// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice.h" #include "ice_base.h" #include "ice_lib.h" /** * ice_validate_vf_id - helper to check if VF ID is valid * @pf: pointer to the PF structure * @vf_id: the ID of the VF to check */ static int ice_validate_vf_id(struct ice_pf *pf, int vf_id) { if (vf_id >= pf->num_alloc_vfs) { dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %d\n", vf_id); return -EINVAL; } return 0; } /** * ice_check_vf_init - helper to check if VF init complete * @pf: pointer to the PF structure * @vf: the pointer to the VF to check */ static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf) { if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { dev_err(ice_pf_to_dev(pf), "VF ID: %d in reset. Try again.\n", vf->vf_id); return -EBUSY; } return 0; } /** * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF * @pf: pointer to the PF structure * @v_opcode: operation code * @v_retval: return value * @msg: pointer to the msg buffer * @msglen: msg length */ static void ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { struct ice_hw *hw = &pf->hw; int i; ice_for_each_vf(pf, i) { struct ice_vf *vf = &pf->vf[i]; /* Not all vfs are enabled so skip the ones that are not */ if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) continue; /* Ignore return value on purpose - a given VF may fail, but * we need to keep going and send to all of them */ ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); } } /** * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event * @vf: pointer to the VF structure * @pfe: pointer to the virtchnl_pf_event to set link speed/status for * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* * @link_up: whether or not to set the link up/down */ static void ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, int ice_link_speed, bool link_up) { if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { pfe->event_data.link_event_adv.link_status = link_up; /* Speed in Mbps */ pfe->event_data.link_event_adv.link_speed = ice_conv_link_speed_to_virtchnl(true, ice_link_speed); } else { pfe->event_data.link_event.link_status = link_up; /* Legacy method for virtchnl link speeds */ pfe->event_data.link_event.link_speed = (enum virtchnl_link_speed) ice_conv_link_speed_to_virtchnl(false, ice_link_speed); } } /** * ice_vc_notify_vf_link_state - Inform a VF of link status * @vf: pointer to the VF structure * * send a link status message to a single VF */ static void ice_vc_notify_vf_link_state(struct ice_vf *vf) { struct virtchnl_pf_event pfe = { 0 }; struct ice_link_status *ls; struct ice_pf *pf = vf->pf; struct ice_hw *hw; hw = &pf->hw; ls = &hw->port_info->phy.link_info; pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; pfe.severity = PF_EVENT_SEVERITY_INFO; /* Always report link is down if the VF queues aren't enabled */ if (!vf->num_qs_ena) { ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); } else if (vf->link_forced) { u16 link_speed = vf->link_up ? ls->link_speed : ICE_AQ_LINK_SPEED_UNKNOWN; ice_set_pfe_link(vf, &pfe, link_speed, vf->link_up); } else { ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info & ICE_AQ_LINK_UP); } ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_free_vf_res - Free a VF's resources * @vf: pointer to the VF info */ static void ice_free_vf_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; int i, last_vector_idx; /* First, disable VF's configuration API to prevent OS from * accessing the VF's VSI after it's freed or invalidated. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); /* free VSI and disconnect it from the parent uplink */ if (vf->lan_vsi_idx) { ice_vsi_release(pf->vsi[vf->lan_vsi_idx]); vf->lan_vsi_idx = 0; vf->lan_vsi_num = 0; vf->num_mac = 0; } last_vector_idx = vf->first_vector_idx + pf->num_vf_msix - 1; /* Disable interrupts so that VF starts in a known state */ for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); ice_flush(&pf->hw); } /* reset some of the state variables keeping track of the resources */ clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); } /** * ice_dis_vf_mappings * @vf: pointer to the VF structure */ static void ice_dis_vf_mappings(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int first, last, v; struct ice_hw *hw; hw = &pf->hw; vsi = pf->vsi[vf->lan_vsi_idx]; dev = ice_pf_to_dev(pf); wr32(hw, VPINT_ALLOC(vf->vf_id), 0); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); first = vf->first_vector_idx; last = first + pf->num_vf_msix - 1; for (v = first; v <= last; v++) { u32 reg; reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & GLINT_VECT2FUNC_IS_PF_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); else dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } /** * ice_sriov_free_msix_res - Reset/free any used MSIX resources * @pf: pointer to the PF structure * * If MSIX entries from the pf->irq_tracker were needed then we need to * reset the irq_tracker->end and give back the entries we needed to * num_avail_sw_msix. * * If no MSIX entries were taken from the pf->irq_tracker then just clear * the pf->sriov_base_vector. * * Returns 0 on success, and -EINVAL on error. */ static int ice_sriov_free_msix_res(struct ice_pf *pf) { struct ice_res_tracker *res; if (!pf) return -EINVAL; res = pf->irq_tracker; if (!res) return -EINVAL; /* give back irq_tracker resources used */ if (pf->sriov_base_vector < res->num_entries) { res->end = res->num_entries; pf->num_avail_sw_msix += res->num_entries - pf->sriov_base_vector; } pf->sriov_base_vector = 0; return 0; } /** * ice_set_vf_state_qs_dis - Set VF queues state to disabled * @vf: pointer to the VF structure */ void ice_set_vf_state_qs_dis(struct ice_vf *vf) { /* Clear Rx/Tx enabled queues flag */ bitmap_zero(vf->txq_ena, ICE_MAX_BASE_QS_PER_VF); bitmap_zero(vf->rxq_ena, ICE_MAX_BASE_QS_PER_VF); vf->num_qs_ena = 0; clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); } /** * ice_dis_vf_qs - Disable the VF queues * @vf: pointer to the VF structure */ static void ice_dis_vf_qs(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; vsi = pf->vsi[vf->lan_vsi_idx]; ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); ice_vsi_stop_rx_rings(vsi); ice_set_vf_state_qs_dis(vf); } /** * ice_free_vfs - Free all VFs * @pf: pointer to the PF structure */ void ice_free_vfs(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int tmp, i; if (!pf->vf) return; while (test_and_set_bit(__ICE_VF_DIS, pf->state)) usleep_range(1000, 2000); /* Avoid wait time by stopping all VFs at the same time */ ice_for_each_vf(pf, i) if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states)) ice_dis_vf_qs(&pf->vf[i]); /* Disable IOV before freeing resources. This lets any VF drivers * running in the host get themselves cleaned up before we yank * the carpet out from underneath their feet. */ if (!pci_vfs_assigned(pf->pdev)) pci_disable_sriov(pf->pdev); else dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); tmp = pf->num_alloc_vfs; pf->num_vf_qps = 0; pf->num_alloc_vfs = 0; for (i = 0; i < tmp; i++) { if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) { /* disable VF qp mappings and set VF disable state */ ice_dis_vf_mappings(&pf->vf[i]); set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states); ice_free_vf_res(&pf->vf[i]); } } if (ice_sriov_free_msix_res(pf)) dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); devm_kfree(dev, pf->vf); pf->vf = NULL; /* This check is for when the driver is unloaded while VFs are * assigned. Setting the number of VFs to 0 through sysfs is caught * before this function ever gets called. */ if (!pci_vfs_assigned(pf->pdev)) { int vf_id; /* Acknowledge VFLR for all VFs. Without this, VFs will fail to * work correctly when SR-IOV gets re-enabled. */ for (vf_id = 0; vf_id < tmp; vf_id++) { u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); } } clear_bit(__ICE_VF_DIS, pf->state); clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); } /** * ice_trigger_vf_reset - Reset a VF on HW * @vf: pointer to the VF structure * @is_vflr: true if VFLR was issued, false if not * @is_pfr: true if the reset was triggered due to a previous PFR * * Trigger hardware to start a reset for a particular VF. Expects the caller * to wait the proper amount of time to allow hardware to reset the VF before * it cleans up and restores VF functionality. */ static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr) { struct ice_pf *pf = vf->pf; u32 reg, reg_idx, bit_idx; struct device *dev; struct ice_hw *hw; int vf_abs_id, i; dev = ice_pf_to_dev(pf); hw = &pf->hw; vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; /* Inform VF that it is no longer active, as a warning */ clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); /* Disable VF's configuration API during reset. The flag is re-enabled * in ice_alloc_vf_res(), when it's safe again to access VF's VSI. * It's normally disabled in ice_free_vf_res(), but it's safer * to do it earlier to give some time to finish to any VF config * functions that may still be running at this point. */ clear_bit(ICE_VF_STATE_INIT, vf->vf_states); /* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it * in the case of VFR. If this is done for PFR, it can mess up VF * resets because the VF driver may already have started cleanup * by the time we get here. */ if (!is_pfr) wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0); /* In the case of a VFLR, the HW has already reset the VF and we * just need to clean up, so don't hit the VFRTRIG register. */ if (!is_vflr) { /* reset VF using VPGEN_VFRTRIG reg */ reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg |= VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); } /* clear the VFLR bit in GLGEN_VFLRSTAT */ reg_idx = (vf_abs_id) / 32; bit_idx = (vf_abs_id) % 32; wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); ice_flush(hw); wr32(hw, PF_PCI_CIAA, VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { reg = rd32(hw, PF_PCI_CIAD); /* no transactions pending so stop polling */ if ((reg & VF_TRANS_PENDING_M) == 0) break; dev_err(dev, "VF %d PCI transactions stuck\n", vf->vf_id); udelay(ICE_PCI_CIAD_WAIT_DELAY_US); } } /** * ice_vsi_set_pvid_fill_ctxt - Set VSI ctxt for add PVID * @ctxt: the VSI ctxt to fill * @vid: the VLAN ID to set as a PVID */ static void ice_vsi_set_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt, u16 vid) { ctxt->info.vlan_flags = (ICE_AQ_VSI_VLAN_MODE_UNTAGGED | ICE_AQ_VSI_PVLAN_INSERT_PVID | ICE_AQ_VSI_VLAN_EMOD_STR); ctxt->info.pvid = cpu_to_le16(vid); ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | ICE_AQ_VSI_PROP_SW_VALID); } /** * ice_vsi_kill_pvid_fill_ctxt - Set VSI ctx for remove PVID * @ctxt: the VSI ctxt to fill */ static void ice_vsi_kill_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt) { ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | ICE_AQ_VSI_PROP_SW_VALID); } /** * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI * @vsi: the VSI to update * @vid: the VLAN ID to set as a PVID * @enable: true for enable PVID false for disable */ static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 vid, bool enable) { struct ice_hw *hw = &vsi->back->hw; struct ice_vsi_ctx *ctxt; enum ice_status status; int ret = 0; ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return -ENOMEM; ctxt->info = vsi->info; if (enable) ice_vsi_set_pvid_fill_ctxt(ctxt, vid); else ice_vsi_kill_pvid_fill_ctxt(ctxt); status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); if (status) { dev_info(ice_pf_to_dev(vsi->back), "update VSI for port VLAN failed, err %d aq_err %d\n", status, hw->adminq.sq_last_status); ret = -EIO; goto out; } vsi->info = ctxt->info; out: kfree(ctxt); return ret; } /** * ice_vf_vsi_setup - Set up a VF VSI * @pf: board private structure * @pi: pointer to the port_info instance * @vf_id: defines VF ID to which this VSI connects. * * Returns pointer to the successfully allocated VSI struct on success, * otherwise returns NULL on failure. */ static struct ice_vsi * ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id) { return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id); } /** * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space * @pf: pointer to PF structure * @vf: pointer to VF that the first MSIX vector index is being calculated for * * This returns the first MSIX vector index in PF space that is used by this VF. * This index is used when accessing PF relative registers such as * GLINT_VECT2FUNC and GLINT_DYN_CTL. * This will always be the OICR index in the AVF driver so any functionality * using vf->first_vector_idx for queue configuration will have to increment by * 1 to avoid meddling with the OICR index. */ static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) { return pf->sriov_base_vector + vf->vf_id * pf->num_vf_msix; } /** * ice_alloc_vsi_res - Setup VF VSI and its resources * @vf: pointer to the VF structure * * Returns 0 on success, negative value on failure */ static int ice_alloc_vsi_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; LIST_HEAD(tmp_add_list); u8 broadcast[ETH_ALEN]; struct ice_vsi *vsi; struct device *dev; int status = 0; dev = ice_pf_to_dev(pf); /* first vector index is the VFs OICR index */ vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id); if (!vsi) { dev_err(dev, "Failed to create VF VSI\n"); return -ENOMEM; } vf->lan_vsi_idx = vsi->idx; vf->lan_vsi_num = vsi->vsi_num; /* Check if port VLAN exist before, and restore it accordingly */ if (vf->port_vlan_id) { ice_vsi_manage_pvid(vsi, vf->port_vlan_id, true); ice_vsi_add_vlan(vsi, vf->port_vlan_id & ICE_VLAN_M); } eth_broadcast_addr(broadcast); status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); if (status) goto ice_alloc_vsi_res_exit; if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) { status = ice_add_mac_to_list(vsi, &tmp_add_list, vf->dflt_lan_addr.addr); if (status) goto ice_alloc_vsi_res_exit; } status = ice_add_mac(&pf->hw, &tmp_add_list); if (status) dev_err(dev, "could not add mac filters error %d\n", status); else vf->num_mac = 1; /* Clear this bit after VF initialization since we shouldn't reclaim * and reassign interrupts for synchronous or asynchronous VFR events. * We don't want to reconfigure interrupts since AVF driver doesn't * expect vector assignment to be changed unless there is a request for * more vectors. */ ice_alloc_vsi_res_exit: ice_free_fltr_list(dev, &tmp_add_list); return status; } /** * ice_alloc_vf_res - Allocate VF resources * @vf: pointer to the VF structure */ static int ice_alloc_vf_res(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; int tx_rx_queue_left; int status; /* Update number of VF queues, in case VF had requested for queue * changes */ tx_rx_queue_left = min_t(int, ice_get_avail_txq_count(pf), ice_get_avail_rxq_count(pf)); tx_rx_queue_left += ICE_DFLT_QS_PER_VF; if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left && vf->num_req_qs != vf->num_vf_qs) vf->num_vf_qs = vf->num_req_qs; /* setup VF VSI and necessary resources */ status = ice_alloc_vsi_res(vf); if (status) goto ice_alloc_vf_res_exit; if (vf->trusted) set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); else clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); /* VF is now completely initialized */ set_bit(ICE_VF_STATE_INIT, vf->vf_states); return status; ice_alloc_vf_res_exit: ice_free_vf_res(vf); return status; } /** * ice_ena_vf_mappings * @vf: pointer to the VF structure * * Enable VF vectors and queues allocation by writing the details into * respective registers. */ static void ice_ena_vf_mappings(struct ice_vf *vf) { int abs_vf_id, abs_first, abs_last; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; int first, last, v; struct ice_hw *hw; u32 reg; dev = ice_pf_to_dev(pf); hw = &pf->hw; vsi = pf->vsi[vf->lan_vsi_idx]; first = vf->first_vector_idx; last = (first + pf->num_vf_msix) - 1; abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id; abs_last = (abs_first + pf->num_vf_msix) - 1; abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; /* VF Vector allocation */ reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) | ((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); wr32(hw, VPINT_ALLOC(vf->vf_id), reg); reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S) & VPINT_ALLOC_PCI_FIRST_M) | ((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); /* map the interrupts to its functions */ for (v = first; v <= last; v++) { reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & GLINT_VECT2FUNC_VF_NUM_M) | ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & GLINT_VECT2FUNC_PF_NUM_M)); wr32(hw, GLINT_VECT2FUNC(v), reg); } /* Map mailbox interrupt. We put an explicit 0 here to remind us that * VF admin queue interrupts will go to VF MSI-X vector 0. */ wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0); /* set regardless of mapping mode */ wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); /* VF Tx queues allocation */ if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Tx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & VPLAN_TX_QBASE_VFFIRSTQ_M) | (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & VPLAN_TX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); } /* set regardless of mapping mode */ wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); /* VF Rx queues allocation */ if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { /* set the VF PF Rx queue range * VFNUMQ value should be set to (number of queues - 1). A value * of 0 means 1 queue and a value of 255 means 256 queues */ reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & VPLAN_RX_QBASE_VFFIRSTQ_M) | (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & VPLAN_RX_QBASE_VFNUMQ_M)); wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); } else { dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); } } /** * ice_determine_res * @pf: pointer to the PF structure * @avail_res: available resources in the PF structure * @max_res: maximum resources that can be given per VF * @min_res: minimum resources that can be given per VF * * Returns non-zero value if resources (queues/vectors) are available or * returns zero if PF cannot accommodate for all num_alloc_vfs. */ static int ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res) { bool checked_min_res = false; int res; /* start by checking if PF can assign max number of resources for * all num_alloc_vfs. * if yes, return number per VF * If no, divide by 2 and roundup, check again * repeat the loop till we reach a point where even minimum resources * are not available, in that case return 0 */ res = max_res; while ((res >= min_res) && !checked_min_res) { int num_all_res; num_all_res = pf->num_alloc_vfs * res; if (num_all_res <= avail_res) return res; if (res == min_res) checked_min_res = true; res = DIV_ROUND_UP(res, 2); } return 0; } /** * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space * @vf: VF to calculate the register index for * @q_vector: a q_vector associated to the VF */ int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) { struct ice_pf *pf; if (!vf || !q_vector) return -EINVAL; pf = vf->pf; /* always add one to account for the OICR being the first MSIX */ return pf->sriov_base_vector + pf->num_vf_msix * vf->vf_id + q_vector->v_idx + 1; } /** * ice_get_max_valid_res_idx - Get the max valid resource index * @res: pointer to the resource to find the max valid index for * * Start from the end of the ice_res_tracker and return right when we find the * first res->list entry with the ICE_RES_VALID_BIT set. This function is only * valid for SR-IOV because it is the only consumer that manipulates the * res->end and this is always called when res->end is set to res->num_entries. */ static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) { int i; if (!res) return -EINVAL; for (i = res->num_entries - 1; i >= 0; i--) if (res->list[i] & ICE_RES_VALID_BIT) return i; return 0; } /** * ice_sriov_set_msix_res - Set any used MSIX resources * @pf: pointer to PF structure * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs * * This function allows SR-IOV resources to be taken from the end of the PF's * allowed HW MSIX vectors so in many cases the irq_tracker will not * be needed. In these cases we just set the pf->sriov_base_vector and return * success. * * If SR-IOV needs to use any pf->irq_tracker entries it updates the * irq_tracker->end based on the first entry needed for SR-IOV. This makes it * so any calls to ice_get_res() using the irq_tracker will not try to use * resources at or beyond the newly set value. * * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in * in the PF's space available for SR-IOV. */ static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) { int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); u16 pf_total_msix_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; struct ice_res_tracker *res = pf->irq_tracker; int sriov_base_vector; if (max_valid_res_idx < 0) return max_valid_res_idx; sriov_base_vector = pf_total_msix_vectors - num_msix_needed; /* make sure we only grab irq_tracker entries from the list end and * that we have enough available MSIX vectors */ if (sriov_base_vector <= max_valid_res_idx) return -EINVAL; pf->sriov_base_vector = sriov_base_vector; /* dip into irq_tracker entries and update used resources */ if (num_msix_needed > (pf_total_msix_vectors - res->num_entries)) { pf->num_avail_sw_msix -= res->num_entries - pf->sriov_base_vector; res->end = pf->sriov_base_vector; } return 0; } /** * ice_check_avail_res - check if vectors and queues are available * @pf: pointer to the PF structure * * This function is where we calculate actual number of resources for VF VSIs, * we don't reserve ahead of time during probe. Returns success if vectors and * queues resources are available, otherwise returns error code */ static int ice_check_avail_res(struct ice_pf *pf) { int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); u16 num_msix, num_txq, num_rxq, num_avail_msix; struct device *dev = ice_pf_to_dev(pf); if (!pf->num_alloc_vfs || max_valid_res_idx < 0) return -EINVAL; /* add 1 to max_valid_res_idx to account for it being 0-based */ num_avail_msix = pf->hw.func_caps.common_cap.num_msix_vectors - (max_valid_res_idx + 1); /* Grab from HW interrupts common pool * Note: By the time the user decides it needs more vectors in a VF * its already too late since one must decide this prior to creating the * VF interface. So the best we can do is take a guess as to what the * user might want. * * We have two policies for vector allocation: * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small * number of NFV VFs used for NFV appliances, since this is a special * case, we try to assign maximum vectors per VF (65) as much as * possible, based on determine_resources algorithm. * 2. if num_alloc_vfs is from 17 to 256, then its large number of * regular VFs which are not used for any special purpose. Hence try to * grab default interrupt vectors (5 as supported by AVF driver). */ if (pf->num_alloc_vfs <= 16) { num_msix = ice_determine_res(pf, num_avail_msix, ICE_MAX_INTR_PER_VF, ICE_MIN_INTR_PER_VF); } else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) { num_msix = ice_determine_res(pf, num_avail_msix, ICE_DFLT_INTR_PER_VF, ICE_MIN_INTR_PER_VF); } else { dev_err(dev, "Number of VFs %d exceeds max VF count %d\n", pf->num_alloc_vfs, ICE_MAX_VF_COUNT); return -EIO; } if (!num_msix) return -EIO; /* Grab from the common pool * start by requesting Default queues (4 as supported by AVF driver), * Note that, the main difference between queues and vectors is, latter * can only be reserved at init time but queues can be requested by VF * at runtime through Virtchnl, that is the reason we start by reserving * few queues. */ num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf), ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF); num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf), ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF); if (!num_txq || !num_rxq) return -EIO; if (ice_sriov_set_msix_res(pf, num_msix * pf->num_alloc_vfs)) return -EINVAL; /* since AVF driver works with only queue pairs which means, it expects * to have equal number of Rx and Tx queues, so take the minimum of * available Tx or Rx queues */ pf->num_vf_qps = min_t(int, num_txq, num_rxq); pf->num_vf_msix = num_msix; return 0; } /** * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset * @vf: pointer to the VF structure * * Cleanup a VF after the hardware reset is finished. Expects the caller to * have verified whether the reset is finished properly, and ensure the * minimum amount of wait time has passed. Reallocate VF resources back to make * VF state active */ static void ice_cleanup_and_realloc_vf(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; struct ice_hw *hw; u32 reg; hw = &pf->hw; /* PF software completes the flow by notifying VF that reset flow is * completed. This is done by enabling hardware by clearing the reset * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT * register to VFR completed (done at the end of this function) * By doing this we allow HW to access VF memory at any point. If we * did it any sooner, HW could access memory while it was being freed * in ice_free_vf_res(), causing an IOMMU fault. * * On the other hand, this needs to be done ASAP, because the VF driver * is waiting for this to happen and may report a timeout. It's * harmless, but it gets logged into Guest OS kernel log, so best avoid * it. */ reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); reg &= ~VPGEN_VFRTRIG_VFSWR_M; wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); /* reallocate VF resources to finish resetting the VSI state */ if (!ice_alloc_vf_res(vf)) { struct ice_vsi *vsi; ice_ena_vf_mappings(vf); set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); clear_bit(ICE_VF_STATE_DIS, vf->vf_states); vsi = pf->vsi[vf->lan_vsi_idx]; if (ice_vsi_add_vlan(vsi, 0)) dev_warn(ice_pf_to_dev(pf), "Failed to add VLAN 0 filter for VF %d, MDD events will trigger. Reset the VF, disable spoofchk, or enable 8021q module on the guest", vf->vf_id); } /* Tell the VF driver the reset is done. This needs to be done only * after VF has been fully initialized, because the VF driver may * request resources immediately after setting this flag. */ wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); } /** * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s) * @vf: pointer to the VF info * @vsi: the VSI being configured * @promisc_m: mask of promiscuous config bits * @rm_promisc: promisc flag request from the VF to remove or add filter * * This function configures VF VSI promiscuous mode, based on the VF requests, * for Unicast, Multicast and VLAN */ static enum ice_status ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m, bool rm_promisc) { struct ice_pf *pf = vf->pf; enum ice_status status = 0; struct ice_hw *hw; hw = &pf->hw; if (vsi->num_vlan) { status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, rm_promisc); } else if (vf->port_vlan_id) { if (rm_promisc) status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, vf->port_vlan_id); else status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, vf->port_vlan_id); } else { if (rm_promisc) status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 0); else status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 0); } return status; } /** * ice_config_res_vfs - Finalize allocation of VFs resources in one go * @pf: pointer to the PF structure * * This function is being called as last part of resetting all VFs, or when * configuring VFs for the first time, where there is no resource to be freed * Returns true if resources were properly allocated for all VFs, and false * otherwise. */ static bool ice_config_res_vfs(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; int v; if (ice_check_avail_res(pf)) { dev_err(dev, "Cannot allocate VF resources, try with fewer number of VFs\n"); return false; } /* rearm global interrupts */ if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state)) ice_irq_dynamic_ena(hw, NULL, NULL); /* Finish resetting each VF and allocate resources */ ice_for_each_vf(pf, v) { struct ice_vf *vf = &pf->vf[v]; vf->num_vf_qs = pf->num_vf_qps; dev_dbg(dev, "VF-id %d has %d queues configured\n", vf->vf_id, vf->num_vf_qs); ice_cleanup_and_realloc_vf(vf); } ice_flush(hw); clear_bit(__ICE_VF_DIS, pf->state); return true; } /** * ice_reset_all_vfs - reset all allocated VFs in one go * @pf: pointer to the PF structure * @is_vflr: true if VFLR was issued, false if not * * First, tell the hardware to reset each VF, then do all the waiting in one * chunk, and finally finish restoring each VF after the wait. This is useful * during PF routines which need to reset all VFs, as otherwise it must perform * these resets in a serialized fashion. * * Returns true if any VFs were reset, and false otherwise. */ bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vf; int v, i; /* If we don't have any VFs, then there is nothing to reset */ if (!pf->num_alloc_vfs) return false; /* If VFs have been disabled, there is no need to reset */ if (test_and_set_bit(__ICE_VF_DIS, pf->state)) return false; /* Begin reset on all VFs at once */ ice_for_each_vf(pf, v) ice_trigger_vf_reset(&pf->vf[v], is_vflr, true); ice_for_each_vf(pf, v) { struct ice_vsi *vsi; vf = &pf->vf[v]; vsi = pf->vsi[vf->lan_vsi_idx]; if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) ice_dis_vf_qs(vf); ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL); } /* HW requires some time to make sure it can flush the FIFO for a VF * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in * sequence to make sure that it has completed. We'll keep track of * the VFs using a simple iterator that increments once that VF has * finished resetting. */ for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { /* Check each VF in sequence */ while (v < pf->num_alloc_vfs) { u32 reg; vf = &pf->vf[v]; reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); if (!(reg & VPGEN_VFRSTAT_VFRD_M)) { /* only delay if the check failed */ usleep_range(10, 20); break; } /* If the current VF has finished resetting, move on * to the next VF in sequence. */ v++; } } /* Display a warning if at least one VF didn't manage to reset in * time, but continue on with the operation. */ if (v < pf->num_alloc_vfs) dev_warn(dev, "VF reset check timeout\n"); /* free VF resources to begin resetting the VSI state */ ice_for_each_vf(pf, v) { vf = &pf->vf[v]; ice_free_vf_res(vf); /* Free VF queues as well, and reallocate later. * If a given VF has different number of queues * configured, the request for update will come * via mailbox communication. */ vf->num_vf_qs = 0; } if (ice_sriov_free_msix_res(pf)) dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); if (!ice_config_res_vfs(pf)) return false; return true; } /** * ice_is_vf_disabled * @vf: pointer to the VF info * * Returns true if the PF or VF is disabled, false otherwise. */ static bool ice_is_vf_disabled(struct ice_vf *vf) { struct ice_pf *pf = vf->pf; /* If the PF has been disabled, there is no need resetting VF until * PF is active again. Similarly, if the VF has been disabled, this * means something else is resetting the VF, so we shouldn't continue. * Otherwise, set disable VF state bit for actual reset, and continue. */ return (test_bit(__ICE_VF_DIS, pf->state) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)); } /** * ice_reset_vf - Reset a particular VF * @vf: pointer to the VF structure * @is_vflr: true if VFLR was issued, false if not * * Returns true if the VF is reset, false otherwise. */ static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; struct device *dev; struct ice_hw *hw; bool rsd = false; u8 promisc_m; u32 reg; int i; dev = ice_pf_to_dev(pf); if (ice_is_vf_disabled(vf)) { dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n", vf->vf_id); return true; } /* Set VF disable bit state here, before triggering reset */ set_bit(ICE_VF_STATE_DIS, vf->vf_states); ice_trigger_vf_reset(vf, is_vflr, false); vsi = pf->vsi[vf->lan_vsi_idx]; if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) ice_dis_vf_qs(vf); /* Call Disable LAN Tx queue AQ whether or not queues are * enabled. This is needed for successful completion of VFR. */ ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, NULL, ICE_VF_RESET, vf->vf_id, NULL); hw = &pf->hw; /* poll VPGEN_VFRSTAT reg to make sure * that reset is complete */ for (i = 0; i < 10; i++) { /* VF reset requires driver to first reset the VF and then * poll the status register to make sure that the reset * completed successfully. */ reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); if (reg & VPGEN_VFRSTAT_VFRD_M) { rsd = true; break; } /* only sleep if the reset is not done */ usleep_range(10, 20); } /* Display a warning if VF didn't manage to reset in time, but need to * continue on with the operation. */ if (!rsd) dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id); /* disable promiscuous modes in case they were enabled * ignore any error if disabling process failed */ if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) { if (vf->port_vlan_id || vsi->num_vlan) promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; else promisc_m = ICE_UCAST_PROMISC_BITS; vsi = pf->vsi[vf->lan_vsi_idx]; if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true)) dev_err(dev, "disabling promiscuous mode failed\n"); } /* free VF resources to begin resetting the VSI state */ ice_free_vf_res(vf); ice_cleanup_and_realloc_vf(vf); ice_flush(hw); return true; } /** * ice_vc_notify_link_state - Inform all VFs on a PF of link status * @pf: pointer to the PF structure */ void ice_vc_notify_link_state(struct ice_pf *pf) { int i; ice_for_each_vf(pf, i) ice_vc_notify_vf_link_state(&pf->vf[i]); } /** * ice_vc_notify_reset - Send pending reset message to all VFs * @pf: pointer to the PF structure * * indicate a pending reset to all VFs on a given PF */ void ice_vc_notify_reset(struct ice_pf *pf) { struct virtchnl_pf_event pfe; if (!pf->num_alloc_vfs) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); } /** * ice_vc_notify_vf_reset - Notify VF of a reset event * @vf: pointer to the VF structure */ static void ice_vc_notify_vf_reset(struct ice_vf *vf) { struct virtchnl_pf_event pfe; struct ice_pf *pf; if (!vf) return; pf = vf->pf; if (ice_validate_vf_id(pf, vf->vf_id)) return; /* Bail out if VF is in disabled state, neither initialized, nor active * state - otherwise proceed with notifications */ if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) || test_bit(ICE_VF_STATE_DIS, vf->vf_states)) return; pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), NULL); } /** * ice_alloc_vfs - Allocate and set up VFs resources * @pf: pointer to the PF structure * @num_alloc_vfs: number of VFs to allocate */ static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs) { struct device *dev = ice_pf_to_dev(pf); struct ice_hw *hw = &pf->hw; struct ice_vf *vfs; int i, ret; /* Disable global interrupt 0 so we don't try to handle the VFLR. */ wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); set_bit(__ICE_OICR_INTR_DIS, pf->state); ice_flush(hw); ret = pci_enable_sriov(pf->pdev, num_alloc_vfs); if (ret) { pf->num_alloc_vfs = 0; goto err_unroll_intr; } /* allocate memory */ vfs = devm_kcalloc(dev, num_alloc_vfs, sizeof(*vfs), GFP_KERNEL); if (!vfs) { ret = -ENOMEM; goto err_pci_disable_sriov; } pf->vf = vfs; pf->num_alloc_vfs = num_alloc_vfs; /* apply default profile */ ice_for_each_vf(pf, i) { vfs[i].pf = pf; vfs[i].vf_sw_id = pf->first_sw; vfs[i].vf_id = i; /* assign default capabilities */ set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps); vfs[i].spoofchk = true; } /* VF resources get allocated with initialization */ if (!ice_config_res_vfs(pf)) { ret = -EIO; goto err_unroll_sriov; } return ret; err_unroll_sriov: pf->vf = NULL; devm_kfree(dev, vfs); vfs = NULL; pf->num_alloc_vfs = 0; err_pci_disable_sriov: pci_disable_sriov(pf->pdev); err_unroll_intr: /* rearm interrupts here */ ice_irq_dynamic_ena(hw, NULL, NULL); clear_bit(__ICE_OICR_INTR_DIS, pf->state); return ret; } /** * ice_pf_state_is_nominal - checks the PF for nominal state * @pf: pointer to PF to check * * Check the PF's state for a collection of bits that would indicate * the PF is in a state that would inhibit normal operation for * driver functionality. * * Returns true if PF is in a nominal state. * Returns false otherwise */ static bool ice_pf_state_is_nominal(struct ice_pf *pf) { DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; if (!pf) return false; bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) return false; return true; } /** * ice_pci_sriov_ena - Enable or change number of VFs * @pf: pointer to the PF structure * @num_vfs: number of VFs to allocate */ static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) { int pre_existing_vfs = pci_num_vf(pf->pdev); struct device *dev = ice_pf_to_dev(pf); int err; if (!ice_pf_state_is_nominal(pf)) { dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); return -EBUSY; } if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { dev_err(dev, "This device is not capable of SR-IOV\n"); return -EOPNOTSUPP; } if (pre_existing_vfs && pre_existing_vfs != num_vfs) ice_free_vfs(pf); else if (pre_existing_vfs && pre_existing_vfs == num_vfs) return num_vfs; if (num_vfs > pf->num_vfs_supported) { dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", num_vfs, pf->num_vfs_supported); return -ENOTSUPP; } dev_info(dev, "Allocating %d VFs\n", num_vfs); err = ice_alloc_vfs(pf, num_vfs); if (err) { dev_err(dev, "Failed to enable SR-IOV: %d\n", err); return err; } set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); return num_vfs; } /** * ice_sriov_configure - Enable or change number of VFs via sysfs * @pdev: pointer to a pci_dev structure * @num_vfs: number of VFs to allocate * * This function is called when the user updates the number of VFs in sysfs. */ int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) { struct ice_pf *pf = pci_get_drvdata(pdev); struct device *dev = ice_pf_to_dev(pf); if (ice_is_safe_mode(pf)) { dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); return -EOPNOTSUPP; } if (num_vfs) return ice_pci_sriov_ena(pf, num_vfs); if (!pci_vfs_assigned(pdev)) { ice_free_vfs(pf); } else { dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); return -EBUSY; } return 0; } /** * ice_process_vflr_event - Free VF resources via IRQ calls * @pf: pointer to the PF structure * * called from the VFLR IRQ handler to * free up VF resources and state variables */ void ice_process_vflr_event(struct ice_pf *pf) { struct ice_hw *hw = &pf->hw; int vf_id; u32 reg; if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || !pf->num_alloc_vfs) return; ice_for_each_vf(pf, vf_id) { struct ice_vf *vf = &pf->vf[vf_id]; u32 reg_idx, bit_idx; reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; /* read GLGEN_VFLRSTAT register to find out the flr VFs */ reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); if (reg & BIT(bit_idx)) /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ ice_reset_vf(vf, true); } } /** * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF * @vf: pointer to the VF info */ static void ice_vc_reset_vf(struct ice_vf *vf) { ice_vc_notify_vf_reset(vf); ice_reset_vf(vf, false); } /** * ice_vc_send_msg_to_vf - Send message to VF * @vf: pointer to the VF info * @v_opcode: virtual channel opcode * @v_retval: virtual channel return value * @msg: pointer to the msg buffer * @msglen: msg length * * send msg to VF */ static int ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) { enum ice_status aq_ret; struct device *dev; struct ice_pf *pf; if (!vf) return -EINVAL; pf = vf->pf; if (ice_validate_vf_id(pf, vf->vf_id)) return -EINVAL; dev = ice_pf_to_dev(pf); /* single place to detect unsuccessful return values */ if (v_retval) { vf->num_inval_msgs++; dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id, v_opcode, v_retval); if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) { dev_err(dev, "Number of invalid messages exceeded for VF %d\n", vf->vf_id); dev_err(dev, "Use PF Control I/F to enable the VF\n"); set_bit(ICE_VF_STATE_DIS, vf->vf_states); return -EIO; } } else { vf->num_valid_msgs++; /* reset the invalid counter, if a valid message is received. */ vf->num_inval_msgs = 0; } aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, msg, msglen, NULL); if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %d\n", vf->vf_id, aq_ret, pf->hw.mailboxq.sq_last_status); return -EIO; } return 0; } /** * ice_vc_get_ver_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request the API version used by the PF */ static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) { struct virtchnl_version_info info = { VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR }; vf->vf_ver = *(struct virtchnl_version_info *)msg; /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ if (VF_IS_V10(&vf->vf_ver)) info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, sizeof(struct virtchnl_version_info)); } /** * ice_vc_get_vf_res_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to request its resources */ static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_resource *vfres = NULL; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int len = 0; int ret; if (ice_check_vf_init(pf, vf)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } len = sizeof(struct virtchnl_vf_resource); vfres = kzalloc(len, GFP_KERNEL); if (!vfres) { v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; len = 0; goto err; } if (VF_IS_V11(&vf->vf_ver)) vf->driver_caps = *(u32 *)msg; else vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | VIRTCHNL_VF_OFFLOAD_RSS_REG | VIRTCHNL_VF_OFFLOAD_VLAN; vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto err; } if (!vsi->info.pvid) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; } else { if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; else vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; } if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; vfres->num_vsis = 1; /* Tx and Rx queue are equal for VF */ vfres->num_queue_pairs = vsi->num_txq; vfres->max_vectors = pf->num_vf_msix; vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; ether_addr_copy(vfres->vsi_res[0].default_mac_addr, vf->dflt_lan_addr.addr); /* match guest capabilities */ vf->driver_caps = vfres->vf_cap_flags; set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); err: /* send the response back to the VF */ ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, (u8 *)vfres, len); kfree(vfres); return ret; } /** * ice_vc_reset_vf_msg * @vf: pointer to the VF info * * called from the VF to reset itself, * unlike other virtchnl messages, PF driver * doesn't send the response back to the VF */ static void ice_vc_reset_vf_msg(struct ice_vf *vf) { if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ice_reset_vf(vf, false); } /** * ice_find_vsi_from_id * @pf: the PF structure to search for the VSI * @id: ID of the VSI it is searching for * * searches for the VSI with the given ID */ static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) { int i; ice_for_each_vsi(pf, i) if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) return pf->vsi[i]; return NULL; } /** * ice_vc_isvalid_vsi_id * @vf: pointer to the VF info * @vsi_id: VF relative VSI ID * * check for the valid VSI ID */ static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) { struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; vsi = ice_find_vsi_from_id(pf, vsi_id); return (vsi && (vsi->vf_id == vf->vf_id)); } /** * ice_vc_isvalid_q_id * @vf: pointer to the VF info * @vsi_id: VSI ID * @qid: VSI relative queue ID * * check for the valid queue ID */ static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) { struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); /* allocated Tx and Rx queues should be always equal for VF VSI */ return (vsi && (qid < vsi->alloc_txq)); } /** * ice_vc_isvalid_ring_len * @ring_len: length of ring * * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE * or zero */ static bool ice_vc_isvalid_ring_len(u16 ring_len) { return ring_len == 0 || (ring_len >= ICE_MIN_NUM_DESC && ring_len <= ICE_MAX_NUM_DESC && !(ring_len % ICE_REQ_DESC_MULTIPLE)); } /** * ice_vc_config_rss_key * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS key */ static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_rss_key *vrk = (struct virtchnl_rss_key *)msg; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss(vsi, vrk->key, NULL, 0)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, NULL, 0); } /** * ice_vc_config_rss_lut * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Configure the VF's RSS LUT */ static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) { struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, NULL, 0); } /** * ice_set_vf_spoofchk * @netdev: network interface device structure * @vf_id: VF identifier * @ena: flag to enable or disable feature * * Enable or disable VF spoof checking */ int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) { struct ice_netdev_priv *np = netdev_priv(netdev); struct ice_pf *pf = np->vsi->back; struct ice_vsi_ctx *ctx; struct ice_vsi *vf_vsi; enum ice_status status; struct device *dev; struct ice_vf *vf; int ret = 0; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; if (ice_check_vf_init(pf, vf)) return -EBUSY; vf_vsi = pf->vsi[vf->lan_vsi_idx]; if (!vf_vsi) { netdev_err(netdev, "VSI %d for VF %d is null\n", vf->lan_vsi_idx, vf->vf_id); return -EINVAL; } if (vf_vsi->type != ICE_VSI_VF) { netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); return -ENODEV; } if (ena == vf->spoofchk) { dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); return 0; } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->info.sec_flags = vf_vsi->info.sec_flags; ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); if (ena) { ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); } else { ctx->info.sec_flags &= ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); } status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL); if (status) { dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %d", ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num, status); ret = -EIO; goto out; } /* only update spoofchk state and VSI context on success */ vf_vsi->info.sec_flags = ctx->info.sec_flags; vf->spoofchk = ena; out: kfree(ctx); return ret; } /** * ice_vc_get_stats_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to get VSI stats */ static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_eth_stats stats = { 0 }; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } ice_update_eth_stats(vsi); stats = vsi->eth_stats; error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, (u8 *)&stats, sizeof(stats)); } /** * ice_vc_ena_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to enable all or specific queue(s) */ static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!vqs->rx_queues && !vqs->tx_queues) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF || vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Enable only Rx rings, Tx rings were enabled by the FW when the * Tx queue group list was configured and the context bits were * programmed using ice_vsi_cfg_txqs */ q_map = vqs->rx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_rx_ring(vsi, true, vf_q_id)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } set_bit(vf_q_id, vf->rxq_ena); vf->num_qs_ena++; } vsi = pf->vsi[vf->lan_vsi_idx]; q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if enabled */ if (test_bit(vf_q_id, vf->txq_ena)) continue; set_bit(vf_q_id, vf->txq_ena); vf->num_qs_ena++; } /* Set flag to indicate that queues are enabled */ if (v_ret == VIRTCHNL_STATUS_SUCCESS) set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, NULL, 0); } /** * ice_vc_dis_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to disable all or specific * queue(s) */ static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_queue_select *vqs = (struct virtchnl_queue_select *)msg; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; unsigned long q_map; u16 vf_q_id; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!vqs->rx_queues && !vqs->tx_queues) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF || vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (vqs->tx_queues) { q_map = vqs->tx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { struct ice_ring *ring = vsi->tx_rings[vf_q_id]; struct ice_txq_meta txq_meta = { 0 }; if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if not enabled */ if (!test_bit(vf_q_id, vf->txq_ena)) continue; ice_fill_txq_meta(vsi, ring, &txq_meta); if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Clear enabled queues flag */ clear_bit(vf_q_id, vf->txq_ena); vf->num_qs_ena--; } } if (vqs->rx_queues) { q_map = vqs->rx_queues; for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Skip queue if not enabled */ if (!test_bit(vf_q_id, vf->rxq_ena)) continue; if (ice_vsi_ctrl_rx_ring(vsi, false, vf_q_id)) { dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n", vf_q_id, vsi->vsi_num); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* Clear enabled queues flag */ clear_bit(vf_q_id, vf->rxq_ena); vf->num_qs_ena--; } } /* Clear enabled queues flag */ if (v_ret == VIRTCHNL_STATUS_SUCCESS && !vf->num_qs_ena) clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, NULL, 0); } /** * ice_vc_cfg_irq_map_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the IRQ to queue map */ static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_irq_map_info *irqmap_info; u16 vsi_id, vsi_q_id, vector_id; struct virtchnl_vector_map *map; struct ice_pf *pf = vf->pf; u16 num_q_vectors_mapped; struct ice_vsi *vsi; unsigned long qmap; int i; irqmap_info = (struct virtchnl_irq_map_info *)msg; num_q_vectors_mapped = irqmap_info->num_vectors; /* Check to make sure number of VF vectors mapped is not greater than * number of VF vectors originally allocated, and check that * there is actually at least a single VF queue vector mapped */ if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || pf->num_vf_msix < num_q_vectors_mapped || !irqmap_info->num_vectors) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < num_q_vectors_mapped; i++) { struct ice_q_vector *q_vector; map = &irqmap_info->vecmap[i]; vector_id = map->vector_id; vsi_id = map->vsi_id; /* vector_id is always 0-based for each VF, and can never be * larger than or equal to the max allowed interrupts per VF */ if (!(vector_id < ICE_MAX_INTR_PER_VF) || !ice_vc_isvalid_vsi_id(vf, vsi_id) || (!vector_id && (map->rxq_map || map->txq_map))) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* No need to map VF miscellaneous or rogue vector */ if (!vector_id) continue; /* Subtract non queue vector from vector_id passed by VF * to get actual number of VSI queue vector array index */ q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; if (!q_vector) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* lookout for the invalid queue index */ qmap = map->rxq_map; q_vector->num_ring_rx = 0; for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } q_vector->num_ring_rx++; q_vector->rx.itr_idx = map->rxitr_idx; vsi->rx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, q_vector->rx.itr_idx); } qmap = map->txq_map; q_vector->num_ring_tx = 0; for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } q_vector->num_ring_tx++; q_vector->tx.itr_idx = map->txitr_idx; vsi->tx_rings[vsi_q_id]->q_vector = q_vector; ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, q_vector->tx.itr_idx); } } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, NULL, 0); } /** * ice_vc_cfg_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * called from the VF to configure the Rx/Tx queues */ static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vsi_queue_config_info *qci = (struct virtchnl_vsi_queue_config_info *)msg; struct virtchnl_queue_pair_info *qpi; u16 num_rxq = 0, num_txq = 0; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; int i; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (qci->num_queue_pairs > ICE_MAX_BASE_QS_PER_VF || qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n", vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < qci->num_queue_pairs; i++) { qpi = &qci->qpair[i]; if (qpi->txq.vsi_id != qci->vsi_id || qpi->rxq.vsi_id != qci->vsi_id || qpi->rxq.queue_id != qpi->txq.queue_id || qpi->txq.headwb_enabled || !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } /* copy Tx queue info from VF into VSI */ if (qpi->txq.ring_len > 0) { num_txq++; vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; vsi->tx_rings[i]->count = qpi->txq.ring_len; } /* copy Rx queue info from VF into VSI */ if (qpi->rxq.ring_len > 0) { num_rxq++; vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; vsi->rx_rings[i]->count = qpi->rxq.ring_len; if (qpi->rxq.databuffer_size != 0 && (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || qpi->rxq.databuffer_size < 1024)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi->rx_buf_len = qpi->rxq.databuffer_size; vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; if (qpi->rxq.max_pkt_size >= (16 * 1024) || qpi->rxq.max_pkt_size < 64) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } } vsi->max_frame = qpi->rxq.max_pkt_size; } /* VF can request to configure less than allocated queues * or default allocated queues. So update the VSI with new number */ vsi->num_txq = num_txq; vsi->num_rxq = num_rxq; /* All queues of VF VSI are in TC 0 */ vsi->tc_cfg.tc_info[0].qcount_tx = num_txq; vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq; if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi)) v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, NULL, 0); } /** * ice_is_vf_trusted * @vf: pointer to the VF info */ static bool ice_is_vf_trusted(struct ice_vf *vf) { return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); } /** * ice_can_vf_change_mac * @vf: pointer to the VF info * * Return true if the VF is allowed to change its MAC filters, false otherwise */ static bool ice_can_vf_change_mac(struct ice_vf *vf) { /* If the VF MAC address has been set administratively (via the * ndo_set_vf_mac command), then deny permission to the VF to * add/delete unicast MAC addresses, unless the VF is trusted */ if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) return false; return true; } /** * ice_vc_add_mac_addr - attempt to add the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @mac_addr: MAC address to add */ static int ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr) { struct device *dev = ice_pf_to_dev(vf->pf); enum ice_status status; /* default unicast MAC already added */ if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) return 0; if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) { dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n"); return -EPERM; } status = ice_vsi_cfg_mac_fltr(vsi, mac_addr, true); if (status == ICE_ERR_ALREADY_EXISTS) { dev_err(dev, "MAC %pM already exists for VF %d\n", mac_addr, vf->vf_id); return -EEXIST; } else if (status) { dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n", mac_addr, vf->vf_id, status); return -EIO; } /* only set dflt_lan_addr once */ if (is_zero_ether_addr(vf->dflt_lan_addr.addr) && is_unicast_ether_addr(mac_addr)) ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr); vf->num_mac++; return 0; } /** * ice_vc_del_mac_addr - attempt to delete the MAC address passed in * @vf: pointer to the VF info * @vsi: pointer to the VF's VSI * @mac_addr: MAC address to delete */ static int ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr) { struct device *dev = ice_pf_to_dev(vf->pf); enum ice_status status; if (!ice_can_vf_change_mac(vf) && ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) return 0; status = ice_vsi_cfg_mac_fltr(vsi, mac_addr, false); if (status == ICE_ERR_DOES_NOT_EXIST) { dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr, vf->vf_id); return -ENOENT; } else if (status) { dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n", mac_addr, vf->vf_id, status); return -EIO; } if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr)) eth_zero_addr(vf->dflt_lan_addr.addr); vf->num_mac--; return 0; } /** * ice_vc_handle_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @set: true if MAC filters are being set, false otherwise * * add guest MAC address filter */ static int ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) { int (*ice_vc_cfg_mac) (struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr); enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_ether_addr_list *al = (struct virtchnl_ether_addr_list *)msg; struct ice_pf *pf = vf->pf; enum virtchnl_ops vc_op; struct ice_vsi *vsi; int i; if (set) { vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; ice_vc_cfg_mac = ice_vc_add_mac_addr; } else { vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; ice_vc_cfg_mac = ice_vc_del_mac_addr; } if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } /* If this VF is not privileged, then we can't add more than a * limited number of addresses. Check to make sure that the * additions do not push us over the limit. */ if (set && !ice_is_vf_trusted(vf) && (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", vf->vf_id); v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto handle_mac_exit; } for (i = 0; i < al->num_elements; i++) { u8 *mac_addr = al->list[i].addr; int result; if (is_broadcast_ether_addr(mac_addr) || is_zero_ether_addr(mac_addr)) continue; result = ice_vc_cfg_mac(vf, vsi, mac_addr); if (result == -EEXIST || result == -ENOENT) { continue; } else if (result) { v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; goto handle_mac_exit; } } handle_mac_exit: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); } /** * ice_vc_add_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * add guest MAC address filter */ static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, true); } /** * ice_vc_del_mac_addr_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove guest MAC address filter */ static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_handle_mac_addr_msg(vf, msg, false); } /** * ice_vc_request_qs_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * VFs get a default number of queues but can use this message to request a * different number. If the request is successful, PF will reset the VF and * return 0. If unsuccessful, PF will send message informing VF of number of * available queue pairs via virtchnl message response to VF. */ static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vf_res_request *vfres = (struct virtchnl_vf_res_request *)msg; u16 req_queues = vfres->num_queue_pairs; struct ice_pf *pf = vf->pf; u16 max_allowed_vf_queues; u16 tx_rx_queue_left; struct device *dev; u16 cur_queues; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } cur_queues = vf->num_vf_qs; tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), ice_get_avail_rxq_count(pf)); max_allowed_vf_queues = tx_rx_queue_left + cur_queues; if (!req_queues) { dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", vf->vf_id); } else if (req_queues > ICE_MAX_BASE_QS_PER_VF) { dev_err(dev, "VF %d tried to request more than %d queues.\n", vf->vf_id, ICE_MAX_BASE_QS_PER_VF); vfres->num_queue_pairs = ICE_MAX_BASE_QS_PER_VF; } else if (req_queues > cur_queues && req_queues - cur_queues > tx_rx_queue_left) { dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n", vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, ICE_MAX_BASE_QS_PER_VF); } else { /* request is successful, then reset VF */ vf->num_req_qs = req_queues; ice_vc_reset_vf(vf); dev_info(dev, "VF %d granted request of %u queues.\n", vf->vf_id, req_queues); return 0; } error_param: /* send the response to the VF */ return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, v_ret, (u8 *)vfres, sizeof(*vfres)); } /** * ice_set_vf_port_vlan * @netdev: network interface device structure * @vf_id: VF identifier * @vlan_id: VLAN ID being set * @qos: priority setting * @vlan_proto: VLAN protocol * * program VF Port VLAN ID and/or QoS */ int ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, __be16 vlan_proto) { u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S); struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vsi *vsi; struct device *dev; struct ice_vf *vf; int ret = 0; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; if (vlan_id > ICE_MAX_VLANID || qos > 7) { dev_err(dev, "Invalid VF Parameters\n"); return -EINVAL; } if (vlan_proto != htons(ETH_P_8021Q)) { dev_err(dev, "VF VLAN protocol is not supported\n"); return -EPROTONOSUPPORT; } vf = &pf->vf[vf_id]; vsi = pf->vsi[vf->lan_vsi_idx]; if (ice_check_vf_init(pf, vf)) return -EBUSY; if (le16_to_cpu(vsi->info.pvid) == vlanprio) { /* duplicate request, so just return success */ dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio); return ret; } /* If PVID, then remove all filters on the old VLAN */ if (vsi->info.pvid) ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) & VLAN_VID_MASK)); if (vlan_id || qos) { ret = ice_vsi_manage_pvid(vsi, vlanprio, true); if (ret) goto error_set_pvid; } else { ice_vsi_manage_pvid(vsi, 0, false); vsi->info.pvid = 0; } if (vlan_id) { dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n", vlan_id, qos, vf_id); /* add new VLAN filter for each MAC */ ret = ice_vsi_add_vlan(vsi, vlan_id); if (ret) goto error_set_pvid; } /* The Port VLAN needs to be saved across resets the same as the * default LAN MAC address. */ vf->port_vlan_id = le16_to_cpu(vsi->info.pvid); error_set_pvid: return ret; } /** * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads * @caps: VF driver negotiated capabilities * * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false */ static bool ice_vf_vlan_offload_ena(u32 caps) { return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); } /** * ice_vc_process_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * @add_v: Add VLAN if true, otherwise delete VLAN * * Process virtchnl op to add or remove programmed guest VLAN ID */ static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct virtchnl_vlan_filter_list *vfl = (struct virtchnl_vlan_filter_list *)msg; struct ice_pf *pf = vf->pf; bool vlan_promisc = false; struct ice_vsi *vsi; struct device *dev; struct ice_hw *hw; int status = 0; u8 promisc_m; int i; dev = ice_pf_to_dev(pf); if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } for (i = 0; i < vfl->num_elements; i++) { if (vfl->vlan_id[i] > ICE_MAX_VLANID) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "invalid VF VLAN id %d\n", vfl->vlan_id[i]); goto error_param; } } hw = &pf->hw; vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (add_v && !ice_is_vf_trusted(vf) && vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being not trusted, * so we can just return success message here */ goto error_param; } if (vsi->info.pvid) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) vlan_promisc = true; if (add_v) { for (i = 0; i < vfl->num_elements; i++) { u16 vid = vfl->vlan_id[i]; if (!ice_is_vf_trusted(vf) && vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) { dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", vf->vf_id); /* There is no need to let VF know about being * not trusted, so we can just return success * message here as well. */ goto error_param; } /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't need to add it again here */ if (!vid) continue; status = ice_vsi_add_vlan(vsi, vid); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi->num_vlan++; /* Enable VLAN pruning when VLAN is added */ if (!vlan_promisc) { status = ice_cfg_vlan_pruning(vsi, true, false); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", vid, status); goto error_param; } } else { /* Enable Ucast/Mcast VLAN promiscuous mode */ promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, vid); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", vid, status); } } } } else { /* In case of non_trusted VF, number of VLAN elements passed * to PF for removal might be greater than number of VLANs * filter programmed for that VF - So, use actual number of * VLANS added earlier with add VLAN opcode. In order to avoid * removing VLAN that doesn't exist, which result to sending * erroneous failed message back to the VF */ int num_vf_vlan; num_vf_vlan = vsi->num_vlan; for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { u16 vid = vfl->vlan_id[i]; /* we add VLAN 0 by default for each VF so we can enable * Tx VLAN anti-spoof without triggering MDD events so * we don't want a VIRTCHNL request to remove it */ if (!vid) continue; /* Make sure ice_vsi_kill_vlan is successful before * updating VLAN information */ status = ice_vsi_kill_vlan(vsi, vid); if (status) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi->num_vlan--; /* Disable VLAN pruning when the last VLAN is removed */ if (!vsi->num_vlan) ice_cfg_vlan_pruning(vsi, false, false); /* Disable Unicast/Multicast VLAN promiscuous mode */ if (vlan_promisc) { promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX; ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, vid); } } } error_param: /* send the response to the VF */ if (add_v) return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, NULL, 0); else return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, NULL, 0); } /** * ice_vc_add_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * Add and program guest VLAN ID */ static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, true); } /** * ice_vc_remove_vlan_msg * @vf: pointer to the VF info * @msg: pointer to the msg buffer * * remove programmed guest VLAN ID */ static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) { return ice_vc_process_vlan_msg(vf, msg, false); } /** * ice_vc_ena_vlan_stripping * @vf: pointer to the VF info * * Enable VLAN header stripping for a given VF */ static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (ice_vsi_manage_vlan_stripping(vsi, true)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vc_dis_vlan_stripping * @vf: pointer to the VF info * * Disable VLAN header stripping for a given VF */ static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) { enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; struct ice_pf *pf = vf->pf; struct ice_vsi *vsi; if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) { v_ret = VIRTCHNL_STATUS_ERR_PARAM; goto error_param; } if (ice_vsi_manage_vlan_stripping(vsi, false)) v_ret = VIRTCHNL_STATUS_ERR_PARAM; error_param: return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, v_ret, NULL, 0); } /** * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization * @vf: VF to enable/disable VLAN stripping for on initialization * * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if * the flag is cleared then we want to disable stripping. For example, the flag * will be cleared when port VLANs are configured by the administrator before * passing the VF to the guest or if the AVF driver doesn't support VLAN * offloads. */ static int ice_vf_init_vlan_stripping(struct ice_vf *vf) { struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; if (!vsi) return -EINVAL; /* don't modify stripping if port VLAN is configured */ if (vsi->info.pvid) return 0; if (ice_vf_vlan_offload_ena(vf->driver_caps)) return ice_vsi_manage_vlan_stripping(vsi, true); else return ice_vsi_manage_vlan_stripping(vsi, false); } /** * ice_vc_process_vf_msg - Process request from VF * @pf: pointer to the PF structure * @event: pointer to the AQ event * * called from the common asq/arq handler to * process request from VF */ void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) { u32 v_opcode = le32_to_cpu(event->desc.cookie_high); s16 vf_id = le16_to_cpu(event->desc.retval); u16 msglen = event->msg_len; u8 *msg = event->msg_buf; struct ice_vf *vf = NULL; struct device *dev; int err = 0; dev = ice_pf_to_dev(pf); if (ice_validate_vf_id(pf, vf_id)) { err = -EINVAL; goto error_handler; } vf = &pf->vf[vf_id]; /* Check if VF is disabled. */ if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { err = -EPERM; goto error_handler; } /* Perform basic checks on the msg */ err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); if (err) { if (err == VIRTCHNL_STATUS_ERR_PARAM) err = -EPERM; else err = -EINVAL; } error_handler: if (err) { ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, NULL, 0); dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", vf_id, v_opcode, msglen, err); return; } switch (v_opcode) { case VIRTCHNL_OP_VERSION: err = ice_vc_get_ver_msg(vf, msg); break; case VIRTCHNL_OP_GET_VF_RESOURCES: err = ice_vc_get_vf_res_msg(vf, msg); if (ice_vf_init_vlan_stripping(vf)) dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n", vf->vf_id); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_RESET_VF: ice_vc_reset_vf_msg(vf); break; case VIRTCHNL_OP_ADD_ETH_ADDR: err = ice_vc_add_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_DEL_ETH_ADDR: err = ice_vc_del_mac_addr_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_VSI_QUEUES: err = ice_vc_cfg_qs_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_QUEUES: err = ice_vc_ena_qs_msg(vf, msg); ice_vc_notify_vf_link_state(vf); break; case VIRTCHNL_OP_DISABLE_QUEUES: err = ice_vc_dis_qs_msg(vf, msg); break; case VIRTCHNL_OP_REQUEST_QUEUES: err = ice_vc_request_qs_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_IRQ_MAP: err = ice_vc_cfg_irq_map_msg(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_KEY: err = ice_vc_config_rss_key(vf, msg); break; case VIRTCHNL_OP_CONFIG_RSS_LUT: err = ice_vc_config_rss_lut(vf, msg); break; case VIRTCHNL_OP_GET_STATS: err = ice_vc_get_stats_msg(vf, msg); break; case VIRTCHNL_OP_ADD_VLAN: err = ice_vc_add_vlan_msg(vf, msg); break; case VIRTCHNL_OP_DEL_VLAN: err = ice_vc_remove_vlan_msg(vf, msg); break; case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: err = ice_vc_ena_vlan_stripping(vf); break; case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: err = ice_vc_dis_vlan_stripping(vf); break; case VIRTCHNL_OP_UNKNOWN: default: dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, vf_id); err = ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL, 0); break; } if (err) { /* Helper function cares less about error return values here * as it is busy with pending work. */ dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", vf_id, v_opcode, err); } } /** * ice_get_vf_cfg * @netdev: network interface device structure * @vf_id: VF identifier * @ivi: VF configuration structure * * return VF configuration */ int ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vsi *vsi; struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; vsi = pf->vsi[vf->lan_vsi_idx]; if (ice_check_vf_init(pf, vf)) return -EBUSY; ivi->vf = vf_id; ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr); /* VF configuration for VLAN and applicable QoS */ ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M; ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >> ICE_VLAN_PRIORITY_S; ivi->trusted = vf->trusted; ivi->spoofchk = vf->spoofchk; if (!vf->link_forced) ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; else if (vf->link_up) ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; else ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; ivi->max_tx_rate = vf->tx_rate; ivi->min_tx_rate = 0; return 0; } /** * ice_wait_on_vf_reset * @vf: The VF being resseting * * Poll to make sure a given VF is ready after reset */ static void ice_wait_on_vf_reset(struct ice_vf *vf) { int i; for (i = 0; i < ICE_MAX_VF_RESET_WAIT; i++) { if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) break; msleep(20); } } /** * ice_set_vf_mac * @netdev: network interface device structure * @vf_id: VF identifier * @mac: MAC address * * program VF MAC address */ int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; int ret = 0; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; /* Don't set MAC on disabled VF */ if (ice_is_vf_disabled(vf)) return -EINVAL; /* In case VF is in reset mode, wait until it is completed. Depending * on factors like queue disabling routine, this could take ~250ms */ ice_wait_on_vf_reset(vf); if (ice_check_vf_init(pf, vf)) return -EBUSY; if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) { netdev_err(netdev, "%pM not a valid unicast address\n", mac); return -EINVAL; } /* copy MAC into dflt_lan_addr and trigger a VF reset. The reset * flow will use the updated dflt_lan_addr and add a MAC filter * using ice_add_mac. Also set pf_set_mac to indicate that the PF has * set the MAC address for this VF. */ ether_addr_copy(vf->dflt_lan_addr.addr, mac); vf->pf_set_mac = true; netdev_info(netdev, "MAC on VF %d set to %pM. VF driver will be reinitialized\n", vf_id, mac); ice_vc_reset_vf(vf); return ret; } /** * ice_set_vf_trust * @netdev: network interface device structure * @vf_id: VF identifier * @trusted: Boolean value to enable/disable trusted VF * * Enable or disable a given VF as trusted */ int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; /* Don't set Trusted Mode on disabled VF */ if (ice_is_vf_disabled(vf)) return -EINVAL; /* In case VF is in reset mode, wait until it is completed. Depending * on factors like queue disabling routine, this could take ~250ms */ ice_wait_on_vf_reset(vf); if (ice_check_vf_init(pf, vf)) return -EBUSY; /* Check if already trusted */ if (trusted == vf->trusted) return 0; vf->trusted = trusted; ice_vc_reset_vf(vf); dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", vf_id, trusted ? "" : "un"); return 0; } /** * ice_set_vf_link_state * @netdev: network interface device structure * @vf_id: VF identifier * @link_state: required link state * * Set VF's link state, irrespective of physical link state status */ int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; if (ice_check_vf_init(pf, vf)) return -EBUSY; switch (link_state) { case IFLA_VF_LINK_STATE_AUTO: vf->link_forced = false; break; case IFLA_VF_LINK_STATE_ENABLE: vf->link_forced = true; vf->link_up = true; break; case IFLA_VF_LINK_STATE_DISABLE: vf->link_forced = true; vf->link_up = false; break; default: return -EINVAL; } ice_vc_notify_vf_link_state(vf); return 0; } /** * ice_get_vf_stats - populate some stats for the VF * @netdev: the netdev of the PF * @vf_id: the host OS identifier (0-255) * @vf_stats: pointer to the OS memory to be initialized */ int ice_get_vf_stats(struct net_device *netdev, int vf_id, struct ifla_vf_stats *vf_stats) { struct ice_pf *pf = ice_netdev_to_pf(netdev); struct ice_eth_stats *stats; struct ice_vsi *vsi; struct ice_vf *vf; if (ice_validate_vf_id(pf, vf_id)) return -EINVAL; vf = &pf->vf[vf_id]; if (ice_check_vf_init(pf, vf)) return -EBUSY; vsi = pf->vsi[vf->lan_vsi_idx]; if (!vsi) return -EINVAL; ice_update_eth_stats(vsi); stats = &vsi->eth_stats; memset(vf_stats, 0, sizeof(*vf_stats)); vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + stats->rx_multicast; vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + stats->tx_multicast; vf_stats->rx_bytes = stats->rx_bytes; vf_stats->tx_bytes = stats->tx_bytes; vf_stats->broadcast = stats->rx_broadcast; vf_stats->multicast = stats->rx_multicast; vf_stats->rx_dropped = stats->rx_discards; vf_stats->tx_dropped = stats->tx_discards; return 0; }