/* drivers/net/ethernet/micrel/ks8851.c * * Copyright 2009 Simtec Electronics * http://www.simtec.co.uk/ * Ben Dooks * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #define DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ks8851.h" /** * struct ks8851_rxctrl - KS8851 driver rx control * @mchash: Multicast hash-table data. * @rxcr1: KS_RXCR1 register setting * @rxcr2: KS_RXCR2 register setting * * Representation of the settings needs to control the receive filtering * such as the multicast hash-filter and the receive register settings. This * is used to make the job of working out if the receive settings change and * then issuing the new settings to the worker that will send the necessary * commands. */ struct ks8851_rxctrl { u16 mchash[4]; u16 rxcr1; u16 rxcr2; }; /** * union ks8851_tx_hdr - tx header data * @txb: The header as bytes * @txw: The header as 16bit, little-endian words * * A dual representation of the tx header data to allow * access to individual bytes, and to allow 16bit accesses * with 16bit alignment. */ union ks8851_tx_hdr { u8 txb[6]; __le16 txw[3]; }; /** * struct ks8851_net - KS8851 driver private data * @netdev: The network device we're bound to * @spidev: The spi device we're bound to. * @lock: Lock to ensure that the device is not accessed when busy. * @statelock: Lock on this structure for tx list. * @mii: The MII state information for the mii calls. * @rxctrl: RX settings for @rxctrl_work. * @tx_work: Work queue for tx packets * @rxctrl_work: Work queue for updating RX mode and multicast lists * @txq: Queue of packets for transmission. * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. * @txh: Space for generating packet TX header in DMA-able data * @rxd: Space for receiving SPI data, in DMA-able space. * @txd: Space for transmitting SPI data, in DMA-able space. * @msg_enable: The message flags controlling driver output (see ethtool). * @fid: Incrementing frame id tag. * @rc_ier: Cached copy of KS_IER. * @rc_ccr: Cached copy of KS_CCR. * @rc_rxqcr: Cached copy of KS_RXQCR. * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM. * @vdd_reg: Optional regulator supplying the chip * @vdd_io: Optional digital power supply for IO * @gpio: Optional reset_n gpio * * The @lock ensures that the chip is protected when certain operations are * in progress. When the read or write packet transfer is in progress, most * of the chip registers are not ccessible until the transfer is finished and * the DMA has been de-asserted. * * The @statelock is used to protect information in the structure which may * need to be accessed via several sources, such as the network driver layer * or one of the work queues. * * We align the buffers we may use for rx/tx to ensure that if the SPI driver * wants to DMA map them, it will not have any problems with data the driver * modifies. */ struct ks8851_net { struct net_device *netdev; struct spi_device *spidev; struct mutex lock; spinlock_t statelock; union ks8851_tx_hdr txh ____cacheline_aligned; u8 rxd[8]; u8 txd[8]; u32 msg_enable ____cacheline_aligned; u16 tx_space; u8 fid; u16 rc_ier; u16 rc_rxqcr; u16 rc_ccr; struct mii_if_info mii; struct ks8851_rxctrl rxctrl; struct work_struct tx_work; struct work_struct rxctrl_work; struct sk_buff_head txq; struct spi_message spi_msg1; struct spi_message spi_msg2; struct spi_transfer spi_xfer1; struct spi_transfer spi_xfer2[2]; struct eeprom_93cx6 eeprom; struct regulator *vdd_reg; struct regulator *vdd_io; int gpio; }; static int msg_enable; /* shift for byte-enable data */ #define BYTE_EN(_x) ((_x) << 2) /* turn register number and byte-enable mask into data for start of packet */ #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6) /* SPI register read/write calls. * * All these calls issue SPI transactions to access the chip's registers. They * all require that the necessary lock is held to prevent accesses when the * chip is busy transferring packet data (RX/TX FIFO accesses). */ /** * ks8851_wrreg16 - write 16bit register value to chip * @ks: The chip state * @reg: The register address * @val: The value to write * * Issue a write to put the value @val into the register specified in @reg. */ static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) { struct spi_transfer *xfer = &ks->spi_xfer1; struct spi_message *msg = &ks->spi_msg1; __le16 txb[2]; int ret; txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); txb[1] = cpu_to_le16(val); xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 4; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "spi_sync() failed\n"); } /** * ks8851_wrreg8 - write 8bit register value to chip * @ks: The chip state * @reg: The register address * @val: The value to write * * Issue a write to put the value @val into the register specified in @reg. */ static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val) { struct spi_transfer *xfer = &ks->spi_xfer1; struct spi_message *msg = &ks->spi_msg1; __le16 txb[2]; int ret; int bit; bit = 1 << (reg & 3); txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR); txb[1] = val; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 3; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "spi_sync() failed\n"); } /** * ks8851_rdreg - issue read register command and return the data * @ks: The device state * @op: The register address and byte enables in message format. * @rxb: The RX buffer to return the result into * @rxl: The length of data expected. * * This is the low level read call that issues the necessary spi message(s) * to read data from the register specified in @op. */ static void ks8851_rdreg(struct ks8851_net *ks, unsigned op, u8 *rxb, unsigned rxl) { struct spi_transfer *xfer; struct spi_message *msg; __le16 *txb = (__le16 *)ks->txd; u8 *trx = ks->rxd; int ret; txb[0] = cpu_to_le16(op | KS_SPIOP_RD); if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) { msg = &ks->spi_msg2; xfer = ks->spi_xfer2; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 2; xfer++; xfer->tx_buf = NULL; xfer->rx_buf = trx; xfer->len = rxl; } else { msg = &ks->spi_msg1; xfer = &ks->spi_xfer1; xfer->tx_buf = txb; xfer->rx_buf = trx; xfer->len = rxl + 2; } ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "read: spi_sync() failed\n"); else if (ks->spidev->master->flags & SPI_MASTER_HALF_DUPLEX) memcpy(rxb, trx, rxl); else memcpy(rxb, trx + 2, rxl); } /** * ks8851_rdreg8 - read 8 bit register from device * @ks: The chip information * @reg: The register address * * Read a 8bit register from the chip, returning the result */ static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) { u8 rxb[1]; ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1); return rxb[0]; } /** * ks8851_rdreg16 - read 16 bit register from device * @ks: The chip information * @reg: The register address * * Read a 16bit register from the chip, returning the result */ static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) { __le16 rx = 0; ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); return le16_to_cpu(rx); } /** * ks8851_rdreg32 - read 32 bit register from device * @ks: The chip information * @reg: The register address * * Read a 32bit register from the chip. * * Note, this read requires the address be aligned to 4 bytes. */ static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg) { __le32 rx = 0; WARN_ON(reg & 3); ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4); return le32_to_cpu(rx); } /** * ks8851_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) { ks8851_wrreg16(ks, KS_GRR, op); mdelay(1); /* wait a short time to effect reset */ ks8851_wrreg16(ks, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } /** * ks8851_set_powermode - set power mode of the device * @ks: The device state * @pwrmode: The power mode value to write to KS_PMECR. * * Change the power mode of the chip. */ static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) { unsigned pmecr; netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks8851_wrreg16(ks, KS_PMECR, pmecr); } /** * ks8851_write_mac_addr - write mac address to device registers * @dev: The network device * * Update the KS8851 MAC address registers from the address in @dev. * * This call assumes that the chip is not running, so there is no need to * shutdown the RXQ process whilst setting this. */ static int ks8851_write_mac_addr(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); int i; mutex_lock(&ks->lock); /* * Wake up chip in case it was powered off when stopped; otherwise, * the first write to the MAC address does not take effect. */ ks8851_set_powermode(ks, PMECR_PM_NORMAL); for (i = 0; i < ETH_ALEN; i++) ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]); if (!netif_running(dev)) ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); mutex_unlock(&ks->lock); return 0; } /** * ks8851_read_mac_addr - read mac address from device registers * @dev: The network device * * Update our copy of the KS8851 MAC address from the registers of @dev. */ static void ks8851_read_mac_addr(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); int i; mutex_lock(&ks->lock); for (i = 0; i < ETH_ALEN; i++) dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i)); mutex_unlock(&ks->lock); } /** * ks8851_init_mac - initialise the mac address * @ks: The device structure * * Get or create the initial mac address for the device and then set that * into the station address register. A mac address supplied in the device * tree takes precedence. Otherwise, if there is an EEPROM present, then * we try that. If no valid mac address is found we use eth_random_addr() * to create a new one. */ static void ks8851_init_mac(struct ks8851_net *ks) { struct net_device *dev = ks->netdev; const u8 *mac_addr; mac_addr = of_get_mac_address(ks->spidev->dev.of_node); if (mac_addr) { memcpy(dev->dev_addr, mac_addr, ETH_ALEN); ks8851_write_mac_addr(dev); return; } if (ks->rc_ccr & CCR_EEPROM) { ks8851_read_mac_addr(dev); if (is_valid_ether_addr(dev->dev_addr)) return; netdev_err(ks->netdev, "invalid mac address read %pM\n", dev->dev_addr); } eth_hw_addr_random(dev); ks8851_write_mac_addr(dev); } /** * ks8851_rdfifo - read data from the receive fifo * @ks: The device state. * @buff: The buffer address * @len: The length of the data to read * * Issue an RXQ FIFO read command and read the @len amount of data from * the FIFO into the buffer specified by @buff. */ static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len) { struct spi_transfer *xfer = ks->spi_xfer2; struct spi_message *msg = &ks->spi_msg2; u8 txb[1]; int ret; netif_dbg(ks, rx_status, ks->netdev, "%s: %d@%p\n", __func__, len, buff); /* set the operation we're issuing */ txb[0] = KS_SPIOP_RXFIFO; xfer->tx_buf = txb; xfer->rx_buf = NULL; xfer->len = 1; xfer++; xfer->rx_buf = buff; xfer->tx_buf = NULL; xfer->len = len; ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); } /** * ks8851_dbg_dumpkkt - dump initial packet contents to debug * @ks: The device state * @rxpkt: The data for the received packet * * Dump the initial data from the packet to dev_dbg(). */ static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) { netdev_dbg(ks->netdev, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); } /** * ks8851_rx_pkts - receive packets from the host * @ks: The device information. * * This is called from the IRQ work queue when the system detects that there * are packets in the receive queue. Find out how many packets there are and * read them from the FIFO. */ static void ks8851_rx_pkts(struct ks8851_net *ks) { struct sk_buff *skb; unsigned rxfc; unsigned rxlen; unsigned rxstat; u32 rxh; u8 *rxpkt; rxfc = ks8851_rdreg8(ks, KS_RXFC); netif_dbg(ks, rx_status, ks->netdev, "%s: %d packets\n", __func__, rxfc); /* Currently we're issuing a read per packet, but we could possibly * improve the code by issuing a single read, getting the receive * header, allocating the packet and then reading the packet data * out in one go. * * This form of operation would require us to hold the SPI bus' * chipselect low during the entie transaction to avoid any * reset to the data stream coming from the chip. */ for (; rxfc != 0; rxfc--) { rxh = ks8851_rdreg32(ks, KS_RXFHSR); rxstat = rxh & 0xffff; rxlen = (rxh >> 16) & 0xfff; netif_dbg(ks, rx_status, ks->netdev, "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); /* the length of the packet includes the 32bit CRC */ /* set dma read address */ ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); /* start DMA access */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); if (rxlen > 4) { unsigned int rxalign; rxlen -= 4; rxalign = ALIGN(rxlen, 4); skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); if (skb) { /* 4 bytes of status header + 4 bytes of * garbage: we put them before ethernet * header, so that they are copied, * but ignored. */ rxpkt = skb_put(skb, rxlen) - 8; ks8851_rdfifo(ks, rxpkt, rxalign + 8); if (netif_msg_pktdata(ks)) ks8851_dbg_dumpkkt(ks, rxpkt); skb->protocol = eth_type_trans(skb, ks->netdev); netif_rx_ni(skb); ks->netdev->stats.rx_packets++; ks->netdev->stats.rx_bytes += rxlen; } } /* end DMA access and dequeue packet */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF); } } /** * ks8851_irq - IRQ handler for dealing with interrupt requests * @irq: IRQ number * @_ks: cookie * * This handler is invoked when the IRQ line asserts to find out what happened. * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs * in thread context. * * Read the interrupt status, work out what needs to be done and then clear * any of the interrupts that are not needed. */ static irqreturn_t ks8851_irq(int irq, void *_ks) { struct ks8851_net *ks = _ks; unsigned status; unsigned handled = 0; mutex_lock(&ks->lock); status = ks8851_rdreg16(ks, KS_ISR); netif_dbg(ks, intr, ks->netdev, "%s: status 0x%04x\n", __func__, status); if (status & IRQ_LCI) handled |= IRQ_LCI; if (status & IRQ_LDI) { u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); handled |= IRQ_LDI; } if (status & IRQ_RXPSI) handled |= IRQ_RXPSI; if (status & IRQ_TXI) { handled |= IRQ_TXI; /* no lock here, tx queue should have been stopped */ /* update our idea of how much tx space is available to the * system */ ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); netif_dbg(ks, intr, ks->netdev, "%s: txspace %d\n", __func__, ks->tx_space); } if (status & IRQ_RXI) handled |= IRQ_RXI; if (status & IRQ_SPIBEI) { dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); handled |= IRQ_SPIBEI; } ks8851_wrreg16(ks, KS_ISR, handled); if (status & IRQ_RXI) { /* the datasheet says to disable the rx interrupt during * packet read-out, however we're masking the interrupt * from the device so do not bother masking just the RX * from the device. */ ks8851_rx_pkts(ks); } /* if something stopped the rx process, probably due to wanting * to change the rx settings, then do something about restarting * it. */ if (status & IRQ_RXPSI) { struct ks8851_rxctrl *rxc = &ks->rxctrl; /* update the multicast hash table */ ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); } mutex_unlock(&ks->lock); if (status & IRQ_LCI) mii_check_link(&ks->mii); if (status & IRQ_TXI) netif_wake_queue(ks->netdev); return IRQ_HANDLED; } /** * calc_txlen - calculate size of message to send packet * @len: Length of data * * Returns the size of the TXFIFO message needed to send * this packet. */ static inline unsigned calc_txlen(unsigned len) { return ALIGN(len + 4, 4); } /** * ks8851_wrpkt - write packet to TX FIFO * @ks: The device state. * @txp: The sk_buff to transmit. * @irq: IRQ on completion of the packet. * * Send the @txp to the chip. This means creating the relevant packet header * specifying the length of the packet and the other information the chip * needs, such as IRQ on completion. Send the header and the packet data to * the device. */ static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq) { struct spi_transfer *xfer = ks->spi_xfer2; struct spi_message *msg = &ks->spi_msg2; unsigned fid = 0; int ret; netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n", __func__, txp, txp->len, txp->data, irq); fid = ks->fid++; fid &= TXFR_TXFID_MASK; if (irq) fid |= TXFR_TXIC; /* irq on completion */ /* start header at txb[1] to align txw entries */ ks->txh.txb[1] = KS_SPIOP_TXFIFO; ks->txh.txw[1] = cpu_to_le16(fid); ks->txh.txw[2] = cpu_to_le16(txp->len); xfer->tx_buf = &ks->txh.txb[1]; xfer->rx_buf = NULL; xfer->len = 5; xfer++; xfer->tx_buf = txp->data; xfer->rx_buf = NULL; xfer->len = ALIGN(txp->len, 4); ret = spi_sync(ks->spidev, msg); if (ret < 0) netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); } /** * ks8851_done_tx - update and then free skbuff after transmitting * @ks: The device state * @txb: The buffer transmitted */ static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb) { struct net_device *dev = ks->netdev; dev->stats.tx_bytes += txb->len; dev->stats.tx_packets++; dev_kfree_skb(txb); } /** * ks8851_tx_work - process tx packet(s) * @work: The work strucutre what was scheduled. * * This is called when a number of packets have been scheduled for * transmission and need to be sent to the device. */ static void ks8851_tx_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); struct sk_buff *txb; bool last = skb_queue_empty(&ks->txq); mutex_lock(&ks->lock); while (!last) { txb = skb_dequeue(&ks->txq); last = skb_queue_empty(&ks->txq); if (txb != NULL) { ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); ks8851_wrpkt(ks, txb, last); ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE); ks8851_done_tx(ks, txb); } } mutex_unlock(&ks->lock); } /** * ks8851_net_open - open network device * @dev: The network device being opened. * * Called when the network device is marked active, such as a user executing * 'ifconfig up' on the device. */ static int ks8851_net_open(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); /* lock the card, even if we may not actually be doing anything * else at the moment */ mutex_lock(&ks->lock); netif_dbg(ks, ifup, ks->netdev, "opening\n"); /* bring chip out of any power saving mode it was in */ ks8851_set_powermode(ks, PMECR_PM_NORMAL); /* issue a soft reset to the RX/TX QMU to put it into a known * state. */ ks8851_soft_reset(ks, GRR_QMU); /* setup transmission parameters */ ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ TXCR_TXPE | /* pad to min length */ TXCR_TXCRC | /* add CRC */ TXCR_TXFCE)); /* enable flow control */ /* auto-increment tx data, reset tx pointer */ ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); /* setup receiver control */ ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ RXCR1_RXFCE | /* enable flow control */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXUE | /* unicast enable */ RXCR1_RXE)); /* enable rx block */ /* transfer entire frames out in one go */ ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); /* set receive counter timeouts */ ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ RXQCR_RXDTTE); /* IRQ on time exceeded */ ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); /* clear then enable interrupts */ #define STD_IRQ (IRQ_LCI | /* Link Change */ \ IRQ_TXI | /* TX done */ \ IRQ_RXI | /* RX done */ \ IRQ_SPIBEI | /* SPI bus error */ \ IRQ_TXPSI | /* TX process stop */ \ IRQ_RXPSI) /* RX process stop */ ks->rc_ier = STD_IRQ; ks8851_wrreg16(ks, KS_ISR, STD_IRQ); ks8851_wrreg16(ks, KS_IER, STD_IRQ); netif_start_queue(ks->netdev); netif_dbg(ks, ifup, ks->netdev, "network device up\n"); mutex_unlock(&ks->lock); return 0; } /** * ks8851_net_stop - close network device * @dev: The device being closed. * * Called to close down a network device which has been active. Cancell any * work, shutdown the RX and TX process and then place the chip into a low * power state whilst it is not being used. */ static int ks8851_net_stop(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); netif_info(ks, ifdown, dev, "shutting down\n"); netif_stop_queue(dev); mutex_lock(&ks->lock); /* turn off the IRQs and ack any outstanding */ ks8851_wrreg16(ks, KS_IER, 0x0000); ks8851_wrreg16(ks, KS_ISR, 0xffff); mutex_unlock(&ks->lock); /* stop any outstanding work */ flush_work(&ks->tx_work); flush_work(&ks->rxctrl_work); mutex_lock(&ks->lock); /* shutdown RX process */ ks8851_wrreg16(ks, KS_RXCR1, 0x0000); /* shutdown TX process */ ks8851_wrreg16(ks, KS_TXCR, 0x0000); /* set powermode to soft power down to save power */ ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); mutex_unlock(&ks->lock); /* ensure any queued tx buffers are dumped */ while (!skb_queue_empty(&ks->txq)) { struct sk_buff *txb = skb_dequeue(&ks->txq); netif_dbg(ks, ifdown, ks->netdev, "%s: freeing txb %p\n", __func__, txb); dev_kfree_skb(txb); } return 0; } /** * ks8851_start_xmit - transmit packet * @skb: The buffer to transmit * @dev: The device used to transmit the packet. * * Called by the network layer to transmit the @skb. Queue the packet for * the device and schedule the necessary work to transmit the packet when * it is free. * * We do this to firstly avoid sleeping with the network device locked, * and secondly so we can round up more than one packet to transmit which * means we can try and avoid generating too many transmit done interrupts. */ static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); unsigned needed = calc_txlen(skb->len); netdev_tx_t ret = NETDEV_TX_OK; netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data); spin_lock(&ks->statelock); if (needed > ks->tx_space) { netif_stop_queue(dev); ret = NETDEV_TX_BUSY; } else { ks->tx_space -= needed; skb_queue_tail(&ks->txq, skb); } spin_unlock(&ks->statelock); schedule_work(&ks->tx_work); return ret; } /** * ks8851_rxctrl_work - work handler to change rx mode * @work: The work structure this belongs to. * * Lock the device and issue the necessary changes to the receive mode from * the network device layer. This is done so that we can do this without * having to sleep whilst holding the network device lock. * * Since the recommendation from Micrel is that the RXQ is shutdown whilst the * receive parameters are programmed, we issue a write to disable the RXQ and * then wait for the interrupt handler to be triggered once the RXQ shutdown is * complete. The interrupt handler then writes the new values into the chip. */ static void ks8851_rxctrl_work(struct work_struct *work) { struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); mutex_lock(&ks->lock); /* need to shutdown RXQ before modifying filter parameters */ ks8851_wrreg16(ks, KS_RXCR1, 0x00); mutex_unlock(&ks->lock); } static void ks8851_set_rx_mode(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); struct ks8851_rxctrl rxctrl; memset(&rxctrl, 0, sizeof(rxctrl)); if (dev->flags & IFF_PROMISC) { /* interface to receive everything */ rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; } else if (dev->flags & IFF_ALLMULTI) { /* accept all multicast packets */ rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | RXCR1_RXPAFMA | RXCR1_RXMAFMA); } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; u32 crc; /* accept some multicast */ netdev_for_each_mc_addr(ha, dev) { crc = ether_crc(ETH_ALEN, ha->addr); crc >>= (32 - 6); /* get top six bits */ rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); } rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; } else { /* just accept broadcast / unicast */ rxctrl.rxcr1 = RXCR1_RXPAFMA; } rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ RXCR1_RXBE | /* broadcast enable */ RXCR1_RXE | /* RX process enable */ RXCR1_RXFCE); /* enable flow control */ rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; /* schedule work to do the actual set of the data if needed */ spin_lock(&ks->statelock); if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); schedule_work(&ks->rxctrl_work); } spin_unlock(&ks->statelock); } static int ks8851_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sa = addr; if (netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(sa->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); return ks8851_write_mac_addr(dev); } static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct ks8851_net *ks = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); } static const struct net_device_ops ks8851_netdev_ops = { .ndo_open = ks8851_net_open, .ndo_stop = ks8851_net_stop, .ndo_do_ioctl = ks8851_net_ioctl, .ndo_start_xmit = ks8851_start_xmit, .ndo_set_mac_address = ks8851_set_mac_address, .ndo_set_rx_mode = ks8851_set_rx_mode, .ndo_validate_addr = eth_validate_addr, }; /* ethtool support */ static void ks8851_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *di) { strlcpy(di->driver, "KS8851", sizeof(di->driver)); strlcpy(di->version, "1.00", sizeof(di->version)); strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); } static u32 ks8851_get_msglevel(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return ks->msg_enable; } static void ks8851_set_msglevel(struct net_device *dev, u32 to) { struct ks8851_net *ks = netdev_priv(dev); ks->msg_enable = to; } static int ks8851_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ks8851_net *ks = netdev_priv(dev); mii_ethtool_get_link_ksettings(&ks->mii, cmd); return 0; } static int ks8851_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ks8851_net *ks = netdev_priv(dev); return mii_ethtool_set_link_ksettings(&ks->mii, cmd); } static u32 ks8851_get_link(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_link_ok(&ks->mii); } static int ks8851_nway_reset(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); return mii_nway_restart(&ks->mii); } /* EEPROM support */ static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee) { struct ks8851_net *ks = ee->data; unsigned val; val = ks8851_rdreg16(ks, KS_EEPCR); ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0; ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0; ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0; } static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) { struct ks8851_net *ks = ee->data; unsigned val = EEPCR_EESA; /* default - eeprom access on */ if (ee->drive_data) val |= EEPCR_EESRWA; if (ee->reg_data_in) val |= EEPCR_EEDO; if (ee->reg_data_clock) val |= EEPCR_EESCK; if (ee->reg_chip_select) val |= EEPCR_EECS; ks8851_wrreg16(ks, KS_EEPCR, val); } /** * ks8851_eeprom_claim - claim device EEPROM and activate the interface * @ks: The network device state. * * Check for the presence of an EEPROM, and then activate software access * to the device. */ static int ks8851_eeprom_claim(struct ks8851_net *ks) { if (!(ks->rc_ccr & CCR_EEPROM)) return -ENOENT; mutex_lock(&ks->lock); /* start with clock low, cs high */ ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); return 0; } /** * ks8851_eeprom_release - release the EEPROM interface * @ks: The device state * * Release the software access to the device EEPROM */ static void ks8851_eeprom_release(struct ks8851_net *ks) { unsigned val = ks8851_rdreg16(ks, KS_EEPCR); ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); mutex_unlock(&ks->lock); } #define KS_EEPROM_MAGIC (0x00008851) static int ks8851_set_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct ks8851_net *ks = netdev_priv(dev); int offset = ee->offset; int len = ee->len; u16 tmp; /* currently only support byte writing */ if (len != 1) return -EINVAL; if (ee->magic != KS_EEPROM_MAGIC) return -EINVAL; if (ks8851_eeprom_claim(ks)) return -ENOENT; eeprom_93cx6_wren(&ks->eeprom, true); /* ethtool currently only supports writing bytes, which means * we have to read/modify/write our 16bit EEPROMs */ eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp); if (offset & 1) { tmp &= 0xff; tmp |= *data << 8; } else { tmp &= 0xff00; tmp |= *data; } eeprom_93cx6_write(&ks->eeprom, offset/2, tmp); eeprom_93cx6_wren(&ks->eeprom, false); ks8851_eeprom_release(ks); return 0; } static int ks8851_get_eeprom(struct net_device *dev, struct ethtool_eeprom *ee, u8 *data) { struct ks8851_net *ks = netdev_priv(dev); int offset = ee->offset; int len = ee->len; /* must be 2 byte aligned */ if (len & 1 || offset & 1) return -EINVAL; if (ks8851_eeprom_claim(ks)) return -ENOENT; ee->magic = KS_EEPROM_MAGIC; eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); ks8851_eeprom_release(ks); return 0; } static int ks8851_get_eeprom_len(struct net_device *dev) { struct ks8851_net *ks = netdev_priv(dev); /* currently, we assume it is an 93C46 attached, so return 128 */ return ks->rc_ccr & CCR_EEPROM ? 128 : 0; } static const struct ethtool_ops ks8851_ethtool_ops = { .get_drvinfo = ks8851_get_drvinfo, .get_msglevel = ks8851_get_msglevel, .set_msglevel = ks8851_set_msglevel, .get_link = ks8851_get_link, .nway_reset = ks8851_nway_reset, .get_eeprom_len = ks8851_get_eeprom_len, .get_eeprom = ks8851_get_eeprom, .set_eeprom = ks8851_set_eeprom, .get_link_ksettings = ks8851_get_link_ksettings, .set_link_ksettings = ks8851_set_link_ksettings, }; /* MII interface controls */ /** * ks8851_phy_reg - convert MII register into a KS8851 register * @reg: MII register number. * * Return the KS8851 register number for the corresponding MII PHY register * if possible. Return zero if the MII register has no direct mapping to the * KS8851 register set. */ static int ks8851_phy_reg(int reg) { switch (reg) { case MII_BMCR: return KS_P1MBCR; case MII_BMSR: return KS_P1MBSR; case MII_PHYSID1: return KS_PHY1ILR; case MII_PHYSID2: return KS_PHY1IHR; case MII_ADVERTISE: return KS_P1ANAR; case MII_LPA: return KS_P1ANLPR; } return 0x0; } /** * ks8851_phy_read - MII interface PHY register read. * @dev: The network device the PHY is on. * @phy_addr: Address of PHY (ignored as we only have one) * @reg: The register to read. * * This call reads data from the PHY register specified in @reg. Since the * device does not support all the MII registers, the non-existent values * are always returned as zero. * * We return zero for unsupported registers as the MII code does not check * the value returned for any error status, and simply returns it to the * caller. The mii-tool that the driver was tested with takes any -ve error * as real PHY capabilities, thus displaying incorrect data to the user. */ static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) { struct ks8851_net *ks = netdev_priv(dev); int ksreg; int result; ksreg = ks8851_phy_reg(reg); if (!ksreg) return 0x0; /* no error return allowed, so use zero */ mutex_lock(&ks->lock); result = ks8851_rdreg16(ks, ksreg); mutex_unlock(&ks->lock); return result; } static void ks8851_phy_write(struct net_device *dev, int phy, int reg, int value) { struct ks8851_net *ks = netdev_priv(dev); int ksreg; ksreg = ks8851_phy_reg(reg); if (ksreg) { mutex_lock(&ks->lock); ks8851_wrreg16(ks, ksreg, value); mutex_unlock(&ks->lock); } } /** * ks8851_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static int ks8851_read_selftest(struct ks8851_net *ks) { unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; int ret = 0; unsigned rd; rd = ks8851_rdreg16(ks, KS_MBIR); if ((rd & both_done) != both_done) { netdev_warn(ks->netdev, "Memory selftest not finished\n"); return 0; } if (rd & MBIR_TXMBFA) { netdev_err(ks->netdev, "TX memory selftest fail\n"); ret |= 1; } if (rd & MBIR_RXMBFA) { netdev_err(ks->netdev, "RX memory selftest fail\n"); ret |= 2; } return 0; } /* driver bus management functions */ #ifdef CONFIG_PM_SLEEP static int ks8851_suspend(struct device *dev) { struct ks8851_net *ks = dev_get_drvdata(dev); struct net_device *netdev = ks->netdev; if (netif_running(netdev)) { netif_device_detach(netdev); ks8851_net_stop(netdev); } return 0; } static int ks8851_resume(struct device *dev) { struct ks8851_net *ks = dev_get_drvdata(dev); struct net_device *netdev = ks->netdev; if (netif_running(netdev)) { ks8851_net_open(netdev); netif_device_attach(netdev); } return 0; } #endif static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume); static int ks8851_probe(struct spi_device *spi) { struct net_device *ndev; struct ks8851_net *ks; int ret; unsigned cider; int gpio; ndev = alloc_etherdev(sizeof(struct ks8851_net)); if (!ndev) return -ENOMEM; spi->bits_per_word = 8; ks = netdev_priv(ndev); ks->netdev = ndev; ks->spidev = spi; ks->tx_space = 6144; gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios", 0, NULL); if (gpio == -EPROBE_DEFER) { ret = gpio; goto err_gpio; } ks->gpio = gpio; if (gpio_is_valid(gpio)) { ret = devm_gpio_request_one(&spi->dev, gpio, GPIOF_OUT_INIT_LOW, "ks8851_rst_n"); if (ret) { dev_err(&spi->dev, "reset gpio request failed\n"); goto err_gpio; } } ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io"); if (IS_ERR(ks->vdd_io)) { ret = PTR_ERR(ks->vdd_io); goto err_reg_io; } ret = regulator_enable(ks->vdd_io); if (ret) { dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n", ret); goto err_reg_io; } ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd"); if (IS_ERR(ks->vdd_reg)) { ret = PTR_ERR(ks->vdd_reg); goto err_reg; } ret = regulator_enable(ks->vdd_reg); if (ret) { dev_err(&spi->dev, "regulator vdd enable fail: %d\n", ret); goto err_reg; } if (gpio_is_valid(gpio)) { usleep_range(10000, 11000); gpio_set_value(gpio, 1); } mutex_init(&ks->lock); spin_lock_init(&ks->statelock); INIT_WORK(&ks->tx_work, ks8851_tx_work); INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); /* initialise pre-made spi transfer messages */ spi_message_init(&ks->spi_msg1); spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1); spi_message_init(&ks->spi_msg2); spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2); spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2); /* setup EEPROM state */ ks->eeprom.data = ks; ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; ks->eeprom.register_read = ks8851_eeprom_regread; ks->eeprom.register_write = ks8851_eeprom_regwrite; /* setup mii state */ ks->mii.dev = ndev; ks->mii.phy_id = 1, ks->mii.phy_id_mask = 1; ks->mii.reg_num_mask = 0xf; ks->mii.mdio_read = ks8851_phy_read; ks->mii.mdio_write = ks8851_phy_write; dev_info(&spi->dev, "message enable is %d\n", msg_enable); /* set the default message enable */ ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)); skb_queue_head_init(&ks->txq); ndev->ethtool_ops = &ks8851_ethtool_ops; SET_NETDEV_DEV(ndev, &spi->dev); spi_set_drvdata(spi, ks); ndev->if_port = IF_PORT_100BASET; ndev->netdev_ops = &ks8851_netdev_ops; ndev->irq = spi->irq; /* issue a global soft reset to reset the device. */ ks8851_soft_reset(ks, GRR_GSR); /* simple check for a valid chip being connected to the bus */ cider = ks8851_rdreg16(ks, KS_CIDER); if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { dev_err(&spi->dev, "failed to read device ID\n"); ret = -ENODEV; goto err_id; } /* cache the contents of the CCR register for EEPROM, etc. */ ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); ks8851_read_selftest(ks); ks8851_init_mac(ks); ret = request_threaded_irq(spi->irq, NULL, ks8851_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, ndev->name, ks); if (ret < 0) { dev_err(&spi->dev, "failed to get irq\n"); goto err_irq; } ret = register_netdev(ndev); if (ret) { dev_err(&spi->dev, "failed to register network device\n"); goto err_netdev; } netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq, ks->rc_ccr & CCR_EEPROM ? "has" : "no"); return 0; err_netdev: free_irq(ndev->irq, ks); err_irq: if (gpio_is_valid(gpio)) gpio_set_value(gpio, 0); err_id: regulator_disable(ks->vdd_reg); err_reg: regulator_disable(ks->vdd_io); err_reg_io: err_gpio: free_netdev(ndev); return ret; } static int ks8851_remove(struct spi_device *spi) { struct ks8851_net *priv = spi_get_drvdata(spi); if (netif_msg_drv(priv)) dev_info(&spi->dev, "remove\n"); unregister_netdev(priv->netdev); free_irq(spi->irq, priv); if (gpio_is_valid(priv->gpio)) gpio_set_value(priv->gpio, 0); regulator_disable(priv->vdd_reg); regulator_disable(priv->vdd_io); free_netdev(priv->netdev); return 0; } static const struct of_device_id ks8851_match_table[] = { { .compatible = "micrel,ks8851" }, { } }; MODULE_DEVICE_TABLE(of, ks8851_match_table); static struct spi_driver ks8851_driver = { .driver = { .name = "ks8851", .of_match_table = ks8851_match_table, .pm = &ks8851_pm_ops, }, .probe = ks8851_probe, .remove = ks8851_remove, }; module_spi_driver(ks8851_driver); MODULE_DESCRIPTION("KS8851 Network driver"); MODULE_AUTHOR("Ben Dooks "); MODULE_LICENSE("GPL"); module_param_named(message, msg_enable, int, 0); MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); MODULE_ALIAS("spi:ks8851");