// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include "ice_txrx_lib.h" /** * ice_release_rx_desc - Store the new tail and head values * @rx_ring: ring to bump * @val: new head index */ void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val) { u16 prev_ntu = rx_ring->next_to_use; rx_ring->next_to_use = val; /* update next to alloc since we have filled the ring */ rx_ring->next_to_alloc = val; /* QRX_TAIL will be updated with any tail value, but hardware ignores * the lower 3 bits. This makes it so we only bump tail on meaningful * boundaries. Also, this allows us to bump tail on intervals of 8 up to * the budget depending on the current traffic load. */ val &= ~0x7; if (prev_ntu != val) { /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(val, rx_ring->tail); } } /** * ice_ptype_to_htype - get a hash type * @ptype: the ptype value from the descriptor * * Returns a hash type to be used by skb_set_hash */ static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype) { return PKT_HASH_TYPE_NONE; } /** * ice_rx_hash - set the hash value in the skb * @rx_ring: descriptor ring * @rx_desc: specific descriptor * @skb: pointer to current skb * @rx_ptype: the ptype value from the descriptor */ static void ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u8 rx_ptype) { struct ice_32b_rx_flex_desc_nic *nic_mdid; u32 hash; if (!(rx_ring->netdev->features & NETIF_F_RXHASH)) return; if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC) return; nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc; hash = le32_to_cpu(nic_mdid->rss_hash); skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype)); } /** * ice_rx_csum - Indicate in skb if checksum is good * @ring: the ring we care about * @skb: skb currently being received and modified * @rx_desc: the receive descriptor * @ptype: the packet type decoded by hardware * * skb->protocol must be set before this function is called */ static void ice_rx_csum(struct ice_ring *ring, struct sk_buff *skb, union ice_32b_rx_flex_desc *rx_desc, u8 ptype) { struct ice_rx_ptype_decoded decoded; u32 rx_error, rx_status; bool ipv4, ipv6; rx_status = le16_to_cpu(rx_desc->wb.status_error0); rx_error = rx_status; decoded = ice_decode_rx_desc_ptype(ptype); /* Start with CHECKSUM_NONE and by default csum_level = 0 */ skb->ip_summed = CHECKSUM_NONE; skb_checksum_none_assert(skb); /* check if Rx checksum is enabled */ if (!(ring->netdev->features & NETIF_F_RXCSUM)) return; /* check if HW has decoded the packet and checksum */ if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S))) return; if (!(decoded.known && decoded.outer_ip)) return; ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4); ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) && (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6); if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) | BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) goto checksum_fail; else if (ipv6 && (rx_status & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S)))) goto checksum_fail; /* check for L4 errors and handle packets that were not able to be * checksummed due to arrival speed */ if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S)) goto checksum_fail; /* Only report checksum unnecessary for TCP, UDP, or SCTP */ switch (decoded.inner_prot) { case ICE_RX_PTYPE_INNER_PROT_TCP: case ICE_RX_PTYPE_INNER_PROT_UDP: case ICE_RX_PTYPE_INNER_PROT_SCTP: skb->ip_summed = CHECKSUM_UNNECESSARY; default: break; } return; checksum_fail: ring->vsi->back->hw_csum_rx_error++; } /** * ice_process_skb_fields - Populate skb header fields from Rx descriptor * @rx_ring: Rx descriptor ring packet is being transacted on * @rx_desc: pointer to the EOP Rx descriptor * @skb: pointer to current skb being populated * @ptype: the packet type decoded by hardware * * This function checks the ring, descriptor, and packet information in * order to populate the hash, checksum, VLAN, protocol, and * other fields within the skb. */ void ice_process_skb_fields(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, struct sk_buff *skb, u8 ptype) { ice_rx_hash(rx_ring, rx_desc, skb, ptype); /* modifies the skb - consumes the enet header */ skb->protocol = eth_type_trans(skb, rx_ring->netdev); ice_rx_csum(rx_ring, skb, rx_desc, ptype); } /** * ice_receive_skb - Send a completed packet up the stack * @rx_ring: Rx ring in play * @skb: packet to send up * @vlan_tag: VLAN tag for packet * * This function sends the completed packet (via. skb) up the stack using * gro receive functions (with/without VLAN tag) */ void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb, u16 vlan_tag) { if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && (vlan_tag & VLAN_VID_MASK)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); napi_gro_receive(&rx_ring->q_vector->napi, skb); } /** * ice_xmit_xdp_ring - submit single packet to XDP ring for transmission * @data: packet data pointer * @size: packet data size * @xdp_ring: XDP ring for transmission */ int ice_xmit_xdp_ring(void *data, u16 size, struct ice_ring *xdp_ring) { u16 i = xdp_ring->next_to_use; struct ice_tx_desc *tx_desc; struct ice_tx_buf *tx_buf; dma_addr_t dma; if (!unlikely(ICE_DESC_UNUSED(xdp_ring))) { xdp_ring->tx_stats.tx_busy++; return ICE_XDP_CONSUMED; } dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE); if (dma_mapping_error(xdp_ring->dev, dma)) return ICE_XDP_CONSUMED; tx_buf = &xdp_ring->tx_buf[i]; tx_buf->bytecount = size; tx_buf->gso_segs = 1; tx_buf->raw_buf = data; /* record length, and DMA address */ dma_unmap_len_set(tx_buf, len, size); dma_unmap_addr_set(tx_buf, dma, dma); tx_desc = ICE_TX_DESC(xdp_ring, i); tx_desc->buf_addr = cpu_to_le64(dma); tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD, 0, size, 0); /* Make certain all of the status bits have been updated * before next_to_watch is written. */ smp_wmb(); i++; if (i == xdp_ring->count) i = 0; tx_buf->next_to_watch = tx_desc; xdp_ring->next_to_use = i; return ICE_XDP_TX; } /** * ice_xmit_xdp_buff - convert an XDP buffer to an XDP frame and send it * @xdp: XDP buffer * @xdp_ring: XDP Tx ring * * Returns negative on failure, 0 on success. */ int ice_xmit_xdp_buff(struct xdp_buff *xdp, struct ice_ring *xdp_ring) { struct xdp_frame *xdpf = convert_to_xdp_frame(xdp); if (unlikely(!xdpf)) return ICE_XDP_CONSUMED; return ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); } /** * ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map * @rx_ring: Rx ring * @xdp_res: Result of the receive batch * * This function bumps XDP Tx tail and/or flush redirect map, and * should be called when a batch of packets has been processed in the * napi loop. */ void ice_finalize_xdp_rx(struct ice_ring *rx_ring, unsigned int xdp_res) { if (xdp_res & ICE_XDP_REDIR) xdp_do_flush_map(); if (xdp_res & ICE_XDP_TX) { struct ice_ring *xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index]; ice_xdp_ring_update_tail(xdp_ring); } }