// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* * Microsemi SoCs FDMA driver * * Copyright (c) 2021 Microchip * * Page recycling code is mostly taken from gianfar driver. */ #include #include #include #include #include #include #include #include "ocelot_fdma.h" #include "ocelot_qs.h" DEFINE_STATIC_KEY_FALSE(ocelot_fdma_enabled); static void ocelot_fdma_writel(struct ocelot *ocelot, u32 reg, u32 data) { regmap_write(ocelot->targets[FDMA], reg, data); } static u32 ocelot_fdma_readl(struct ocelot *ocelot, u32 reg) { u32 retval; regmap_read(ocelot->targets[FDMA], reg, &retval); return retval; } static dma_addr_t ocelot_fdma_idx_dma(dma_addr_t base, u16 idx) { return base + idx * sizeof(struct ocelot_fdma_dcb); } static u16 ocelot_fdma_dma_idx(dma_addr_t base, dma_addr_t dma) { return (dma - base) / sizeof(struct ocelot_fdma_dcb); } static u16 ocelot_fdma_idx_next(u16 idx, u16 ring_sz) { return unlikely(idx == ring_sz - 1) ? 0 : idx + 1; } static u16 ocelot_fdma_idx_prev(u16 idx, u16 ring_sz) { return unlikely(idx == 0) ? ring_sz - 1 : idx - 1; } static int ocelot_fdma_rx_ring_free(struct ocelot_fdma *fdma) { struct ocelot_fdma_rx_ring *rx_ring = &fdma->rx_ring; if (rx_ring->next_to_use >= rx_ring->next_to_clean) return OCELOT_FDMA_RX_RING_SIZE - (rx_ring->next_to_use - rx_ring->next_to_clean) - 1; else return rx_ring->next_to_clean - rx_ring->next_to_use - 1; } static int ocelot_fdma_tx_ring_free(struct ocelot_fdma *fdma) { struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring; if (tx_ring->next_to_use >= tx_ring->next_to_clean) return OCELOT_FDMA_TX_RING_SIZE - (tx_ring->next_to_use - tx_ring->next_to_clean) - 1; else return tx_ring->next_to_clean - tx_ring->next_to_use - 1; } static bool ocelot_fdma_tx_ring_empty(struct ocelot_fdma *fdma) { struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring; return tx_ring->next_to_clean == tx_ring->next_to_use; } static void ocelot_fdma_activate_chan(struct ocelot *ocelot, dma_addr_t dma, int chan) { ocelot_fdma_writel(ocelot, MSCC_FDMA_DCB_LLP(chan), dma); /* Barrier to force memory writes to DCB to be completed before starting * the channel. */ wmb(); ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_ACTIVATE, BIT(chan)); } static u32 ocelot_fdma_read_ch_safe(struct ocelot *ocelot) { return ocelot_fdma_readl(ocelot, MSCC_FDMA_CH_SAFE); } static int ocelot_fdma_wait_chan_safe(struct ocelot *ocelot, int chan) { u32 safe; return readx_poll_timeout_atomic(ocelot_fdma_read_ch_safe, ocelot, safe, safe & BIT(chan), 0, OCELOT_FDMA_CH_SAFE_TIMEOUT_US); } static void ocelot_fdma_dcb_set_data(struct ocelot_fdma_dcb *dcb, dma_addr_t dma_addr, size_t size) { u32 offset = dma_addr & 0x3; dcb->llp = 0; dcb->datap = ALIGN_DOWN(dma_addr, 4); dcb->datal = ALIGN_DOWN(size, 4); dcb->stat = MSCC_FDMA_DCB_STAT_BLOCKO(offset); } static bool ocelot_fdma_rx_alloc_page(struct ocelot *ocelot, struct ocelot_fdma_rx_buf *rxb) { dma_addr_t mapping; struct page *page; page = dev_alloc_page(); if (unlikely(!page)) return false; mapping = dma_map_page(ocelot->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ocelot->dev, mapping))) { __free_page(page); return false; } rxb->page = page; rxb->page_offset = 0; rxb->dma_addr = mapping; return true; } static int ocelot_fdma_alloc_rx_buffs(struct ocelot *ocelot, u16 alloc_cnt) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_rx_ring *rx_ring; struct ocelot_fdma_rx_buf *rxb; struct ocelot_fdma_dcb *dcb; dma_addr_t dma_addr; int ret = 0; u16 idx; rx_ring = &fdma->rx_ring; idx = rx_ring->next_to_use; while (alloc_cnt--) { rxb = &rx_ring->bufs[idx]; /* try reuse page */ if (unlikely(!rxb->page)) { if (unlikely(!ocelot_fdma_rx_alloc_page(ocelot, rxb))) { dev_err_ratelimited(ocelot->dev, "Failed to allocate rx\n"); ret = -ENOMEM; break; } } dcb = &rx_ring->dcbs[idx]; dma_addr = rxb->dma_addr + rxb->page_offset; ocelot_fdma_dcb_set_data(dcb, dma_addr, OCELOT_FDMA_RXB_SIZE); idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE); /* Chain the DCB to the next one */ dcb->llp = ocelot_fdma_idx_dma(rx_ring->dcbs_dma, idx); } rx_ring->next_to_use = idx; rx_ring->next_to_alloc = idx; return ret; } static bool ocelot_fdma_tx_dcb_set_skb(struct ocelot *ocelot, struct ocelot_fdma_tx_buf *tx_buf, struct ocelot_fdma_dcb *dcb, struct sk_buff *skb) { dma_addr_t mapping; mapping = dma_map_single(ocelot->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(ocelot->dev, mapping))) return false; dma_unmap_addr_set(tx_buf, dma_addr, mapping); ocelot_fdma_dcb_set_data(dcb, mapping, OCELOT_FDMA_RX_SIZE); tx_buf->skb = skb; dcb->stat |= MSCC_FDMA_DCB_STAT_BLOCKL(skb->len); dcb->stat |= MSCC_FDMA_DCB_STAT_SOF | MSCC_FDMA_DCB_STAT_EOF; return true; } static bool ocelot_fdma_check_stop_rx(struct ocelot *ocelot) { u32 llp; /* Check if the FDMA hits the DCB with LLP == NULL */ llp = ocelot_fdma_readl(ocelot, MSCC_FDMA_DCB_LLP(MSCC_FDMA_XTR_CHAN)); if (unlikely(llp)) return false; ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_DISABLE, BIT(MSCC_FDMA_XTR_CHAN)); return true; } static void ocelot_fdma_rx_set_llp(struct ocelot_fdma_rx_ring *rx_ring) { struct ocelot_fdma_dcb *dcb; unsigned int idx; idx = ocelot_fdma_idx_prev(rx_ring->next_to_use, OCELOT_FDMA_RX_RING_SIZE); dcb = &rx_ring->dcbs[idx]; dcb->llp = 0; } static void ocelot_fdma_rx_restart(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_rx_ring *rx_ring; const u8 chan = MSCC_FDMA_XTR_CHAN; dma_addr_t new_llp, dma_base; unsigned int idx; u32 llp_prev; int ret; rx_ring = &fdma->rx_ring; ret = ocelot_fdma_wait_chan_safe(ocelot, chan); if (ret) { dev_err_ratelimited(ocelot->dev, "Unable to stop RX channel\n"); return; } ocelot_fdma_rx_set_llp(rx_ring); /* FDMA stopped on the last DCB that contained a NULL LLP, since * we processed some DCBs in RX, there is free space, and we must set * DCB_LLP to point to the next DCB */ llp_prev = ocelot_fdma_readl(ocelot, MSCC_FDMA_DCB_LLP_PREV(chan)); dma_base = rx_ring->dcbs_dma; /* Get the next DMA addr located after LLP == NULL DCB */ idx = ocelot_fdma_dma_idx(dma_base, llp_prev); idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE); new_llp = ocelot_fdma_idx_dma(dma_base, idx); /* Finally reactivate the channel */ ocelot_fdma_activate_chan(ocelot, new_llp, chan); } static bool ocelot_fdma_add_rx_frag(struct ocelot_fdma_rx_buf *rxb, u32 stat, struct sk_buff *skb, bool first) { int size = MSCC_FDMA_DCB_STAT_BLOCKL(stat); struct page *page = rxb->page; if (likely(first)) { skb_put(skb, size); } else { skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, rxb->page_offset, size, OCELOT_FDMA_RX_SIZE); } /* Try to reuse page */ if (unlikely(page_ref_count(page) != 1 || page_is_pfmemalloc(page))) return false; /* Change offset to the other half */ rxb->page_offset ^= OCELOT_FDMA_RX_SIZE; page_ref_inc(page); return true; } static void ocelot_fdma_reuse_rx_page(struct ocelot *ocelot, struct ocelot_fdma_rx_buf *old_rxb) { struct ocelot_fdma_rx_ring *rx_ring = &ocelot->fdma->rx_ring; struct ocelot_fdma_rx_buf *new_rxb; new_rxb = &rx_ring->bufs[rx_ring->next_to_alloc]; rx_ring->next_to_alloc = ocelot_fdma_idx_next(rx_ring->next_to_alloc, OCELOT_FDMA_RX_RING_SIZE); /* Copy page reference */ *new_rxb = *old_rxb; /* Sync for use by the device */ dma_sync_single_range_for_device(ocelot->dev, old_rxb->dma_addr, old_rxb->page_offset, OCELOT_FDMA_RX_SIZE, DMA_FROM_DEVICE); } static struct sk_buff *ocelot_fdma_get_skb(struct ocelot *ocelot, u32 stat, struct ocelot_fdma_rx_buf *rxb, struct sk_buff *skb) { bool first = false; /* Allocate skb head and data */ if (likely(!skb)) { void *buff_addr = page_address(rxb->page) + rxb->page_offset; skb = build_skb(buff_addr, OCELOT_FDMA_SKBFRAG_SIZE); if (unlikely(!skb)) { dev_err_ratelimited(ocelot->dev, "build_skb failed !\n"); return NULL; } first = true; } dma_sync_single_range_for_cpu(ocelot->dev, rxb->dma_addr, rxb->page_offset, OCELOT_FDMA_RX_SIZE, DMA_FROM_DEVICE); if (ocelot_fdma_add_rx_frag(rxb, stat, skb, first)) { /* Reuse the free half of the page for the next_to_alloc DCB*/ ocelot_fdma_reuse_rx_page(ocelot, rxb); } else { /* page cannot be reused, unmap it */ dma_unmap_page(ocelot->dev, rxb->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); } /* clear rx buff content */ rxb->page = NULL; return skb; } static bool ocelot_fdma_receive_skb(struct ocelot *ocelot, struct sk_buff *skb) { struct net_device *ndev; void *xfh = skb->data; u64 timestamp; u64 src_port; skb_pull(skb, OCELOT_TAG_LEN); ocelot_xfh_get_src_port(xfh, &src_port); if (unlikely(src_port >= ocelot->num_phys_ports)) return false; ndev = ocelot_port_to_netdev(ocelot, src_port); if (unlikely(!ndev)) return false; pskb_trim(skb, skb->len - ETH_FCS_LEN); skb->dev = ndev; skb->protocol = eth_type_trans(skb, skb->dev); skb->dev->stats.rx_bytes += skb->len; skb->dev->stats.rx_packets++; if (ocelot->ptp) { ocelot_xfh_get_rew_val(xfh, ×tamp); ocelot_ptp_rx_timestamp(ocelot, skb, timestamp); } if (likely(!skb_defer_rx_timestamp(skb))) netif_receive_skb(skb); return true; } static int ocelot_fdma_rx_get(struct ocelot *ocelot, int budget) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_rx_ring *rx_ring; struct ocelot_fdma_rx_buf *rxb; struct ocelot_fdma_dcb *dcb; struct sk_buff *skb; int work_done = 0; int cleaned_cnt; u32 stat; u16 idx; cleaned_cnt = ocelot_fdma_rx_ring_free(fdma); rx_ring = &fdma->rx_ring; skb = rx_ring->skb; while (budget--) { idx = rx_ring->next_to_clean; dcb = &rx_ring->dcbs[idx]; stat = dcb->stat; if (MSCC_FDMA_DCB_STAT_BLOCKL(stat) == 0) break; /* New packet is a start of frame but we already got a skb set, * we probably lost an EOF packet, free skb */ if (unlikely(skb && (stat & MSCC_FDMA_DCB_STAT_SOF))) { dev_kfree_skb(skb); skb = NULL; } rxb = &rx_ring->bufs[idx]; /* Fetch next to clean buffer from the rx_ring */ skb = ocelot_fdma_get_skb(ocelot, stat, rxb, skb); if (unlikely(!skb)) break; work_done++; cleaned_cnt++; idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE); rx_ring->next_to_clean = idx; if (unlikely(stat & MSCC_FDMA_DCB_STAT_ABORT || stat & MSCC_FDMA_DCB_STAT_PD)) { dev_err_ratelimited(ocelot->dev, "DCB aborted or pruned\n"); dev_kfree_skb(skb); skb = NULL; continue; } /* We still need to process the other fragment of the packet * before delivering it to the network stack */ if (!(stat & MSCC_FDMA_DCB_STAT_EOF)) continue; if (unlikely(!ocelot_fdma_receive_skb(ocelot, skb))) dev_kfree_skb(skb); skb = NULL; } rx_ring->skb = skb; if (cleaned_cnt) ocelot_fdma_alloc_rx_buffs(ocelot, cleaned_cnt); return work_done; } static void ocelot_fdma_wakeup_netdev(struct ocelot *ocelot) { struct ocelot_port_private *priv; struct ocelot_port *ocelot_port; struct net_device *dev; int port; for (port = 0; port < ocelot->num_phys_ports; port++) { ocelot_port = ocelot->ports[port]; if (!ocelot_port) continue; priv = container_of(ocelot_port, struct ocelot_port_private, port); dev = priv->dev; if (unlikely(netif_queue_stopped(dev))) netif_wake_queue(dev); } } static void ocelot_fdma_tx_cleanup(struct ocelot *ocelot, int budget) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_tx_ring *tx_ring; struct ocelot_fdma_tx_buf *buf; unsigned int new_null_llp_idx; struct ocelot_fdma_dcb *dcb; bool end_of_list = false; struct sk_buff *skb; dma_addr_t dma; u32 dcb_llp; u16 ntc; int ret; tx_ring = &fdma->tx_ring; /* Purge the TX packets that have been sent up to the NULL llp or the * end of done list. */ while (!ocelot_fdma_tx_ring_empty(fdma)) { ntc = tx_ring->next_to_clean; dcb = &tx_ring->dcbs[ntc]; if (!(dcb->stat & MSCC_FDMA_DCB_STAT_PD)) break; buf = &tx_ring->bufs[ntc]; skb = buf->skb; dma_unmap_single(ocelot->dev, dma_unmap_addr(buf, dma_addr), skb->len, DMA_TO_DEVICE); napi_consume_skb(skb, budget); dcb_llp = dcb->llp; /* Only update after accessing all dcb fields */ tx_ring->next_to_clean = ocelot_fdma_idx_next(ntc, OCELOT_FDMA_TX_RING_SIZE); /* If we hit the NULL LLP, stop, we might need to reload FDMA */ if (dcb_llp == 0) { end_of_list = true; break; } } /* No need to try to wake if there were no TX cleaned_cnt up. */ if (ocelot_fdma_tx_ring_free(fdma)) ocelot_fdma_wakeup_netdev(ocelot); /* If there is still some DCBs to be processed by the FDMA or if the * pending list is empty, there is no need to restart the FDMA. */ if (!end_of_list || ocelot_fdma_tx_ring_empty(fdma)) return; ret = ocelot_fdma_wait_chan_safe(ocelot, MSCC_FDMA_INJ_CHAN); if (ret) { dev_warn(ocelot->dev, "Failed to wait for TX channel to stop\n"); return; } /* Set NULL LLP to be the last DCB used */ new_null_llp_idx = ocelot_fdma_idx_prev(tx_ring->next_to_use, OCELOT_FDMA_TX_RING_SIZE); dcb = &tx_ring->dcbs[new_null_llp_idx]; dcb->llp = 0; dma = ocelot_fdma_idx_dma(tx_ring->dcbs_dma, tx_ring->next_to_clean); ocelot_fdma_activate_chan(ocelot, dma, MSCC_FDMA_INJ_CHAN); } static int ocelot_fdma_napi_poll(struct napi_struct *napi, int budget) { struct ocelot_fdma *fdma = container_of(napi, struct ocelot_fdma, napi); struct ocelot *ocelot = fdma->ocelot; int work_done = 0; bool rx_stopped; ocelot_fdma_tx_cleanup(ocelot, budget); rx_stopped = ocelot_fdma_check_stop_rx(ocelot); work_done = ocelot_fdma_rx_get(ocelot, budget); if (rx_stopped) ocelot_fdma_rx_restart(ocelot); if (work_done < budget) { napi_complete_done(&fdma->napi, work_done); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, BIT(MSCC_FDMA_INJ_CHAN) | BIT(MSCC_FDMA_XTR_CHAN)); } return work_done; } static irqreturn_t ocelot_fdma_interrupt(int irq, void *dev_id) { u32 ident, llp, frm, err, err_code; struct ocelot *ocelot = dev_id; ident = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_IDENT); frm = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_FRM); llp = ocelot_fdma_readl(ocelot, MSCC_FDMA_INTR_LLP); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP, llp & ident); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM, frm & ident); if (frm || llp) { ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0); napi_schedule(&ocelot->fdma->napi); } err = ocelot_fdma_readl(ocelot, MSCC_FDMA_EVT_ERR); if (unlikely(err)) { err_code = ocelot_fdma_readl(ocelot, MSCC_FDMA_EVT_ERR_CODE); dev_err_ratelimited(ocelot->dev, "Error ! chans mask: %#x, code: %#x\n", err, err_code); ocelot_fdma_writel(ocelot, MSCC_FDMA_EVT_ERR, err); ocelot_fdma_writel(ocelot, MSCC_FDMA_EVT_ERR_CODE, err_code); } return IRQ_HANDLED; } static void ocelot_fdma_send_skb(struct ocelot *ocelot, struct ocelot_fdma *fdma, struct sk_buff *skb) { struct ocelot_fdma_tx_ring *tx_ring = &fdma->tx_ring; struct ocelot_fdma_tx_buf *tx_buf; struct ocelot_fdma_dcb *dcb; dma_addr_t dma; u16 next_idx; dcb = &tx_ring->dcbs[tx_ring->next_to_use]; tx_buf = &tx_ring->bufs[tx_ring->next_to_use]; if (!ocelot_fdma_tx_dcb_set_skb(ocelot, tx_buf, dcb, skb)) { dev_kfree_skb_any(skb); return; } next_idx = ocelot_fdma_idx_next(tx_ring->next_to_use, OCELOT_FDMA_TX_RING_SIZE); skb_tx_timestamp(skb); /* If the FDMA TX chan is empty, then enqueue the DCB directly */ if (ocelot_fdma_tx_ring_empty(fdma)) { dma = ocelot_fdma_idx_dma(tx_ring->dcbs_dma, tx_ring->next_to_use); ocelot_fdma_activate_chan(ocelot, dma, MSCC_FDMA_INJ_CHAN); } else { /* Chain the DCBs */ dcb->llp = ocelot_fdma_idx_dma(tx_ring->dcbs_dma, next_idx); } tx_ring->next_to_use = next_idx; } static int ocelot_fdma_prepare_skb(struct ocelot *ocelot, int port, u32 rew_op, struct sk_buff *skb, struct net_device *dev) { int needed_headroom = max_t(int, OCELOT_TAG_LEN - skb_headroom(skb), 0); int needed_tailroom = max_t(int, ETH_FCS_LEN - skb_tailroom(skb), 0); void *ifh; int err; if (unlikely(needed_headroom || needed_tailroom || skb_header_cloned(skb))) { err = pskb_expand_head(skb, needed_headroom, needed_tailroom, GFP_ATOMIC); if (unlikely(err)) { dev_kfree_skb_any(skb); return 1; } } err = skb_linearize(skb); if (err) { net_err_ratelimited("%s: skb_linearize error (%d)!\n", dev->name, err); dev_kfree_skb_any(skb); return 1; } ifh = skb_push(skb, OCELOT_TAG_LEN); skb_put(skb, ETH_FCS_LEN); memset(ifh, 0, OCELOT_TAG_LEN); ocelot_ifh_port_set(ifh, port, rew_op, skb_vlan_tag_get(skb)); return 0; } int ocelot_fdma_inject_frame(struct ocelot *ocelot, int port, u32 rew_op, struct sk_buff *skb, struct net_device *dev) { struct ocelot_fdma *fdma = ocelot->fdma; int ret = NETDEV_TX_OK; spin_lock(&fdma->tx_ring.xmit_lock); if (ocelot_fdma_tx_ring_free(fdma) == 0) { netif_stop_queue(dev); ret = NETDEV_TX_BUSY; goto out; } if (ocelot_fdma_prepare_skb(ocelot, port, rew_op, skb, dev)) goto out; ocelot_fdma_send_skb(ocelot, fdma, skb); out: spin_unlock(&fdma->tx_ring.xmit_lock); return ret; } static void ocelot_fdma_free_rx_ring(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_rx_ring *rx_ring; struct ocelot_fdma_rx_buf *rxb; u16 idx; rx_ring = &fdma->rx_ring; idx = rx_ring->next_to_clean; /* Free the pages held in the RX ring */ while (idx != rx_ring->next_to_use) { rxb = &rx_ring->bufs[idx]; dma_unmap_page(ocelot->dev, rxb->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(rxb->page); idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_RX_RING_SIZE); } if (fdma->rx_ring.skb) dev_kfree_skb_any(fdma->rx_ring.skb); } static void ocelot_fdma_free_tx_ring(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_tx_ring *tx_ring; struct ocelot_fdma_tx_buf *txb; struct sk_buff *skb; u16 idx; tx_ring = &fdma->tx_ring; idx = tx_ring->next_to_clean; while (idx != tx_ring->next_to_use) { txb = &tx_ring->bufs[idx]; skb = txb->skb; dma_unmap_single(ocelot->dev, dma_unmap_addr(txb, dma_addr), skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); idx = ocelot_fdma_idx_next(idx, OCELOT_FDMA_TX_RING_SIZE); } } static int ocelot_fdma_rings_alloc(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; struct ocelot_fdma_dcb *dcbs; unsigned int adjust; dma_addr_t dcbs_dma; int ret; /* Create a pool of consistent memory blocks for hardware descriptors */ fdma->dcbs_base = dmam_alloc_coherent(ocelot->dev, OCELOT_DCBS_HW_ALLOC_SIZE, &fdma->dcbs_dma_base, GFP_KERNEL); if (!fdma->dcbs_base) return -ENOMEM; /* DCBs must be aligned on a 32bit boundary */ dcbs = fdma->dcbs_base; dcbs_dma = fdma->dcbs_dma_base; if (!IS_ALIGNED(dcbs_dma, 4)) { adjust = dcbs_dma & 0x3; dcbs_dma = ALIGN(dcbs_dma, 4); dcbs = (void *)dcbs + adjust; } /* TX queue */ fdma->tx_ring.dcbs = dcbs; fdma->tx_ring.dcbs_dma = dcbs_dma; spin_lock_init(&fdma->tx_ring.xmit_lock); /* RX queue */ fdma->rx_ring.dcbs = dcbs + OCELOT_FDMA_TX_RING_SIZE; fdma->rx_ring.dcbs_dma = dcbs_dma + OCELOT_FDMA_TX_DCB_SIZE; ret = ocelot_fdma_alloc_rx_buffs(ocelot, ocelot_fdma_tx_ring_free(fdma)); if (ret) { ocelot_fdma_free_rx_ring(ocelot); return ret; } /* Set the last DCB LLP as NULL, this is normally done when restarting * the RX chan, but this is for the first run */ ocelot_fdma_rx_set_llp(&fdma->rx_ring); return 0; } void ocelot_fdma_netdev_init(struct ocelot *ocelot, struct net_device *dev) { struct ocelot_fdma *fdma = ocelot->fdma; dev->needed_headroom = OCELOT_TAG_LEN; dev->needed_tailroom = ETH_FCS_LEN; if (fdma->ndev) return; fdma->ndev = dev; netif_napi_add_weight(dev, &fdma->napi, ocelot_fdma_napi_poll, OCELOT_FDMA_WEIGHT); } void ocelot_fdma_netdev_deinit(struct ocelot *ocelot, struct net_device *dev) { struct ocelot_fdma *fdma = ocelot->fdma; if (fdma->ndev == dev) { netif_napi_del(&fdma->napi); fdma->ndev = NULL; } } void ocelot_fdma_init(struct platform_device *pdev, struct ocelot *ocelot) { struct device *dev = ocelot->dev; struct ocelot_fdma *fdma; int ret; fdma = devm_kzalloc(dev, sizeof(*fdma), GFP_KERNEL); if (!fdma) return; ocelot->fdma = fdma; ocelot->dev->coherent_dma_mask = DMA_BIT_MASK(32); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0); fdma->ocelot = ocelot; fdma->irq = platform_get_irq_byname(pdev, "fdma"); ret = devm_request_irq(dev, fdma->irq, ocelot_fdma_interrupt, 0, dev_name(dev), ocelot); if (ret) goto err_free_fdma; ret = ocelot_fdma_rings_alloc(ocelot); if (ret) goto err_free_irq; static_branch_enable(&ocelot_fdma_enabled); return; err_free_irq: devm_free_irq(dev, fdma->irq, fdma); err_free_fdma: devm_kfree(dev, fdma); ocelot->fdma = NULL; } void ocelot_fdma_start(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; /* Reconfigure for extraction and injection using DMA */ ocelot_write_rix(ocelot, QS_INJ_GRP_CFG_MODE(2), QS_INJ_GRP_CFG, 0); ocelot_write_rix(ocelot, QS_INJ_CTRL_GAP_SIZE(0), QS_INJ_CTRL, 0); ocelot_write_rix(ocelot, QS_XTR_GRP_CFG_MODE(2), QS_XTR_GRP_CFG, 0); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP, 0xffffffff); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM, 0xffffffff); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_LLP_ENA, BIT(MSCC_FDMA_INJ_CHAN) | BIT(MSCC_FDMA_XTR_CHAN)); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_FRM_ENA, BIT(MSCC_FDMA_XTR_CHAN)); ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, BIT(MSCC_FDMA_INJ_CHAN) | BIT(MSCC_FDMA_XTR_CHAN)); napi_enable(&fdma->napi); ocelot_fdma_activate_chan(ocelot, ocelot->fdma->rx_ring.dcbs_dma, MSCC_FDMA_XTR_CHAN); } void ocelot_fdma_deinit(struct ocelot *ocelot) { struct ocelot_fdma *fdma = ocelot->fdma; ocelot_fdma_writel(ocelot, MSCC_FDMA_INTR_ENA, 0); ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_FORCEDIS, BIT(MSCC_FDMA_XTR_CHAN)); ocelot_fdma_writel(ocelot, MSCC_FDMA_CH_FORCEDIS, BIT(MSCC_FDMA_INJ_CHAN)); napi_synchronize(&fdma->napi); napi_disable(&fdma->napi); ocelot_fdma_free_rx_ring(ocelot); ocelot_fdma_free_tx_ring(ocelot); }