nodesc_drop.count += nodesc_drop; } /* Update bases and record current PF id */ fm10k_update_hw_base_32b(&stats->timeout, timeout); fm10k_update_hw_base_32b(&stats->ur, ur); fm10k_update_hw_base_32b(&stats->ca, ca); fm10k_update_hw_base_32b(&stats->um, um); fm10k_update_hw_base_32b(&stats->xec, xec); fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop); fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop); fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop); stats->stats_idx = id; /* Update Queue Statistics */ fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues); } /** * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF * @hw: pointer to hardware structure * @stats: pointer to the stats structure to update * * This function resets the base for global and per queue hardware * statistics. **/ static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw, struct fm10k_hw_stats *stats) { /* Unbind Global Statistics */ fm10k_unbind_hw_stats_32b(&stats->timeout); fm10k_unbind_hw_stats_32b(&stats->ur); fm10k_unbind_hw_stats_32b(&stats->ca); fm10k_unbind_hw_stats_32b(&stats->um); fm10k_unbind_hw_stats_32b(&stats->xec); fm10k_unbind_hw_stats_32b(&stats->vlan_drop); fm10k_unbind_hw_stats_32b(&stats->loopback_drop); fm10k_unbind_hw_stats_32b(&stats->nodesc_drop); /* Unbind Queue Statistics */ fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues); /* Reinitialize bases for all stats */ fm10k_update_hw_stats_pf(hw, stats); } /** * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system * @hw: pointer to hardware structure * @dma_mask: 64 bit DMA mask required for platform * * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order * to limit the access to memory beyond what is physically in the system. **/ static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask) { /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */ u32 phyaddr = (u32)(dma_mask >> 32); fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr); } /** * fm10k_get_fault_pf - Record a fault in one of the interface units * @hw: pointer to hardware structure * @type: pointer to fault type register offset * @fault: pointer to memory location to record the fault * * Record the fault register contents to the fault data structure and * clear the entry from the register. * * Returns ERR_PARAM if invalid register is specified or no error is present. **/ static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type, struct fm10k_fault *fault) { u32 func; /* verify the fault register is in range and is aligned */ switch (type) { case FM10K_PCA_FAULT: case FM10K_THI_FAULT: case FM10K_FUM_FAULT: break; default: return FM10K_ERR_PARAM; } /* only service faults that are valid */ func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC); if (!(func & FM10K_FAULT_FUNC_VALID)) return FM10K_ERR_PARAM; /* read remaining fields */ fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI); fault->address <<= 32; fault->address |= fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO); fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO); /* clear valid bit to allow for next error */ fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID); /* Record which function triggered the error */ if (func & FM10K_FAULT_FUNC_PF) fault->func = 0; else fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >> FM10K_FAULT_FUNC_VF_SHIFT); /* record fault type */ fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK; return 0; } /** * fm10k_request_lport_map_pf - Request LPORT map from the switch API * @hw: pointer to hardware structure * **/ static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw) { struct fm10k_mbx_info *mbx = &hw->mbx; u32 msg[1]; /* issue request asking for LPORT map */ fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP); /* load onto outgoing mailbox */ return mbx->ops.enqueue_tx(hw, mbx, msg); } /** * fm10k_get_host_state_pf - Returns the state of the switch and mailbox * @hw: pointer to hardware structure * @switch_ready: pointer to boolean value that will record switch state * * This function will check the DMA_CTRL2 register and mailbox in order * to determine if the switch is ready for the PF to begin requesting * addresses and mapping traffic to the local interface. **/ static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready) { u32 dma_ctrl2; /* verify the switch is ready for interaction */ dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2); if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY)) return 0; /* retrieve generic host state info */ return fm10k_get_host_state_generic(hw, switch_ready); } /* This structure defines the attibutes to be parsed below */ const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = { FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, sizeof(struct fm10k_swapi_error)), FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP), FM10K_TLV_ATTR_LAST }; /** * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM * @hw: Pointer to hardware structure * @results: pointer array containing parsed data * @mbx: Pointer to mailbox information structure * * This handler configures the lport mapping based on the reply from the * switch API. **/ s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info __always_unused *mbx) { u16 glort, mask; u32 dglort_map; s32 err; err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP], &dglort_map); if (err) return err; /* extract values out of the header */ glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT); mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK); /* verify mask is set and none of the masked bits in glort are set */ if (!mask || (glort & ~mask)) return FM10K_ERR_PARAM; /* verify the mask is contiguous, and that it is 1's followed by 0's */ if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE) return FM10K_ERR_PARAM; /* record the glort, mask, and port count */ hw->mac.dglort_map = dglort_map; return 0; } const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = { FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID), FM10K_TLV_ATTR_LAST }; /** * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM * @hw: Pointer to hardware structure * @results: pointer array containing parsed data * @mbx: Pointer to mailbox information structure * * This handler configures the default VLAN for the PF **/ static s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info __always_unused *mbx) { u16 glort, pvid; u32 pvid_update; s32 err; err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID], &pvid_update); if (err) return err; /* extract values from the pvid update */ glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT); pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID); /* if glort is not valid return error */ if (!fm10k_glort_valid_pf(hw, glort)) return FM10K_ERR_PARAM; /* verify VLAN ID is valid */ if (pvid >= FM10K_VLAN_TABLE_VID_MAX) return FM10K_ERR_PARAM; /* record the port VLAN ID value */ hw->mac.default_vid = pvid; return 0; } /** * fm10k_record_global_table_data - Move global table data to swapi table info * @from: pointer to source table data structure * @to: pointer to destination table info structure * * This function is will copy table_data to the table_info contained in * the hw struct. **/ static void fm10k_record_global_table_data(struct fm10k_global_table_data *from, struct fm10k_swapi_table_info *to) { /* convert from le32 struct to CPU byte ordered values */ to->used = le32_to_cpu(from->used); to->avail = le32_to_cpu(from->avail); } const struct fm10k_tlv_attr fm10k_err_msg_attr[] = { FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR, sizeof(struct fm10k_swapi_error)), FM10K_TLV_ATTR_LAST }; /** * fm10k_msg_err_pf - Message handler for error reply * @hw: Pointer to hardware structure * @results: pointer array containing parsed data * @mbx: Pointer to mailbox information structure * * This handler will capture the data for any error replies to previous * messages that the PF has sent. **/ s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results, struct fm10k_mbx_info __always_unused *mbx) { struct fm10k_swapi_error err_msg; s32 err; /* extract structure from message */ err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR], &err_msg, sizeof(err_msg)); if (err) return err; /* record table status */ fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac); fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop); fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu); /* record SW API status value */ hw->swapi.status = le32_to_cpu(err_msg.status); return 0; } static const struct fm10k_msg_data fm10k_msg_data_pf[] = { FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf), FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf), FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf), FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf), FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf), FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf), FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error), }; static const struct fm10k_mac_ops mac_ops_pf = { .get_bus_info = fm10k_get_bus_info_generic, .reset_hw = fm10k_reset_hw_pf, .init_hw = fm10k_init_hw_pf, .start_hw = fm10k_start_hw_generic, .stop_hw = fm10k_stop_hw_generic, .update_vlan = fm10k_update_vlan_pf, .read_mac_addr = fm10k_read_mac_addr_pf, .update_uc_addr = fm10k_update_uc_addr_pf, .update_mc_addr = fm10k_update_mc_addr_pf, .update_xcast_mode = fm10k_update_xcast_mode_pf, .update_int_moderator = fm10k_update_int_moderator_pf, .update_lport_state = fm10k_update_lport_state_pf, .update_hw_stats = fm10k_update_hw_stats_pf, .rebind_hw_stats = fm10k_rebind_hw_stats_pf, .configure_dglort_map = fm10k_configure_dglort_map_pf, .set_dma_mask = fm10k_set_dma_mask_pf, .get_fault = fm10k_get_fault_pf, .get_host_state = fm10k_get_host_state_pf, .request_lport_map = fm10k_request_lport_map_pf, }; static const struct fm10k_iov_ops iov_ops_pf = { .assign_resources = fm10k_iov_assign_resources_pf, .configure_tc = fm10k_iov_configure_tc_pf, .assign_int_moderator = fm10k_iov_assign_int_moderator_pf, .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf, .reset_resources = fm10k_iov_reset_resources_pf, .set_lport = fm10k_iov_set_lport_pf, .reset_lport = fm10k_iov_reset_lport_pf, .update_stats = fm10k_iov_update_stats_pf, }; static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw) { fm10k_get_invariants_generic(hw); return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf); } const struct fm10k_info fm10k_pf_info = { .mac = fm10k_mac_pf, .get_invariants = fm10k_get_invariants_pf, .mac_ops = &mac_ops_pf, .iov_ops = &iov_ops_pf, };