// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2008 Intel Corporation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "ixgb_hw.h" #include "ixgb_ee.h" /* Local prototypes */ static u16 ixgb_shift_in_bits(struct ixgb_hw *hw); static void ixgb_shift_out_bits(struct ixgb_hw *hw, u16 data, u16 count); static void ixgb_standby_eeprom(struct ixgb_hw *hw); static bool ixgb_wait_eeprom_command(struct ixgb_hw *hw); static void ixgb_cleanup_eeprom(struct ixgb_hw *hw); /****************************************************************************** * Raises the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd_reg - EECD's current value *****************************************************************************/ static void ixgb_raise_clock(struct ixgb_hw *hw, u32 *eecd_reg) { /* Raise the clock input to the EEPROM (by setting the SK bit), and then * wait 50 microseconds. */ *eecd_reg = *eecd_reg | IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, *eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Lowers the EEPROM's clock input. * * hw - Struct containing variables accessed by shared code * eecd_reg - EECD's current value *****************************************************************************/ static void ixgb_lower_clock(struct ixgb_hw *hw, u32 *eecd_reg) { /* Lower the clock input to the EEPROM (by clearing the SK bit), and then * wait 50 microseconds. */ *eecd_reg = *eecd_reg & ~IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, *eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Shift data bits out to the EEPROM. * * hw - Struct containing variables accessed by shared code * data - data to send to the EEPROM * count - number of bits to shift out *****************************************************************************/ static void ixgb_shift_out_bits(struct ixgb_hw *hw, u16 data, u16 count) { u32 eecd_reg; u32 mask; /* We need to shift "count" bits out to the EEPROM. So, value in the * "data" parameter will be shifted out to the EEPROM one bit at a time. * In order to do this, "data" must be broken down into bits. */ mask = 0x01 << (count - 1); eecd_reg = IXGB_READ_REG(hw, EECD); eecd_reg &= ~(IXGB_EECD_DO | IXGB_EECD_DI); do { /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", * and then raising and then lowering the clock (the SK bit controls * the clock input to the EEPROM). A "0" is shifted out to the EEPROM * by setting "DI" to "0" and then raising and then lowering the clock. */ eecd_reg &= ~IXGB_EECD_DI; if (data & mask) eecd_reg |= IXGB_EECD_DI; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); ixgb_raise_clock(hw, &eecd_reg); ixgb_lower_clock(hw, &eecd_reg); mask = mask >> 1; } while (mask); /* We leave the "DI" bit set to "0" when we leave this routine. */ eecd_reg &= ~IXGB_EECD_DI; IXGB_WRITE_REG(hw, EECD, eecd_reg); } /****************************************************************************** * Shift data bits in from the EEPROM * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static u16 ixgb_shift_in_bits(struct ixgb_hw *hw) { u32 eecd_reg; u32 i; u16 data; /* In order to read a register from the EEPROM, we need to shift 16 bits * in from the EEPROM. Bits are "shifted in" by raising the clock input to * the EEPROM (setting the SK bit), and then reading the value of the "DO" * bit. During this "shifting in" process the "DI" bit should always be * clear.. */ eecd_reg = IXGB_READ_REG(hw, EECD); eecd_reg &= ~(IXGB_EECD_DO | IXGB_EECD_DI); data = 0; for (i = 0; i < 16; i++) { data = data << 1; ixgb_raise_clock(hw, &eecd_reg); eecd_reg = IXGB_READ_REG(hw, EECD); eecd_reg &= ~(IXGB_EECD_DI); if (eecd_reg & IXGB_EECD_DO) data |= 1; ixgb_lower_clock(hw, &eecd_reg); } return data; } /****************************************************************************** * Prepares EEPROM for access * * hw - Struct containing variables accessed by shared code * * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This * function should be called before issuing a command to the EEPROM. *****************************************************************************/ static void ixgb_setup_eeprom(struct ixgb_hw *hw) { u32 eecd_reg; eecd_reg = IXGB_READ_REG(hw, EECD); /* Clear SK and DI */ eecd_reg &= ~(IXGB_EECD_SK | IXGB_EECD_DI); IXGB_WRITE_REG(hw, EECD, eecd_reg); /* Set CS */ eecd_reg |= IXGB_EECD_CS; IXGB_WRITE_REG(hw, EECD, eecd_reg); } /****************************************************************************** * Returns EEPROM to a "standby" state * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_standby_eeprom(struct ixgb_hw *hw) { u32 eecd_reg; eecd_reg = IXGB_READ_REG(hw, EECD); /* Deselect EEPROM */ eecd_reg &= ~(IXGB_EECD_CS | IXGB_EECD_SK); IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); /* Clock high */ eecd_reg |= IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); /* Select EEPROM */ eecd_reg |= IXGB_EECD_CS; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); /* Clock low */ eecd_reg &= ~IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Raises then lowers the EEPROM's clock pin * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_clock_eeprom(struct ixgb_hw *hw) { u32 eecd_reg; eecd_reg = IXGB_READ_REG(hw, EECD); /* Rising edge of clock */ eecd_reg |= IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); /* Falling edge of clock */ eecd_reg &= ~IXGB_EECD_SK; IXGB_WRITE_REG(hw, EECD, eecd_reg); IXGB_WRITE_FLUSH(hw); udelay(50); } /****************************************************************************** * Terminates a command by lowering the EEPROM's chip select pin * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_cleanup_eeprom(struct ixgb_hw *hw) { u32 eecd_reg; eecd_reg = IXGB_READ_REG(hw, EECD); eecd_reg &= ~(IXGB_EECD_CS | IXGB_EECD_DI); IXGB_WRITE_REG(hw, EECD, eecd_reg); ixgb_clock_eeprom(hw); } /****************************************************************************** * Waits for the EEPROM to finish the current command. * * hw - Struct containing variables accessed by shared code * * The command is done when the EEPROM's data out pin goes high. * * Returns: * true: EEPROM data pin is high before timeout. * false: Time expired. *****************************************************************************/ static bool ixgb_wait_eeprom_command(struct ixgb_hw *hw) { u32 eecd_reg; u32 i; /* Toggle the CS line. This in effect tells to EEPROM to actually execute * the command in question. */ ixgb_standby_eeprom(hw); /* Now read DO repeatedly until is high (equal to '1'). The EEPROM will * signal that the command has been completed by raising the DO signal. * If DO does not go high in 10 milliseconds, then error out. */ for (i = 0; i < 200; i++) { eecd_reg = IXGB_READ_REG(hw, EECD); if (eecd_reg & IXGB_EECD_DO) return true; udelay(50); } ASSERT(0); return false; } /****************************************************************************** * Verifies that the EEPROM has a valid checksum * * hw - Struct containing variables accessed by shared code * * Reads the first 64 16 bit words of the EEPROM and sums the values read. * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is * valid. * * Returns: * true: Checksum is valid * false: Checksum is not valid. *****************************************************************************/ bool ixgb_validate_eeprom_checksum(struct ixgb_hw *hw) { u16 checksum = 0; u16 i; for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) checksum += ixgb_read_eeprom(hw, i); if (checksum == (u16) EEPROM_SUM) return true; else return false; } /****************************************************************************** * Calculates the EEPROM checksum and writes it to the EEPROM * * hw - Struct containing variables accessed by shared code * * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. * Writes the difference to word offset 63 of the EEPROM. *****************************************************************************/ void ixgb_update_eeprom_checksum(struct ixgb_hw *hw) { u16 checksum = 0; u16 i; for (i = 0; i < EEPROM_CHECKSUM_REG; i++) checksum += ixgb_read_eeprom(hw, i); checksum = (u16) EEPROM_SUM - checksum; ixgb_write_eeprom(hw, EEPROM_CHECKSUM_REG, checksum); } /****************************************************************************** * Writes a 16 bit word to a given offset in the EEPROM. * * hw - Struct containing variables accessed by shared code * reg - offset within the EEPROM to be written to * data - 16 bit word to be written to the EEPROM * * If ixgb_update_eeprom_checksum is not called after this function, the * EEPROM will most likely contain an invalid checksum. * *****************************************************************************/ void ixgb_write_eeprom(struct ixgb_hw *hw, u16 offset, u16 data) { struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; /* Prepare the EEPROM for writing */ ixgb_setup_eeprom(hw); /* Send the 9-bit EWEN (write enable) command to the EEPROM (5-bit opcode * plus 4-bit dummy). This puts the EEPROM into write/erase mode. */ ixgb_shift_out_bits(hw, EEPROM_EWEN_OPCODE, 5); ixgb_shift_out_bits(hw, 0, 4); /* Prepare the EEPROM */ ixgb_standby_eeprom(hw); /* Send the Write command (3-bit opcode + 6-bit addr) */ ixgb_shift_out_bits(hw, EEPROM_WRITE_OPCODE, 3); ixgb_shift_out_bits(hw, offset, 6); /* Send the data */ ixgb_shift_out_bits(hw, data, 16); ixgb_wait_eeprom_command(hw); /* Recover from write */ ixgb_standby_eeprom(hw); /* Send the 9-bit EWDS (write disable) command to the EEPROM (5-bit * opcode plus 4-bit dummy). This takes the EEPROM out of write/erase * mode. */ ixgb_shift_out_bits(hw, EEPROM_EWDS_OPCODE, 5); ixgb_shift_out_bits(hw, 0, 4); /* Done with writing */ ixgb_cleanup_eeprom(hw); /* clear the init_ctrl_reg_1 to signify that the cache is invalidated */ ee_map->init_ctrl_reg_1 = cpu_to_le16(EEPROM_ICW1_SIGNATURE_CLEAR); } /****************************************************************************** * Reads a 16 bit word from the EEPROM. * * hw - Struct containing variables accessed by shared code * offset - offset of 16 bit word in the EEPROM to read * * Returns: * The 16-bit value read from the eeprom *****************************************************************************/ u16 ixgb_read_eeprom(struct ixgb_hw *hw, u16 offset) { u16 data; /* Prepare the EEPROM for reading */ ixgb_setup_eeprom(hw); /* Send the READ command (opcode + addr) */ ixgb_shift_out_bits(hw, EEPROM_READ_OPCODE, 3); /* * We have a 64 word EEPROM, there are 6 address bits */ ixgb_shift_out_bits(hw, offset, 6); /* Read the data */ data = ixgb_shift_in_bits(hw); /* End this read operation */ ixgb_standby_eeprom(hw); return data; } /****************************************************************************** * Reads eeprom and stores data in shared structure. * Validates eeprom checksum and eeprom signature. * * hw - Struct containing variables accessed by shared code * * Returns: * true: if eeprom read is successful * false: otherwise. *****************************************************************************/ bool ixgb_get_eeprom_data(struct ixgb_hw *hw) { u16 i; u16 checksum = 0; struct ixgb_ee_map_type *ee_map; ENTER(); ee_map = (struct ixgb_ee_map_type *)hw->eeprom; pr_debug("Reading eeprom data\n"); for (i = 0; i < IXGB_EEPROM_SIZE ; i++) { u16 ee_data; ee_data = ixgb_read_eeprom(hw, i); checksum += ee_data; hw->eeprom[i] = cpu_to_le16(ee_data); } if (checksum != (u16) EEPROM_SUM) { pr_debug("Checksum invalid\n"); /* clear the init_ctrl_reg_1 to signify that the cache is * invalidated */ ee_map->init_ctrl_reg_1 = cpu_to_le16(EEPROM_ICW1_SIGNATURE_CLEAR); return false; } if ((ee_map->init_ctrl_reg_1 & cpu_to_le16(EEPROM_ICW1_SIGNATURE_MASK)) != cpu_to_le16(EEPROM_ICW1_SIGNATURE_VALID)) { pr_debug("Signature invalid\n"); return false; } return true; } /****************************************************************************** * Local function to check if the eeprom signature is good * If the eeprom signature is good, calls ixgb)get_eeprom_data. * * hw - Struct containing variables accessed by shared code * * Returns: * true: eeprom signature was good and the eeprom read was successful * false: otherwise. ******************************************************************************/ static bool ixgb_check_and_get_eeprom_data (struct ixgb_hw* hw) { struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; if ((ee_map->init_ctrl_reg_1 & cpu_to_le16(EEPROM_ICW1_SIGNATURE_MASK)) == cpu_to_le16(EEPROM_ICW1_SIGNATURE_VALID)) { return true; } else { return ixgb_get_eeprom_data(hw); } } /****************************************************************************** * return a word from the eeprom * * hw - Struct containing variables accessed by shared code * index - Offset of eeprom word * * Returns: * Word at indexed offset in eeprom, if valid, 0 otherwise. ******************************************************************************/ __le16 ixgb_get_eeprom_word(struct ixgb_hw *hw, u16 index) { if (index < IXGB_EEPROM_SIZE && ixgb_check_and_get_eeprom_data(hw)) return hw->eeprom[index]; return 0; } /****************************************************************************** * return the mac address from EEPROM * * hw - Struct containing variables accessed by shared code * mac_addr - Ethernet Address if EEPROM contents are valid, 0 otherwise * * Returns: None. ******************************************************************************/ void ixgb_get_ee_mac_addr(struct ixgb_hw *hw, u8 *mac_addr) { int i; struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; ENTER(); if (ixgb_check_and_get_eeprom_data(hw)) { for (i = 0; i < ETH_ALEN; i++) { mac_addr[i] = ee_map->mac_addr[i]; } pr_debug("eeprom mac address = %pM\n", mac_addr); } } /****************************************************************************** * return the Printed Board Assembly number from EEPROM * * hw - Struct containing variables accessed by shared code * * Returns: * PBA number if EEPROM contents are valid, 0 otherwise ******************************************************************************/ u32 ixgb_get_ee_pba_number(struct ixgb_hw *hw) { if (ixgb_check_and_get_eeprom_data(hw)) return le16_to_cpu(hw->eeprom[EEPROM_PBA_1_2_REG]) | (le16_to_cpu(hw->eeprom[EEPROM_PBA_3_4_REG])<<16); return 0; } /****************************************************************************** * return the Device Id from EEPROM * * hw - Struct containing variables accessed by shared code * * Returns: * Device Id if EEPROM contents are valid, 0 otherwise ******************************************************************************/ u16 ixgb_get_ee_device_id(struct ixgb_hw *hw) { struct ixgb_ee_map_type *ee_map = (struct ixgb_ee_map_type *)hw->eeprom; if (ixgb_check_and_get_eeprom_data(hw)) return le16_to_cpu(ee_map->device_id); return 0; }