// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2016-2018 Netronome Systems, Inc. */ #define pr_fmt(fmt) "NFP net bpf: " fmt #include #include #include #include #include #include #include #include "main.h" #include "../nfp_asm.h" #include "../nfp_net_ctrl.h" /* --- NFP prog --- */ /* Foreach "multiple" entries macros provide pos and next pointers. * It's safe to modify the next pointers (but not pos). */ #define nfp_for_each_insn_walk2(nfp_prog, pos, next) \ for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ next = list_next_entry(pos, l); \ &(nfp_prog)->insns != &pos->l && \ &(nfp_prog)->insns != &next->l; \ pos = nfp_meta_next(pos), \ next = nfp_meta_next(pos)) #define nfp_for_each_insn_walk3(nfp_prog, pos, next, next2) \ for (pos = list_first_entry(&(nfp_prog)->insns, typeof(*pos), l), \ next = list_next_entry(pos, l), \ next2 = list_next_entry(next, l); \ &(nfp_prog)->insns != &pos->l && \ &(nfp_prog)->insns != &next->l && \ &(nfp_prog)->insns != &next2->l; \ pos = nfp_meta_next(pos), \ next = nfp_meta_next(pos), \ next2 = nfp_meta_next(next)) static bool nfp_meta_has_prev(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return meta->l.prev != &nfp_prog->insns; } static void nfp_prog_push(struct nfp_prog *nfp_prog, u64 insn) { if (nfp_prog->__prog_alloc_len / sizeof(u64) == nfp_prog->prog_len) { pr_warn("instruction limit reached (%u NFP instructions)\n", nfp_prog->prog_len); nfp_prog->error = -ENOSPC; return; } nfp_prog->prog[nfp_prog->prog_len] = insn; nfp_prog->prog_len++; } static unsigned int nfp_prog_current_offset(struct nfp_prog *nfp_prog) { return nfp_prog->prog_len; } static bool nfp_prog_confirm_current_offset(struct nfp_prog *nfp_prog, unsigned int off) { /* If there is a recorded error we may have dropped instructions; * that doesn't have to be due to translator bug, and the translation * will fail anyway, so just return OK. */ if (nfp_prog->error) return true; return !WARN_ON_ONCE(nfp_prog_current_offset(nfp_prog) != off); } /* --- Emitters --- */ static void __emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, u8 areg, u8 breg, u8 size, enum cmd_ctx_swap ctx, bool indir) { u64 insn; insn = FIELD_PREP(OP_CMD_A_SRC, areg) | FIELD_PREP(OP_CMD_CTX, ctx) | FIELD_PREP(OP_CMD_B_SRC, breg) | FIELD_PREP(OP_CMD_TOKEN, cmd_tgt_act[op].token) | FIELD_PREP(OP_CMD_XFER, xfer) | FIELD_PREP(OP_CMD_CNT, size) | FIELD_PREP(OP_CMD_SIG, ctx != CMD_CTX_NO_SWAP) | FIELD_PREP(OP_CMD_TGT_CMD, cmd_tgt_act[op].tgt_cmd) | FIELD_PREP(OP_CMD_INDIR, indir) | FIELD_PREP(OP_CMD_MODE, mode); nfp_prog_push(nfp_prog, insn); } static void emit_cmd_any(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx, bool indir) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(reg_none(), lreg, rreg, ®, false); if (err) { nfp_prog->error = err; return; } if (reg.swap) { pr_err("cmd can't swap arguments\n"); nfp_prog->error = -EFAULT; return; } if (reg.dst_lmextn || reg.src_lmextn) { pr_err("cmd can't use LMextn\n"); nfp_prog->error = -EFAULT; return; } __emit_cmd(nfp_prog, op, mode, xfer, reg.areg, reg.breg, size, ctx, indir); } static void emit_cmd(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) { emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, false); } static void emit_cmd_indir(struct nfp_prog *nfp_prog, enum cmd_tgt_map op, u8 mode, u8 xfer, swreg lreg, swreg rreg, u8 size, enum cmd_ctx_swap ctx) { emit_cmd_any(nfp_prog, op, mode, xfer, lreg, rreg, size, ctx, true); } static void __emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, enum br_ev_pip ev_pip, enum br_ctx_signal_state css, u16 addr, u8 defer) { u16 addr_lo, addr_hi; u64 insn; addr_lo = addr & (OP_BR_ADDR_LO >> __bf_shf(OP_BR_ADDR_LO)); addr_hi = addr != addr_lo; insn = OP_BR_BASE | FIELD_PREP(OP_BR_MASK, mask) | FIELD_PREP(OP_BR_EV_PIP, ev_pip) | FIELD_PREP(OP_BR_CSS, css) | FIELD_PREP(OP_BR_DEFBR, defer) | FIELD_PREP(OP_BR_ADDR_LO, addr_lo) | FIELD_PREP(OP_BR_ADDR_HI, addr_hi); nfp_prog_push(nfp_prog, insn); } static void emit_br_relo(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer, enum nfp_relo_type relo) { if (mask == BR_UNC && defer > 2) { pr_err("BUG: branch defer out of bounds %d\n", defer); nfp_prog->error = -EFAULT; return; } __emit_br(nfp_prog, mask, mask != BR_UNC ? BR_EV_PIP_COND : BR_EV_PIP_UNCOND, BR_CSS_NONE, addr, defer); nfp_prog->prog[nfp_prog->prog_len - 1] |= FIELD_PREP(OP_RELO_TYPE, relo); } static void emit_br(struct nfp_prog *nfp_prog, enum br_mask mask, u16 addr, u8 defer) { emit_br_relo(nfp_prog, mask, addr, defer, RELO_BR_REL); } static void __emit_br_bit(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 addr, u8 defer, bool set, bool src_lmextn) { u16 addr_lo, addr_hi; u64 insn; addr_lo = addr & (OP_BR_BIT_ADDR_LO >> __bf_shf(OP_BR_BIT_ADDR_LO)); addr_hi = addr != addr_lo; insn = OP_BR_BIT_BASE | FIELD_PREP(OP_BR_BIT_A_SRC, areg) | FIELD_PREP(OP_BR_BIT_B_SRC, breg) | FIELD_PREP(OP_BR_BIT_BV, set) | FIELD_PREP(OP_BR_BIT_DEFBR, defer) | FIELD_PREP(OP_BR_BIT_ADDR_LO, addr_lo) | FIELD_PREP(OP_BR_BIT_ADDR_HI, addr_hi) | FIELD_PREP(OP_BR_BIT_SRC_LMEXTN, src_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_br_bit_relo(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer, bool set, enum nfp_relo_type relo) { struct nfp_insn_re_regs reg; int err; /* NOTE: The bit to test is specified as an rotation amount, such that * the bit to test will be placed on the MSB of the result when * doing a rotate right. For bit X, we need right rotate X + 1. */ bit += 1; err = swreg_to_restricted(reg_none(), src, reg_imm(bit), ®, false); if (err) { nfp_prog->error = err; return; } __emit_br_bit(nfp_prog, reg.areg, reg.breg, addr, defer, set, reg.src_lmextn); nfp_prog->prog[nfp_prog->prog_len - 1] |= FIELD_PREP(OP_RELO_TYPE, relo); } static void emit_br_bset(struct nfp_prog *nfp_prog, swreg src, u8 bit, u16 addr, u8 defer) { emit_br_bit_relo(nfp_prog, src, bit, addr, defer, true, RELO_BR_REL); } static void __emit_br_alu(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi, u8 defer, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_BR_ALU_BASE | FIELD_PREP(OP_BR_ALU_A_SRC, areg) | FIELD_PREP(OP_BR_ALU_B_SRC, breg) | FIELD_PREP(OP_BR_ALU_DEFBR, defer) | FIELD_PREP(OP_BR_ALU_IMM_HI, imm_hi) | FIELD_PREP(OP_BR_ALU_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_BR_ALU_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_rtn(struct nfp_prog *nfp_prog, swreg base, u8 defer) { struct nfp_insn_ur_regs reg; int err; err = swreg_to_unrestricted(reg_none(), base, reg_imm(0), ®); if (err) { nfp_prog->error = err; return; } __emit_br_alu(nfp_prog, reg.areg, reg.breg, 0, defer, reg.dst_lmextn, reg.src_lmextn); } static void __emit_immed(struct nfp_prog *nfp_prog, u16 areg, u16 breg, u16 imm_hi, enum immed_width width, bool invert, enum immed_shift shift, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_IMMED_BASE | FIELD_PREP(OP_IMMED_A_SRC, areg) | FIELD_PREP(OP_IMMED_B_SRC, breg) | FIELD_PREP(OP_IMMED_IMM, imm_hi) | FIELD_PREP(OP_IMMED_WIDTH, width) | FIELD_PREP(OP_IMMED_INV, invert) | FIELD_PREP(OP_IMMED_SHIFT, shift) | FIELD_PREP(OP_IMMED_WR_AB, wr_both) | FIELD_PREP(OP_IMMED_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_IMMED_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_immed(struct nfp_prog *nfp_prog, swreg dst, u16 imm, enum immed_width width, bool invert, enum immed_shift shift) { struct nfp_insn_ur_regs reg; int err; if (swreg_type(dst) == NN_REG_IMM) { nfp_prog->error = -EFAULT; return; } err = swreg_to_unrestricted(dst, dst, reg_imm(imm & 0xff), ®); if (err) { nfp_prog->error = err; return; } /* Use reg.dst when destination is No-Dest. */ __emit_immed(nfp_prog, swreg_type(dst) == NN_REG_NONE ? reg.dst : reg.areg, reg.breg, imm >> 8, width, invert, shift, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_shf(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, enum shf_sc sc, u8 shift, u16 areg, enum shf_op op, u16 breg, bool i8, bool sw, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; if (!FIELD_FIT(OP_SHF_SHIFT, shift)) { nfp_prog->error = -EFAULT; return; } /* NFP shift instruction has something special. If shift direction is * left then shift amount of 1 to 31 is specified as 32 minus the amount * to shift. * * But no need to do this for indirect shift which has shift amount be * 0. Even after we do this subtraction, shift amount 0 will be turned * into 32 which will eventually be encoded the same as 0 because only * low 5 bits are encoded, but shift amount be 32 will fail the * FIELD_PREP check done later on shift mask (0x1f), due to 32 is out of * mask range. */ if (sc == SHF_SC_L_SHF && shift) shift = 32 - shift; insn = OP_SHF_BASE | FIELD_PREP(OP_SHF_A_SRC, areg) | FIELD_PREP(OP_SHF_SC, sc) | FIELD_PREP(OP_SHF_B_SRC, breg) | FIELD_PREP(OP_SHF_I8, i8) | FIELD_PREP(OP_SHF_SW, sw) | FIELD_PREP(OP_SHF_DST, dst) | FIELD_PREP(OP_SHF_SHIFT, shift) | FIELD_PREP(OP_SHF_OP, op) | FIELD_PREP(OP_SHF_DST_AB, dst_ab) | FIELD_PREP(OP_SHF_WR_AB, wr_both) | FIELD_PREP(OP_SHF_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_SHF_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_shf(struct nfp_prog *nfp_prog, swreg dst, swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc, u8 shift) { struct nfp_insn_re_regs reg; int err; err = swreg_to_restricted(dst, lreg, rreg, ®, true); if (err) { nfp_prog->error = err; return; } __emit_shf(nfp_prog, reg.dst, reg.dst_ab, sc, shift, reg.areg, op, reg.breg, reg.i8, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void emit_shf_indir(struct nfp_prog *nfp_prog, swreg dst, swreg lreg, enum shf_op op, swreg rreg, enum shf_sc sc) { if (sc == SHF_SC_R_ROT) { pr_err("indirect shift is not allowed on rotation\n"); nfp_prog->error = -EFAULT; return; } emit_shf(nfp_prog, dst, lreg, op, rreg, sc, 0); } static void __emit_alu(struct nfp_prog *nfp_prog, u16 dst, enum alu_dst_ab dst_ab, u16 areg, enum alu_op op, u16 breg, bool swap, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_ALU_BASE | FIELD_PREP(OP_ALU_A_SRC, areg) | FIELD_PREP(OP_ALU_B_SRC, breg) | FIELD_PREP(OP_ALU_DST, dst) | FIELD_PREP(OP_ALU_SW, swap) | FIELD_PREP(OP_ALU_OP, op) | FIELD_PREP(OP_ALU_DST_AB, dst_ab) | FIELD_PREP(OP_ALU_WR_AB, wr_both) | FIELD_PREP(OP_ALU_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_ALU_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_alu(struct nfp_prog *nfp_prog, swreg dst, swreg lreg, enum alu_op op, swreg rreg) { struct nfp_insn_ur_regs reg; int err; err = swreg_to_unrestricted(dst, lreg, rreg, ®); if (err) { nfp_prog->error = err; return; } __emit_alu(nfp_prog, reg.dst, reg.dst_ab, reg.areg, op, reg.breg, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_mul(struct nfp_prog *nfp_prog, enum alu_dst_ab dst_ab, u16 areg, enum mul_type type, enum mul_step step, u16 breg, bool swap, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_MUL_BASE | FIELD_PREP(OP_MUL_A_SRC, areg) | FIELD_PREP(OP_MUL_B_SRC, breg) | FIELD_PREP(OP_MUL_STEP, step) | FIELD_PREP(OP_MUL_DST_AB, dst_ab) | FIELD_PREP(OP_MUL_SW, swap) | FIELD_PREP(OP_MUL_TYPE, type) | FIELD_PREP(OP_MUL_WR_AB, wr_both) | FIELD_PREP(OP_MUL_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_MUL_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_mul(struct nfp_prog *nfp_prog, swreg lreg, enum mul_type type, enum mul_step step, swreg rreg) { struct nfp_insn_ur_regs reg; u16 areg; int err; if (type == MUL_TYPE_START && step != MUL_STEP_NONE) { nfp_prog->error = -EINVAL; return; } if (step == MUL_LAST || step == MUL_LAST_2) { /* When type is step and step Number is LAST or LAST2, left * source is used as destination. */ err = swreg_to_unrestricted(lreg, reg_none(), rreg, ®); areg = reg.dst; } else { err = swreg_to_unrestricted(reg_none(), lreg, rreg, ®); areg = reg.areg; } if (err) { nfp_prog->error = err; return; } __emit_mul(nfp_prog, reg.dst_ab, areg, type, step, reg.breg, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void __emit_ld_field(struct nfp_prog *nfp_prog, enum shf_sc sc, u8 areg, u8 bmask, u8 breg, u8 shift, bool imm8, bool zero, bool swap, bool wr_both, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_LDF_BASE | FIELD_PREP(OP_LDF_A_SRC, areg) | FIELD_PREP(OP_LDF_SC, sc) | FIELD_PREP(OP_LDF_B_SRC, breg) | FIELD_PREP(OP_LDF_I8, imm8) | FIELD_PREP(OP_LDF_SW, swap) | FIELD_PREP(OP_LDF_ZF, zero) | FIELD_PREP(OP_LDF_BMASK, bmask) | FIELD_PREP(OP_LDF_SHF, shift) | FIELD_PREP(OP_LDF_WR_AB, wr_both) | FIELD_PREP(OP_LDF_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_LDF_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_ld_field_any(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, enum shf_sc sc, u8 shift, bool zero) { struct nfp_insn_re_regs reg; int err; /* Note: ld_field is special as it uses one of the src regs as dst */ err = swreg_to_restricted(dst, dst, src, ®, true); if (err) { nfp_prog->error = err; return; } __emit_ld_field(nfp_prog, sc, reg.areg, bmask, reg.breg, shift, reg.i8, zero, reg.swap, reg.wr_both, reg.dst_lmextn, reg.src_lmextn); } static void emit_ld_field(struct nfp_prog *nfp_prog, swreg dst, u8 bmask, swreg src, enum shf_sc sc, u8 shift) { emit_ld_field_any(nfp_prog, dst, bmask, src, sc, shift, false); } static void __emit_lcsr(struct nfp_prog *nfp_prog, u16 areg, u16 breg, bool wr, u16 addr, bool dst_lmextn, bool src_lmextn) { u64 insn; insn = OP_LCSR_BASE | FIELD_PREP(OP_LCSR_A_SRC, areg) | FIELD_PREP(OP_LCSR_B_SRC, breg) | FIELD_PREP(OP_LCSR_WRITE, wr) | FIELD_PREP(OP_LCSR_ADDR, addr / 4) | FIELD_PREP(OP_LCSR_SRC_LMEXTN, src_lmextn) | FIELD_PREP(OP_LCSR_DST_LMEXTN, dst_lmextn); nfp_prog_push(nfp_prog, insn); } static void emit_csr_wr(struct nfp_prog *nfp_prog, swreg src, u16 addr) { struct nfp_insn_ur_regs reg; int err; /* This instruction takes immeds instead of reg_none() for the ignored * operand, but we can't encode 2 immeds in one instr with our normal * swreg infra so if param is an immed, we encode as reg_none() and * copy the immed to both operands. */ if (swreg_type(src) == NN_REG_IMM) { err = swreg_to_unrestricted(reg_none(), src, reg_none(), ®); reg.breg = reg.areg; } else { err = swreg_to_unrestricted(reg_none(), src, reg_imm(0), ®); } if (err) { nfp_prog->error = err; return; } __emit_lcsr(nfp_prog, reg.areg, reg.breg, true, addr, false, reg.src_lmextn); } /* CSR value is read in following immed[gpr, 0] */ static void __emit_csr_rd(struct nfp_prog *nfp_prog, u16 addr) { __emit_lcsr(nfp_prog, 0, 0, false, addr, false, false); } static void emit_nop(struct nfp_prog *nfp_prog) { __emit_immed(nfp_prog, UR_REG_IMM, UR_REG_IMM, 0, 0, 0, 0, 0, 0, 0); } /* --- Wrappers --- */ static bool pack_immed(u32 imm, u16 *val, enum immed_shift *shift) { if (!(imm & 0xffff0000)) { *val = imm; *shift = IMMED_SHIFT_0B; } else if (!(imm & 0xff0000ff)) { *val = imm >> 8; *shift = IMMED_SHIFT_1B; } else if (!(imm & 0x0000ffff)) { *val = imm >> 16; *shift = IMMED_SHIFT_2B; } else { return false; } return true; } static void wrp_immed(struct nfp_prog *nfp_prog, swreg dst, u32 imm) { enum immed_shift shift; u16 val; if (pack_immed(imm, &val, &shift)) { emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, false, shift); } else if (pack_immed(~imm, &val, &shift)) { emit_immed(nfp_prog, dst, val, IMMED_WIDTH_ALL, true, shift); } else { emit_immed(nfp_prog, dst, imm & 0xffff, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); emit_immed(nfp_prog, dst, imm >> 16, IMMED_WIDTH_WORD, false, IMMED_SHIFT_2B); } } static void wrp_zext(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst) { if (meta->flags & FLAG_INSN_DO_ZEXT) wrp_immed(nfp_prog, reg_both(dst + 1), 0); } static void wrp_immed_relo(struct nfp_prog *nfp_prog, swreg dst, u32 imm, enum nfp_relo_type relo) { if (imm > 0xffff) { pr_err("relocation of a large immediate!\n"); nfp_prog->error = -EFAULT; return; } emit_immed(nfp_prog, dst, imm, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); nfp_prog->prog[nfp_prog->prog_len - 1] |= FIELD_PREP(OP_RELO_TYPE, relo); } /* ur_load_imm_any() - encode immediate or use tmp register (unrestricted) * If the @imm is small enough encode it directly in operand and return * otherwise load @imm to a spare register and return its encoding. */ static swreg ur_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) { if (FIELD_FIT(UR_REG_IMM_MAX, imm)) return reg_imm(imm); wrp_immed(nfp_prog, tmp_reg, imm); return tmp_reg; } /* re_load_imm_any() - encode immediate or use tmp register (restricted) * If the @imm is small enough encode it directly in operand and return * otherwise load @imm to a spare register and return its encoding. */ static swreg re_load_imm_any(struct nfp_prog *nfp_prog, u32 imm, swreg tmp_reg) { if (FIELD_FIT(RE_REG_IMM_MAX, imm)) return reg_imm(imm); wrp_immed(nfp_prog, tmp_reg, imm); return tmp_reg; } static void wrp_nops(struct nfp_prog *nfp_prog, unsigned int count) { while (count--) emit_nop(nfp_prog); } static void wrp_mov(struct nfp_prog *nfp_prog, swreg dst, swreg src) { emit_alu(nfp_prog, dst, reg_none(), ALU_OP_NONE, src); } static void wrp_reg_mov(struct nfp_prog *nfp_prog, u16 dst, u16 src) { wrp_mov(nfp_prog, reg_both(dst), reg_b(src)); } /* wrp_reg_subpart() - load @field_len bytes from @offset of @src, write the * result to @dst from low end. */ static void wrp_reg_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len, u8 offset) { enum shf_sc sc = offset ? SHF_SC_R_SHF : SHF_SC_NONE; u8 mask = (1 << field_len) - 1; emit_ld_field_any(nfp_prog, dst, mask, src, sc, offset * 8, true); } /* wrp_reg_or_subpart() - load @field_len bytes from low end of @src, or the * result to @dst from offset, there is no change on the other bits of @dst. */ static void wrp_reg_or_subpart(struct nfp_prog *nfp_prog, swreg dst, swreg src, u8 field_len, u8 offset) { enum shf_sc sc = offset ? SHF_SC_L_SHF : SHF_SC_NONE; u8 mask = ((1 << field_len) - 1) << offset; emit_ld_field(nfp_prog, dst, mask, src, sc, 32 - offset * 8); } static void addr40_offset(struct nfp_prog *nfp_prog, u8 src_gpr, swreg offset, swreg *rega, swreg *regb) { if (offset == reg_imm(0)) { *rega = reg_a(src_gpr); *regb = reg_b(src_gpr + 1); return; } emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(src_gpr), ALU_OP_ADD, offset); emit_alu(nfp_prog, imm_b(nfp_prog), reg_b(src_gpr + 1), ALU_OP_ADD_C, reg_imm(0)); *rega = imm_a(nfp_prog); *regb = imm_b(nfp_prog); } /* NFP has Command Push Pull bus which supports bluk memory operations. */ static int nfp_cpp_memcpy(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { bool descending_seq = meta->ldst_gather_len < 0; s16 len = abs(meta->ldst_gather_len); swreg src_base, off; bool src_40bit_addr; unsigned int i; u8 xfer_num; off = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); src_40bit_addr = meta->ptr.type == PTR_TO_MAP_VALUE; src_base = reg_a(meta->insn.src_reg * 2); xfer_num = round_up(len, 4) / 4; if (src_40bit_addr) addr40_offset(nfp_prog, meta->insn.src_reg * 2, off, &src_base, &off); /* Setup PREV_ALU fields to override memory read length. */ if (len > 32) wrp_immed(nfp_prog, reg_none(), CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); /* Memory read from source addr into transfer-in registers. */ emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, src_40bit_addr ? CMD_MODE_40b_BA : CMD_MODE_32b, 0, src_base, off, xfer_num - 1, CMD_CTX_SWAP, len > 32); /* Move from transfer-in to transfer-out. */ for (i = 0; i < xfer_num; i++) wrp_mov(nfp_prog, reg_xfer(i), reg_xfer(i)); off = re_load_imm_any(nfp_prog, meta->paired_st->off, imm_b(nfp_prog)); if (len <= 8) { /* Use single direct_ref write8. */ emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, len - 1, CMD_CTX_SWAP); } else if (len <= 32 && IS_ALIGNED(len, 4)) { /* Use single direct_ref write32. */ emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1, CMD_CTX_SWAP); } else if (len <= 32) { /* Use single indirect_ref write8. */ wrp_immed(nfp_prog, reg_none(), CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, len - 1)); emit_cmd_indir(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, len - 1, CMD_CTX_SWAP); } else if (IS_ALIGNED(len, 4)) { /* Use single indirect_ref write32. */ wrp_immed(nfp_prog, reg_none(), CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 1, CMD_CTX_SWAP); } else if (len <= 40) { /* Use one direct_ref write32 to write the first 32-bytes, then * another direct_ref write8 to write the remaining bytes. */ emit_cmd(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, 7, CMD_CTX_SWAP); off = re_load_imm_any(nfp_prog, meta->paired_st->off + 32, imm_b(nfp_prog)); emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 8, reg_a(meta->paired_st->dst_reg * 2), off, len - 33, CMD_CTX_SWAP); } else { /* Use one indirect_ref write32 to write 4-bytes aligned length, * then another direct_ref write8 to write the remaining bytes. */ u8 new_off; wrp_immed(nfp_prog, reg_none(), CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 2)); emit_cmd_indir(nfp_prog, CMD_TGT_WRITE32_SWAP, CMD_MODE_32b, 0, reg_a(meta->paired_st->dst_reg * 2), off, xfer_num - 2, CMD_CTX_SWAP); new_off = meta->paired_st->off + (xfer_num - 1) * 4; off = re_load_imm_any(nfp_prog, new_off, imm_b(nfp_prog)); emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, xfer_num - 1, reg_a(meta->paired_st->dst_reg * 2), off, (len & 0x3) - 1, CMD_CTX_SWAP); } /* TODO: The following extra load is to make sure data flow be identical * before and after we do memory copy optimization. * * The load destination register is not guaranteed to be dead, so we * need to make sure it is loaded with the value the same as before * this transformation. * * These extra loads could be removed once we have accurate register * usage information. */ if (descending_seq) xfer_num = 0; else if (BPF_SIZE(meta->insn.code) != BPF_DW) xfer_num = xfer_num - 1; else xfer_num = xfer_num - 2; switch (BPF_SIZE(meta->insn.code)) { case BPF_B: wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), reg_xfer(xfer_num), 1, IS_ALIGNED(len, 4) ? 3 : (len & 3) - 1); break; case BPF_H: wrp_reg_subpart(nfp_prog, reg_both(meta->insn.dst_reg * 2), reg_xfer(xfer_num), 2, (len & 3) ^ 2); break; case BPF_W: wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), reg_xfer(0)); break; case BPF_DW: wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2), reg_xfer(xfer_num)); wrp_mov(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), reg_xfer(xfer_num + 1)); break; } if (BPF_SIZE(meta->insn.code) != BPF_DW) wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); return 0; } static int data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, swreg offset, u8 dst_gpr, int size) { unsigned int i; u16 shift, sz; /* We load the value from the address indicated in @offset and then * shift out the data we don't need. Note: this is big endian! */ sz = max(size, 4); shift = size < 4 ? 4 - size : 0; emit_cmd(nfp_prog, CMD_TGT_READ8, CMD_MODE_32b, 0, pptr_reg(nfp_prog), offset, sz - 1, CMD_CTX_SWAP); i = 0; if (shift) emit_shf(nfp_prog, reg_both(dst_gpr), reg_none(), SHF_OP_NONE, reg_xfer(0), SHF_SC_R_SHF, shift * 8); else for (; i * 4 < size; i++) wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); if (i < 2) wrp_zext(nfp_prog, meta, dst_gpr); return 0; } static int data_ld_host_order(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst_gpr, swreg lreg, swreg rreg, int size, enum cmd_mode mode) { unsigned int i; u8 mask, sz; /* We load the value from the address indicated in rreg + lreg and then * mask out the data we don't need. Note: this is little endian! */ sz = max(size, 4); mask = size < 4 ? GENMASK(size - 1, 0) : 0; emit_cmd(nfp_prog, CMD_TGT_READ32_SWAP, mode, 0, lreg, rreg, sz / 4 - 1, CMD_CTX_SWAP); i = 0; if (mask) emit_ld_field_any(nfp_prog, reg_both(dst_gpr), mask, reg_xfer(0), SHF_SC_NONE, 0, true); else for (; i * 4 < size; i++) wrp_mov(nfp_prog, reg_both(dst_gpr + i), reg_xfer(i)); if (i < 2) wrp_zext(nfp_prog, meta, dst_gpr); return 0; } static int data_ld_host_order_addr32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 src_gpr, swreg offset, u8 dst_gpr, u8 size) { return data_ld_host_order(nfp_prog, meta, dst_gpr, reg_a(src_gpr), offset, size, CMD_MODE_32b); } static int data_ld_host_order_addr40(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 src_gpr, swreg offset, u8 dst_gpr, u8 size) { swreg rega, regb; addr40_offset(nfp_prog, src_gpr, offset, ®a, ®b); return data_ld_host_order(nfp_prog, meta, dst_gpr, rega, regb, size, CMD_MODE_40b_BA); } static int construct_data_ind_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u16 offset, u16 src, u8 size) { swreg tmp_reg; /* Calculate the true offset (src_reg + imm) */ tmp_reg = ur_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_both(nfp_prog), reg_a(src), ALU_OP_ADD, tmp_reg); /* Check packet length (size guaranteed to fit b/c it's u8) */ emit_alu(nfp_prog, imm_a(nfp_prog), imm_a(nfp_prog), ALU_OP_ADD, reg_imm(size)); emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, imm_a(nfp_prog)); emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); /* Load data */ return data_ld(nfp_prog, meta, imm_b(nfp_prog), 0, size); } static int construct_data_ld(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u16 offset, u8 size) { swreg tmp_reg; /* Check packet length */ tmp_reg = ur_load_imm_any(nfp_prog, offset + size, imm_a(nfp_prog)); emit_alu(nfp_prog, reg_none(), plen_reg(nfp_prog), ALU_OP_SUB, tmp_reg); emit_br_relo(nfp_prog, BR_BLO, BR_OFF_RELO, 0, RELO_BR_GO_ABORT); /* Load data */ tmp_reg = re_load_imm_any(nfp_prog, offset, imm_b(nfp_prog)); return data_ld(nfp_prog, meta, tmp_reg, 0, size); } static int data_stx_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, u8 src_gpr, u8 size) { unsigned int i; for (i = 0; i * 4 < size; i++) wrp_mov(nfp_prog, reg_xfer(i), reg_a(src_gpr + i)); emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); return 0; } static int data_st_host_order(struct nfp_prog *nfp_prog, u8 dst_gpr, swreg offset, u64 imm, u8 size) { wrp_immed(nfp_prog, reg_xfer(0), imm); if (size == 8) wrp_immed(nfp_prog, reg_xfer(1), imm >> 32); emit_cmd(nfp_prog, CMD_TGT_WRITE8_SWAP, CMD_MODE_32b, 0, reg_a(dst_gpr), offset, size - 1, CMD_CTX_SWAP); return 0; } typedef int (*lmem_step)(struct nfp_prog *nfp_prog, u8 gpr, u8 gpr_byte, s32 off, unsigned int size, bool first, bool new_gpr, bool last, bool lm3, bool needs_inc); static int wrp_lmem_load(struct nfp_prog *nfp_prog, u8 dst, u8 dst_byte, s32 off, unsigned int size, bool first, bool new_gpr, bool last, bool lm3, bool needs_inc) { bool should_inc = needs_inc && new_gpr && !last; u32 idx, src_byte; enum shf_sc sc; swreg reg; int shf; u8 mask; if (WARN_ON_ONCE(dst_byte + size > 4 || off % 4 + size > 4)) return -EOPNOTSUPP; idx = off / 4; /* Move the entire word */ if (size == 4) { wrp_mov(nfp_prog, reg_both(dst), should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx)); return 0; } if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) return -EOPNOTSUPP; src_byte = off % 4; mask = (1 << size) - 1; mask <<= dst_byte; if (WARN_ON_ONCE(mask > 0xf)) return -EOPNOTSUPP; shf = abs(src_byte - dst_byte) * 8; if (src_byte == dst_byte) { sc = SHF_SC_NONE; } else if (src_byte < dst_byte) { shf = 32 - shf; sc = SHF_SC_L_SHF; } else { sc = SHF_SC_R_SHF; } /* ld_field can address fewer indexes, if offset too large do RMW. * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. */ if (idx <= RE_REG_LM_IDX_MAX) { reg = reg_lm(lm3 ? 3 : 0, idx); } else { reg = imm_a(nfp_prog); /* If it's not the first part of the load and we start a new GPR * that means we are loading a second part of the LMEM word into * a new GPR. IOW we've already looked that LMEM word and * therefore it has been loaded into imm_a(). */ if (first || !new_gpr) wrp_mov(nfp_prog, reg, reg_lm(0, idx)); } emit_ld_field_any(nfp_prog, reg_both(dst), mask, reg, sc, shf, new_gpr); if (should_inc) wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); return 0; } static int wrp_lmem_store(struct nfp_prog *nfp_prog, u8 src, u8 src_byte, s32 off, unsigned int size, bool first, bool new_gpr, bool last, bool lm3, bool needs_inc) { bool should_inc = needs_inc && new_gpr && !last; u32 idx, dst_byte; enum shf_sc sc; swreg reg; int shf; u8 mask; if (WARN_ON_ONCE(src_byte + size > 4 || off % 4 + size > 4)) return -EOPNOTSUPP; idx = off / 4; /* Move the entire word */ if (size == 4) { wrp_mov(nfp_prog, should_inc ? reg_lm_inc(3) : reg_lm(lm3 ? 3 : 0, idx), reg_b(src)); return 0; } if (WARN_ON_ONCE(lm3 && idx > RE_REG_LM_IDX_MAX)) return -EOPNOTSUPP; dst_byte = off % 4; mask = (1 << size) - 1; mask <<= dst_byte; if (WARN_ON_ONCE(mask > 0xf)) return -EOPNOTSUPP; shf = abs(src_byte - dst_byte) * 8; if (src_byte == dst_byte) { sc = SHF_SC_NONE; } else if (src_byte < dst_byte) { shf = 32 - shf; sc = SHF_SC_L_SHF; } else { sc = SHF_SC_R_SHF; } /* ld_field can address fewer indexes, if offset too large do RMW. * Because we RMV twice we waste 2 cycles on unaligned 8 byte writes. */ if (idx <= RE_REG_LM_IDX_MAX) { reg = reg_lm(lm3 ? 3 : 0, idx); } else { reg = imm_a(nfp_prog); /* Only first and last LMEM locations are going to need RMW, * the middle location will be overwritten fully. */ if (first || last) wrp_mov(nfp_prog, reg, reg_lm(0, idx)); } emit_ld_field(nfp_prog, reg, mask, reg_b(src), sc, shf); if (new_gpr || last) { if (idx > RE_REG_LM_IDX_MAX) wrp_mov(nfp_prog, reg_lm(0, idx), reg); if (should_inc) wrp_mov(nfp_prog, reg_none(), reg_lm_inc(3)); } return 0; } static int mem_op_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size, unsigned int ptr_off, u8 gpr, u8 ptr_gpr, bool clr_gpr, lmem_step step) { s32 off = nfp_prog->stack_frame_depth + meta->insn.off + ptr_off; bool first = true, narrow_ld, last; bool needs_inc = false; swreg stack_off_reg; u8 prev_gpr = 255; u32 gpr_byte = 0; bool lm3 = true; int ret; if (meta->ptr_not_const || meta->flags & FLAG_INSN_PTR_CALLER_STACK_FRAME) { /* Use of the last encountered ptr_off is OK, they all have * the same alignment. Depend on low bits of value being * discarded when written to LMaddr register. */ stack_off_reg = ur_load_imm_any(nfp_prog, meta->insn.off, stack_imm(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(ptr_gpr), ALU_OP_ADD, stack_off_reg); needs_inc = true; } else if (off + size <= 64) { /* We can reach bottom 64B with LMaddr0 */ lm3 = false; } else if (round_down(off, 32) == round_down(off + size - 1, 32)) { /* We have to set up a new pointer. If we know the offset * and the entire access falls into a single 32 byte aligned * window we won't have to increment the LM pointer. * The 32 byte alignment is imporant because offset is ORed in * not added when doing *l$indexN[off]. */ stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 32), stack_imm(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); off %= 32; } else { stack_off_reg = ur_load_imm_any(nfp_prog, round_down(off, 4), stack_imm(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), stack_reg(nfp_prog), ALU_OP_ADD, stack_off_reg); needs_inc = true; } narrow_ld = clr_gpr && size < 8; if (lm3) { unsigned int nop_cnt; emit_csr_wr(nfp_prog, imm_b(nfp_prog), NFP_CSR_ACT_LM_ADDR3); /* For size < 4 one slot will be filled by zeroing of upper, * but be careful, that zeroing could be eliminated by zext * optimization. */ nop_cnt = narrow_ld && meta->flags & FLAG_INSN_DO_ZEXT ? 2 : 3; wrp_nops(nfp_prog, nop_cnt); } if (narrow_ld) wrp_zext(nfp_prog, meta, gpr); while (size) { u32 slice_end; u8 slice_size; slice_size = min(size, 4 - gpr_byte); slice_end = min(off + slice_size, round_up(off + 1, 4)); slice_size = slice_end - off; last = slice_size == size; if (needs_inc) off %= 4; ret = step(nfp_prog, gpr, gpr_byte, off, slice_size, first, gpr != prev_gpr, last, lm3, needs_inc); if (ret) return ret; prev_gpr = gpr; first = false; gpr_byte += slice_size; if (gpr_byte >= 4) { gpr_byte -= 4; gpr++; } size -= slice_size; off += slice_size; } return 0; } static void wrp_alu_imm(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u32 imm) { swreg tmp_reg; if (alu_op == ALU_OP_AND) { if (!imm) wrp_immed(nfp_prog, reg_both(dst), 0); if (!imm || !~imm) return; } if (alu_op == ALU_OP_OR) { if (!~imm) wrp_immed(nfp_prog, reg_both(dst), ~0U); if (!imm || !~imm) return; } if (alu_op == ALU_OP_XOR) { if (!~imm) emit_alu(nfp_prog, reg_both(dst), reg_none(), ALU_OP_NOT, reg_b(dst)); if (!imm || !~imm) return; } tmp_reg = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, tmp_reg); } static int wrp_alu64_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op, bool skip) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ if (skip) { meta->flags |= FLAG_INSN_SKIP_NOOP; return 0; } wrp_alu_imm(nfp_prog, insn->dst_reg * 2, alu_op, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, alu_op, imm >> 32); return 0; } static int wrp_alu64_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op) { u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); emit_alu(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), alu_op, reg_b(src + 1)); return 0; } static int wrp_alu32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; wrp_alu_imm(nfp_prog, dst, alu_op, insn->imm); wrp_zext(nfp_prog, meta, dst); return 0; } static int wrp_alu32_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op) { u8 dst = meta->insn.dst_reg * 2, src = meta->insn.src_reg * 2; emit_alu(nfp_prog, reg_both(dst), reg_a(dst), alu_op, reg_b(src)); wrp_zext(nfp_prog, meta, dst); return 0; } static void wrp_test_reg_one(struct nfp_prog *nfp_prog, u8 dst, enum alu_op alu_op, u8 src, enum br_mask br_mask, u16 off) { emit_alu(nfp_prog, reg_none(), reg_a(dst), alu_op, reg_b(src)); emit_br(nfp_prog, br_mask, off, 0); } static int wrp_test_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, enum alu_op alu_op, enum br_mask br_mask) { const struct bpf_insn *insn = &meta->insn; wrp_test_reg_one(nfp_prog, insn->dst_reg * 2, alu_op, insn->src_reg * 2, br_mask, insn->off); if (is_mbpf_jmp64(meta)) wrp_test_reg_one(nfp_prog, insn->dst_reg * 2 + 1, alu_op, insn->src_reg * 2 + 1, br_mask, insn->off); return 0; } static const struct jmp_code_map { enum br_mask br_mask; bool swap; } jmp_code_map[] = { [BPF_JGT >> 4] = { BR_BLO, true }, [BPF_JGE >> 4] = { BR_BHS, false }, [BPF_JLT >> 4] = { BR_BLO, false }, [BPF_JLE >> 4] = { BR_BHS, true }, [BPF_JSGT >> 4] = { BR_BLT, true }, [BPF_JSGE >> 4] = { BR_BGE, false }, [BPF_JSLT >> 4] = { BR_BLT, false }, [BPF_JSLE >> 4] = { BR_BGE, true }, }; static const struct jmp_code_map *nfp_jmp_code_get(struct nfp_insn_meta *meta) { unsigned int op; op = BPF_OP(meta->insn.code) >> 4; /* br_mask of 0 is BR_BEQ which we don't use in jump code table */ if (WARN_ONCE(op >= ARRAY_SIZE(jmp_code_map) || !jmp_code_map[op].br_mask, "no code found for jump instruction")) return NULL; return &jmp_code_map[op]; } static int cmp_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ const struct jmp_code_map *code; enum alu_op alu_op, carry_op; u8 reg = insn->dst_reg * 2; swreg tmp_reg; code = nfp_jmp_code_get(meta); if (!code) return -EINVAL; alu_op = meta->jump_neg_op ? ALU_OP_ADD : ALU_OP_SUB; carry_op = meta->jump_neg_op ? ALU_OP_ADD_C : ALU_OP_SUB_C; tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); if (!code->swap) emit_alu(nfp_prog, reg_none(), reg_a(reg), alu_op, tmp_reg); else emit_alu(nfp_prog, reg_none(), tmp_reg, alu_op, reg_a(reg)); if (is_mbpf_jmp64(meta)) { tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); if (!code->swap) emit_alu(nfp_prog, reg_none(), reg_a(reg + 1), carry_op, tmp_reg); else emit_alu(nfp_prog, reg_none(), tmp_reg, carry_op, reg_a(reg + 1)); } emit_br(nfp_prog, code->br_mask, insn->off, 0); return 0; } static int cmp_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; const struct jmp_code_map *code; u8 areg, breg; code = nfp_jmp_code_get(meta); if (!code) return -EINVAL; areg = insn->dst_reg * 2; breg = insn->src_reg * 2; if (code->swap) { areg ^= breg; breg ^= areg; areg ^= breg; } emit_alu(nfp_prog, reg_none(), reg_a(areg), ALU_OP_SUB, reg_b(breg)); if (is_mbpf_jmp64(meta)) emit_alu(nfp_prog, reg_none(), reg_a(areg + 1), ALU_OP_SUB_C, reg_b(breg + 1)); emit_br(nfp_prog, code->br_mask, insn->off, 0); return 0; } static void wrp_end32(struct nfp_prog *nfp_prog, swreg reg_in, u8 gpr_out) { emit_ld_field(nfp_prog, reg_both(gpr_out), 0xf, reg_in, SHF_SC_R_ROT, 8); emit_ld_field(nfp_prog, reg_both(gpr_out), 0x5, reg_a(gpr_out), SHF_SC_R_ROT, 16); } static void wrp_mul_u32(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, swreg rreg, bool gen_high_half) { emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_1, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_2, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_3, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_32x32, MUL_STEP_4, rreg); emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_32x32, MUL_LAST, reg_none()); if (gen_high_half) emit_mul(nfp_prog, dst_hi, MUL_TYPE_STEP_32x32, MUL_LAST_2, reg_none()); else wrp_immed(nfp_prog, dst_hi, 0); } static void wrp_mul_u16(struct nfp_prog *nfp_prog, swreg dst_hi, swreg dst_lo, swreg lreg, swreg rreg) { emit_mul(nfp_prog, lreg, MUL_TYPE_START, MUL_STEP_NONE, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_1, rreg); emit_mul(nfp_prog, lreg, MUL_TYPE_STEP_16x16, MUL_STEP_2, rreg); emit_mul(nfp_prog, dst_lo, MUL_TYPE_STEP_16x16, MUL_LAST, reg_none()); } static int wrp_mul(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool gen_high_half, bool ropnd_from_reg) { swreg multiplier, multiplicand, dst_hi, dst_lo; const struct bpf_insn *insn = &meta->insn; u32 lopnd_max, ropnd_max; u8 dst_reg; dst_reg = insn->dst_reg; multiplicand = reg_a(dst_reg * 2); dst_hi = reg_both(dst_reg * 2 + 1); dst_lo = reg_both(dst_reg * 2); lopnd_max = meta->umax_dst; if (ropnd_from_reg) { multiplier = reg_b(insn->src_reg * 2); ropnd_max = meta->umax_src; } else { u32 imm = insn->imm; multiplier = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); ropnd_max = imm; } if (lopnd_max > U16_MAX || ropnd_max > U16_MAX) wrp_mul_u32(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier, gen_high_half); else wrp_mul_u16(nfp_prog, dst_hi, dst_lo, multiplicand, multiplier); return 0; } static int wrp_div_imm(struct nfp_prog *nfp_prog, u8 dst, u64 imm) { swreg dst_both = reg_both(dst), dst_a = reg_a(dst), dst_b = reg_a(dst); struct reciprocal_value_adv rvalue; u8 pre_shift, exp; swreg magic; if (imm > U32_MAX) { wrp_immed(nfp_prog, dst_both, 0); return 0; } /* NOTE: because we are using "reciprocal_value_adv" which doesn't * support "divisor > (1u << 31)", we need to JIT separate NFP sequence * to handle such case which actually equals to the result of unsigned * comparison "dst >= imm" which could be calculated using the following * NFP sequence: * * alu[--, dst, -, imm] * immed[imm, 0] * alu[dst, imm, +carry, 0] * */ if (imm > 1U << 31) { swreg tmp_b = ur_load_imm_any(nfp_prog, imm, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), dst_a, ALU_OP_SUB, tmp_b); wrp_immed(nfp_prog, imm_a(nfp_prog), 0); emit_alu(nfp_prog, dst_both, imm_a(nfp_prog), ALU_OP_ADD_C, reg_imm(0)); return 0; } rvalue = reciprocal_value_adv(imm, 32); exp = rvalue.exp; if (rvalue.is_wide_m && !(imm & 1)) { pre_shift = fls(imm & -imm) - 1; rvalue = reciprocal_value_adv(imm >> pre_shift, 32 - pre_shift); } else { pre_shift = 0; } magic = ur_load_imm_any(nfp_prog, rvalue.m, imm_b(nfp_prog)); if (imm == 1U << exp) { emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, SHF_SC_R_SHF, exp); } else if (rvalue.is_wide_m) { wrp_mul_u32(nfp_prog, imm_both(nfp_prog), reg_none(), dst_a, magic, true); emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_SUB, imm_b(nfp_prog)); emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, SHF_SC_R_SHF, 1); emit_alu(nfp_prog, dst_both, dst_a, ALU_OP_ADD, imm_b(nfp_prog)); emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, SHF_SC_R_SHF, rvalue.sh - 1); } else { if (pre_shift) emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, SHF_SC_R_SHF, pre_shift); wrp_mul_u32(nfp_prog, dst_both, reg_none(), dst_a, magic, true); emit_shf(nfp_prog, dst_both, reg_none(), SHF_OP_NONE, dst_b, SHF_SC_R_SHF, rvalue.sh); } return 0; } static int adjust_head(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { swreg tmp = imm_a(nfp_prog), tmp_len = imm_b(nfp_prog); struct nfp_bpf_cap_adjust_head *adjust_head; u32 ret_einval, end; adjust_head = &nfp_prog->bpf->adjust_head; /* Optimized version - 5 vs 14 cycles */ if (nfp_prog->adjust_head_location != UINT_MAX) { if (WARN_ON_ONCE(nfp_prog->adjust_head_location != meta->n)) return -EINVAL; emit_alu(nfp_prog, pptr_reg(nfp_prog), reg_a(2 * 2), ALU_OP_ADD, pptr_reg(nfp_prog)); emit_alu(nfp_prog, plen_reg(nfp_prog), plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); emit_alu(nfp_prog, pv_len(nfp_prog), pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); wrp_immed(nfp_prog, reg_both(0), 0); wrp_immed(nfp_prog, reg_both(1), 0); /* TODO: when adjust head is guaranteed to succeed we can * also eliminate the following if (r0 == 0) branch. */ return 0; } ret_einval = nfp_prog_current_offset(nfp_prog) + 14; end = ret_einval + 2; /* We need to use a temp because offset is just a part of the pkt ptr */ emit_alu(nfp_prog, tmp, reg_a(2 * 2), ALU_OP_ADD_2B, pptr_reg(nfp_prog)); /* Validate result will fit within FW datapath constraints */ emit_alu(nfp_prog, reg_none(), tmp, ALU_OP_SUB, reg_imm(adjust_head->off_min)); emit_br(nfp_prog, BR_BLO, ret_einval, 0); emit_alu(nfp_prog, reg_none(), reg_imm(adjust_head->off_max), ALU_OP_SUB, tmp); emit_br(nfp_prog, BR_BLO, ret_einval, 0); /* Validate the length is at least ETH_HLEN */ emit_alu(nfp_prog, tmp_len, plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); emit_alu(nfp_prog, reg_none(), tmp_len, ALU_OP_SUB, reg_imm(ETH_HLEN)); emit_br(nfp_prog, BR_BMI, ret_einval, 0); /* Load the ret code */ wrp_immed(nfp_prog, reg_both(0), 0); wrp_immed(nfp_prog, reg_both(1), 0); /* Modify the packet metadata */ emit_ld_field(nfp_prog, pptr_reg(nfp_prog), 0x3, tmp, SHF_SC_NONE, 0); /* Skip over the -EINVAL ret code (defer 2) */ emit_br(nfp_prog, BR_UNC, end, 2); emit_alu(nfp_prog, plen_reg(nfp_prog), plen_reg(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); emit_alu(nfp_prog, pv_len(nfp_prog), pv_len(nfp_prog), ALU_OP_SUB, reg_a(2 * 2)); /* return -EINVAL target */ if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) return -EINVAL; wrp_immed(nfp_prog, reg_both(0), -22); wrp_immed(nfp_prog, reg_both(1), ~0); if (!nfp_prog_confirm_current_offset(nfp_prog, end)) return -EINVAL; return 0; } static int adjust_tail(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u32 ret_einval, end; swreg plen, delta; BUILD_BUG_ON(plen_reg(nfp_prog) != reg_b(STATIC_REG_PKT_LEN)); plen = imm_a(nfp_prog); delta = reg_a(2 * 2); ret_einval = nfp_prog_current_offset(nfp_prog) + 9; end = nfp_prog_current_offset(nfp_prog) + 11; /* Calculate resulting length */ emit_alu(nfp_prog, plen, plen_reg(nfp_prog), ALU_OP_ADD, delta); /* delta == 0 is not allowed by the kernel, add must overflow to make * length smaller. */ emit_br(nfp_prog, BR_BCC, ret_einval, 0); /* if (new_len < 14) then -EINVAL */ emit_alu(nfp_prog, reg_none(), plen, ALU_OP_SUB, reg_imm(ETH_HLEN)); emit_br(nfp_prog, BR_BMI, ret_einval, 0); emit_alu(nfp_prog, plen_reg(nfp_prog), plen_reg(nfp_prog), ALU_OP_ADD, delta); emit_alu(nfp_prog, pv_len(nfp_prog), pv_len(nfp_prog), ALU_OP_ADD, delta); emit_br(nfp_prog, BR_UNC, end, 2); wrp_immed(nfp_prog, reg_both(0), 0); wrp_immed(nfp_prog, reg_both(1), 0); if (!nfp_prog_confirm_current_offset(nfp_prog, ret_einval)) return -EINVAL; wrp_immed(nfp_prog, reg_both(0), -22); wrp_immed(nfp_prog, reg_both(1), ~0); if (!nfp_prog_confirm_current_offset(nfp_prog, end)) return -EINVAL; return 0; } static int map_call_stack_common(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { bool load_lm_ptr; u32 ret_tgt; s64 lm_off; /* We only have to reload LM0 if the key is not at start of stack */ lm_off = nfp_prog->stack_frame_depth; lm_off += meta->arg2.reg.var_off.value + meta->arg2.reg.off; load_lm_ptr = meta->arg2.var_off || lm_off; /* Set LM0 to start of key */ if (load_lm_ptr) emit_csr_wr(nfp_prog, reg_b(2 * 2), NFP_CSR_ACT_LM_ADDR0); if (meta->func_id == BPF_FUNC_map_update_elem) emit_csr_wr(nfp_prog, reg_b(3 * 2), NFP_CSR_ACT_LM_ADDR2); emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, 2, RELO_BR_HELPER); ret_tgt = nfp_prog_current_offset(nfp_prog) + 2; /* Load map ID into A0 */ wrp_mov(nfp_prog, reg_a(0), reg_a(2)); /* Load the return address into B0 */ wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) return -EINVAL; /* Reset the LM0 pointer */ if (!load_lm_ptr) return 0; emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0); wrp_nops(nfp_prog, 3); return 0; } static int nfp_get_prandom_u32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { __emit_csr_rd(nfp_prog, NFP_CSR_PSEUDO_RND_NUM); /* CSR value is read in following immed[gpr, 0] */ emit_immed(nfp_prog, reg_both(0), 0, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); emit_immed(nfp_prog, reg_both(1), 0, IMMED_WIDTH_ALL, false, IMMED_SHIFT_0B); return 0; } static int nfp_perf_event_output(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { swreg ptr_type; u32 ret_tgt; ptr_type = ur_load_imm_any(nfp_prog, meta->arg1.type, imm_a(nfp_prog)); ret_tgt = nfp_prog_current_offset(nfp_prog) + 3; emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO + meta->func_id, 2, RELO_BR_HELPER); /* Load ptr type into A1 */ wrp_mov(nfp_prog, reg_a(1), ptr_type); /* Load the return address into B0 */ wrp_immed_relo(nfp_prog, reg_b(0), ret_tgt, RELO_IMMED_REL); if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) return -EINVAL; return 0; } static int nfp_queue_select(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u32 jmp_tgt; jmp_tgt = nfp_prog_current_offset(nfp_prog) + 5; /* Make sure the queue id fits into FW field */ emit_alu(nfp_prog, reg_none(), reg_a(meta->insn.src_reg * 2), ALU_OP_AND_NOT_B, reg_imm(0xff)); emit_br(nfp_prog, BR_BEQ, jmp_tgt, 2); /* Set the 'queue selected' bit and the queue value */ emit_shf(nfp_prog, pv_qsel_set(nfp_prog), pv_qsel_set(nfp_prog), SHF_OP_OR, reg_imm(1), SHF_SC_L_SHF, PKT_VEL_QSEL_SET_BIT); emit_ld_field(nfp_prog, pv_qsel_val(nfp_prog), 0x1, reg_b(meta->insn.src_reg * 2), SHF_SC_NONE, 0); /* Delay slots end here, we will jump over next instruction if queue * value fits into the field. */ emit_ld_field(nfp_prog, pv_qsel_val(nfp_prog), 0x1, reg_imm(NFP_NET_RXR_MAX), SHF_SC_NONE, 0); if (!nfp_prog_confirm_current_offset(nfp_prog, jmp_tgt)) return -EINVAL; return 0; } /* --- Callbacks --- */ static int mov_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; u8 src = insn->src_reg * 2; if (insn->src_reg == BPF_REG_10) { swreg stack_depth_reg; stack_depth_reg = ur_load_imm_any(nfp_prog, nfp_prog->stack_frame_depth, stack_imm(nfp_prog)); emit_alu(nfp_prog, reg_both(dst), stack_reg(nfp_prog), ALU_OP_ADD, stack_depth_reg); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } else { wrp_reg_mov(nfp_prog, dst, src); wrp_reg_mov(nfp_prog, dst + 1, src + 1); } return 0; } static int mov_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u64 imm = meta->insn.imm; /* sign extend */ wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2), imm & ~0U); wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), imm >> 32); return 0; } static int xor_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_XOR); } static int xor_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_XOR, !meta->insn.imm); } static int and_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_AND); } static int and_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_AND, !~meta->insn.imm); } static int or_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_reg(nfp_prog, meta, ALU_OP_OR); } static int or_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu64_imm(nfp_prog, meta, ALU_OP_OR, !meta->insn.imm); } static int add_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_a(insn->dst_reg * 2), ALU_OP_ADD, reg_b(insn->src_reg * 2)); emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_a(insn->dst_reg * 2 + 1), ALU_OP_ADD_C, reg_b(insn->src_reg * 2 + 1)); return 0; } static int add_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_ADD, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_ADD_C, imm >> 32); return 0; } static int sub_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_a(insn->dst_reg * 2), ALU_OP_SUB, reg_b(insn->src_reg * 2)); emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_a(insn->dst_reg * 2 + 1), ALU_OP_SUB_C, reg_b(insn->src_reg * 2 + 1)); return 0; } static int sub_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ wrp_alu_imm(nfp_prog, insn->dst_reg * 2, ALU_OP_SUB, imm & ~0U); wrp_alu_imm(nfp_prog, insn->dst_reg * 2 + 1, ALU_OP_SUB_C, imm >> 32); return 0; } static int mul_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_mul(nfp_prog, meta, true, true); } static int mul_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_mul(nfp_prog, meta, true, false); } static int div_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; return wrp_div_imm(nfp_prog, insn->dst_reg * 2, insn->imm); } static int div_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { /* NOTE: verifier hook has rejected cases for which verifier doesn't * know whether the source operand is constant or not. */ return wrp_div_imm(nfp_prog, meta->insn.dst_reg * 2, meta->umin_src); } static int neg_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, reg_both(insn->dst_reg * 2), reg_imm(0), ALU_OP_SUB, reg_b(insn->dst_reg * 2)); emit_alu(nfp_prog, reg_both(insn->dst_reg * 2 + 1), reg_imm(0), ALU_OP_SUB_C, reg_b(insn->dst_reg * 2 + 1)); return 0; } /* Pseudo code: * if shift_amt >= 32 * dst_high = dst_low << shift_amt[4:0] * dst_low = 0; * else * dst_high = (dst_high, dst_low) >> (32 - shift_amt) * dst_low = dst_low << shift_amt * * The indirect shift will use the same logic at runtime. */ static int __shl_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) { if (!shift_amt) return 0; if (shift_amt < 32) { emit_shf(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, 32 - shift_amt); emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF, shift_amt); } else if (shift_amt == 32) { wrp_reg_mov(nfp_prog, dst + 1, dst); wrp_immed(nfp_prog, reg_both(dst), 0); } else if (shift_amt > 32) { emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF, shift_amt - 32); wrp_immed(nfp_prog, reg_both(dst), 0); } return 0; } static int shl_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __shl_imm64(nfp_prog, dst, insn->imm); } static void shl_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, imm_both(nfp_prog), reg_imm(32), ALU_OP_SUB, reg_b(src)); emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF); } /* NOTE: for indirect left shift, HIGH part should be calculated first. */ static void shl_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF); } static void shl_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { shl_reg64_lt32_high(nfp_prog, dst, src); shl_reg64_lt32_low(nfp_prog, dst, src); } static void shl_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF); wrp_immed(nfp_prog, reg_both(dst), 0); } static int shl_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __shl_imm64(nfp_prog, dst, umin); src = insn->src_reg * 2; if (umax < 32) { shl_reg64_lt32(nfp_prog, dst, src); } else if (umin >= 32) { shl_reg64_ge32(nfp_prog, dst, src); } else { /* Generate different instruction sequences depending on runtime * value of shift amount. */ u16 label_ge32, label_end; label_ge32 = nfp_prog_current_offset(nfp_prog) + 7; emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); shl_reg64_lt32_high(nfp_prog, dst, src); label_end = nfp_prog_current_offset(nfp_prog) + 6; emit_br(nfp_prog, BR_UNC, label_end, 2); /* shl_reg64_lt32_low packed in delay slot. */ shl_reg64_lt32_low(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) return -EINVAL; shl_reg64_ge32(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) return -EINVAL; } return 0; } /* Pseudo code: * if shift_amt >= 32 * dst_high = 0; * dst_low = dst_high >> shift_amt[4:0] * else * dst_high = dst_high >> shift_amt * dst_low = (dst_high, dst_low) >> shift_amt * * The indirect shift will use the same logic at runtime. */ static int __shr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) { if (!shift_amt) return 0; if (shift_amt < 32) { emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, shift_amt); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); } else if (shift_amt == 32) { wrp_reg_mov(nfp_prog, dst, dst + 1); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } else if (shift_amt > 32) { emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } return 0; } static int shr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __shr_imm64(nfp_prog, dst, insn->imm); } /* NOTE: for indirect right shift, LOW part should be calculated first. */ static void shr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF); } static void shr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF); } static void shr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { shr_reg64_lt32_low(nfp_prog, dst, src); shr_reg64_lt32_high(nfp_prog, dst, src); } static void shr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst + 1), SHF_SC_R_SHF); wrp_immed(nfp_prog, reg_both(dst + 1), 0); } static int shr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __shr_imm64(nfp_prog, dst, umin); src = insn->src_reg * 2; if (umax < 32) { shr_reg64_lt32(nfp_prog, dst, src); } else if (umin >= 32) { shr_reg64_ge32(nfp_prog, dst, src); } else { /* Generate different instruction sequences depending on runtime * value of shift amount. */ u16 label_ge32, label_end; label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); shr_reg64_lt32_low(nfp_prog, dst, src); label_end = nfp_prog_current_offset(nfp_prog) + 6; emit_br(nfp_prog, BR_UNC, label_end, 2); /* shr_reg64_lt32_high packed in delay slot. */ shr_reg64_lt32_high(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) return -EINVAL; shr_reg64_ge32(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) return -EINVAL; } return 0; } /* Code logic is the same as __shr_imm64 except ashr requires signedness bit * told through PREV_ALU result. */ static int __ashr_imm64(struct nfp_prog *nfp_prog, u8 dst, u8 shift_amt) { if (!shift_amt) return 0; if (shift_amt < 32) { emit_shf(nfp_prog, reg_both(dst), reg_a(dst + 1), SHF_OP_NONE, reg_b(dst), SHF_SC_R_DSHF, shift_amt); /* Set signedness bit. */ emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF, shift_amt); } else if (shift_amt == 32) { /* NOTE: this also helps setting signedness bit. */ wrp_reg_mov(nfp_prog, dst, dst + 1); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF, 31); } else if (shift_amt > 32) { emit_alu(nfp_prog, reg_none(), reg_a(dst + 1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF, shift_amt - 32); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF, 31); } return 0; } static int ashr_imm64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __ashr_imm64(nfp_prog, dst, insn->imm); } static void ashr_reg64_lt32_high(struct nfp_prog *nfp_prog, u8 dst, u8 src) { /* NOTE: the first insn will set both indirect shift amount (source A) * and signedness bit (MSB of result). */ emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); emit_shf_indir(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF); } static void ashr_reg64_lt32_low(struct nfp_prog *nfp_prog, u8 dst, u8 src) { /* NOTE: it is the same as logic shift because we don't need to shift in * signedness bit when the shift amount is less than 32. */ return shr_reg64_lt32_low(nfp_prog, dst, src); } static void ashr_reg64_lt32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { ashr_reg64_lt32_low(nfp_prog, dst, src); ashr_reg64_lt32_high(nfp_prog, dst, src); } static void ashr_reg64_ge32(struct nfp_prog *nfp_prog, u8 dst, u8 src) { emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst + 1)); emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF); emit_shf(nfp_prog, reg_both(dst + 1), reg_none(), SHF_OP_ASHR, reg_b(dst + 1), SHF_SC_R_SHF, 31); } /* Like ashr_imm64, but need to use indirect shift. */ static int ashr_reg64(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __ashr_imm64(nfp_prog, dst, umin); src = insn->src_reg * 2; if (umax < 32) { ashr_reg64_lt32(nfp_prog, dst, src); } else if (umin >= 32) { ashr_reg64_ge32(nfp_prog, dst, src); } else { u16 label_ge32, label_end; label_ge32 = nfp_prog_current_offset(nfp_prog) + 6; emit_br_bset(nfp_prog, reg_a(src), 5, label_ge32, 0); ashr_reg64_lt32_low(nfp_prog, dst, src); label_end = nfp_prog_current_offset(nfp_prog) + 6; emit_br(nfp_prog, BR_UNC, label_end, 2); /* ashr_reg64_lt32_high packed in delay slot. */ ashr_reg64_lt32_high(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_ge32)) return -EINVAL; ashr_reg64_ge32(nfp_prog, dst, src); if (!nfp_prog_confirm_current_offset(nfp_prog, label_end)) return -EINVAL; } return 0; } static int mov_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; wrp_reg_mov(nfp_prog, insn->dst_reg * 2, insn->src_reg * 2); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int mov_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2), insn->imm); wrp_immed(nfp_prog, reg_both(insn->dst_reg * 2 + 1), 0); return 0; } static int xor_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_XOR); } static int xor_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_XOR); } static int and_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_AND); } static int and_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_AND); } static int or_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_OR); } static int or_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_OR); } static int add_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_ADD); } static int add_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_ADD); } static int sub_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_reg(nfp_prog, meta, ALU_OP_SUB); } static int sub_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_alu32_imm(nfp_prog, meta, ALU_OP_SUB); } static int mul_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_mul(nfp_prog, meta, false, true); } static int mul_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_mul(nfp_prog, meta, false, false); } static int div_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return div_reg64(nfp_prog, meta); } static int div_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return div_imm64(nfp_prog, meta); } static int neg_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u8 dst = meta->insn.dst_reg * 2; emit_alu(nfp_prog, reg_both(dst), reg_imm(0), ALU_OP_SUB, reg_b(dst)); wrp_zext(nfp_prog, meta, dst); return 0; } static int __ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst, u8 shift_amt) { if (shift_amt) { /* Set signedness bit (MSB of result). */ emit_alu(nfp_prog, reg_none(), reg_a(dst), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, reg_b(dst), SHF_SC_R_SHF, shift_amt); } wrp_zext(nfp_prog, meta, dst); return 0; } static int ashr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __ashr_imm(nfp_prog, meta, dst, umin); src = insn->src_reg * 2; /* NOTE: the first insn will set both indirect shift amount (source A) * and signedness bit (MSB of result). */ emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_b(dst)); emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_ASHR, reg_b(dst), SHF_SC_R_SHF); wrp_zext(nfp_prog, meta, dst); return 0; } static int ashr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __ashr_imm(nfp_prog, meta, dst, insn->imm); } static int __shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst, u8 shift_amt) { if (shift_amt) emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_R_SHF, shift_amt); wrp_zext(nfp_prog, meta, dst); return 0; } static int shr_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __shr_imm(nfp_prog, meta, dst, insn->imm); } static int shr_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __shr_imm(nfp_prog, meta, dst, umin); src = insn->src_reg * 2; emit_alu(nfp_prog, reg_none(), reg_a(src), ALU_OP_OR, reg_imm(0)); emit_shf_indir(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_R_SHF); wrp_zext(nfp_prog, meta, dst); return 0; } static int __shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 dst, u8 shift_amt) { if (shift_amt) emit_shf(nfp_prog, reg_both(dst), reg_none(), SHF_OP_NONE, reg_b(dst), SHF_SC_L_SHF, shift_amt); wrp_zext(nfp_prog, meta, dst); return 0; } static int shl_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 dst = insn->dst_reg * 2; return __shl_imm(nfp_prog, meta, dst, insn->imm); } static int shl_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 umin, umax; u8 dst, src; dst = insn->dst_reg * 2; umin = meta->umin_src; umax = meta->umax_src; if (umin == umax) return __shl_imm(nfp_prog, meta, dst, umin); src = insn->src_reg * 2; shl_reg64_lt32_low(nfp_prog, dst, src); wrp_zext(nfp_prog, meta, dst); return 0; } static int end_reg32(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u8 gpr = insn->dst_reg * 2; switch (insn->imm) { case 16: emit_ld_field(nfp_prog, reg_both(gpr), 0x9, reg_b(gpr), SHF_SC_R_ROT, 8); emit_ld_field(nfp_prog, reg_both(gpr), 0xe, reg_a(gpr), SHF_SC_R_SHF, 16); wrp_immed(nfp_prog, reg_both(gpr + 1), 0); break; case 32: wrp_end32(nfp_prog, reg_a(gpr), gpr); wrp_immed(nfp_prog, reg_both(gpr + 1), 0); break; case 64: wrp_mov(nfp_prog, imm_a(nfp_prog), reg_b(gpr + 1)); wrp_end32(nfp_prog, reg_a(gpr), gpr + 1); wrp_end32(nfp_prog, imm_a(nfp_prog), gpr); break; } return 0; } static int imm_ld8_part2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { struct nfp_insn_meta *prev = nfp_meta_prev(meta); u32 imm_lo, imm_hi; u8 dst; dst = prev->insn.dst_reg * 2; imm_lo = prev->insn.imm; imm_hi = meta->insn.imm; wrp_immed(nfp_prog, reg_both(dst), imm_lo); /* mov is always 1 insn, load imm may be two, so try to use mov */ if (imm_hi == imm_lo) wrp_mov(nfp_prog, reg_both(dst + 1), reg_a(dst)); else wrp_immed(nfp_prog, reg_both(dst + 1), imm_hi); return 0; } static int imm_ld8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { meta->double_cb = imm_ld8_part2; return 0; } static int data_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta, meta->insn.imm, 1); } static int data_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta, meta->insn.imm, 2); } static int data_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ld(nfp_prog, meta, meta->insn.imm, 4); } static int data_ind_ld1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm, meta->insn.src_reg * 2, 1); } static int data_ind_ld2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm, meta->insn.src_reg * 2, 2); } static int data_ind_ld4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return construct_data_ind_ld(nfp_prog, meta, meta->insn.imm, meta->insn.src_reg * 2, 4); } static int mem_ldx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size, unsigned int ptr_off) { return mem_op_stack(nfp_prog, meta, size, ptr_off, meta->insn.dst_reg * 2, meta->insn.src_reg * 2, true, wrp_lmem_load); } static int mem_ldx_skb(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 size) { swreg dst = reg_both(meta->insn.dst_reg * 2); switch (meta->insn.off) { case offsetof(struct __sk_buff, len): if (size != FIELD_SIZEOF(struct __sk_buff, len)) return -EOPNOTSUPP; wrp_mov(nfp_prog, dst, plen_reg(nfp_prog)); break; case offsetof(struct __sk_buff, data): if (size != FIELD_SIZEOF(struct __sk_buff, data)) return -EOPNOTSUPP; wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); break; case offsetof(struct __sk_buff, data_end): if (size != FIELD_SIZEOF(struct __sk_buff, data_end)) return -EOPNOTSUPP; emit_alu(nfp_prog, dst, plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); break; default: return -EOPNOTSUPP; } wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); return 0; } static int mem_ldx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, u8 size) { swreg dst = reg_both(meta->insn.dst_reg * 2); switch (meta->insn.off) { case offsetof(struct xdp_md, data): if (size != FIELD_SIZEOF(struct xdp_md, data)) return -EOPNOTSUPP; wrp_mov(nfp_prog, dst, pptr_reg(nfp_prog)); break; case offsetof(struct xdp_md, data_end): if (size != FIELD_SIZEOF(struct xdp_md, data_end)) return -EOPNOTSUPP; emit_alu(nfp_prog, dst, plen_reg(nfp_prog), ALU_OP_ADD, pptr_reg(nfp_prog)); break; default: return -EOPNOTSUPP; } wrp_immed(nfp_prog, reg_both(meta->insn.dst_reg * 2 + 1), 0); return 0; } static int mem_ldx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { swreg tmp_reg; tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); return data_ld_host_order_addr32(nfp_prog, meta, meta->insn.src_reg * 2, tmp_reg, meta->insn.dst_reg * 2, size); } static int mem_ldx_emem(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { swreg tmp_reg; tmp_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); return data_ld_host_order_addr40(nfp_prog, meta, meta->insn.src_reg * 2, tmp_reg, meta->insn.dst_reg * 2, size); } static void mem_ldx_data_init_pktcache(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { s16 range_start = meta->pkt_cache.range_start; s16 range_end = meta->pkt_cache.range_end; swreg src_base, off; u8 xfer_num, len; bool indir; off = re_load_imm_any(nfp_prog, range_start, imm_b(nfp_prog)); src_base = reg_a(meta->insn.src_reg * 2); len = range_end - range_start; xfer_num = round_up(len, REG_WIDTH) / REG_WIDTH; indir = len > 8 * REG_WIDTH; /* Setup PREV_ALU for indirect mode. */ if (indir) wrp_immed(nfp_prog, reg_none(), CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, xfer_num - 1)); /* Cache memory into transfer-in registers. */ emit_cmd_any(nfp_prog, CMD_TGT_READ32_SWAP, CMD_MODE_32b, 0, src_base, off, xfer_num - 1, CMD_CTX_SWAP, indir); } static int mem_ldx_data_from_pktcache_unaligned(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { s16 range_start = meta->pkt_cache.range_start; s16 insn_off = meta->insn.off - range_start; swreg dst_lo, dst_hi, src_lo, src_mid; u8 dst_gpr = meta->insn.dst_reg * 2; u8 len_lo = size, len_mid = 0; u8 idx = insn_off / REG_WIDTH; u8 off = insn_off % REG_WIDTH; dst_hi = reg_both(dst_gpr + 1); dst_lo = reg_both(dst_gpr); src_lo = reg_xfer(idx); /* The read length could involve as many as three registers. */ if (size > REG_WIDTH - off) { /* Calculate the part in the second register. */ len_lo = REG_WIDTH - off; len_mid = size - len_lo; /* Calculate the part in the third register. */ if (size > 2 * REG_WIDTH - off) len_mid = REG_WIDTH; } wrp_reg_subpart(nfp_prog, dst_lo, src_lo, len_lo, off); if (!len_mid) { wrp_zext(nfp_prog, meta, dst_gpr); return 0; } src_mid = reg_xfer(idx + 1); if (size <= REG_WIDTH) { wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, len_mid, len_lo); wrp_zext(nfp_prog, meta, dst_gpr); } else { swreg src_hi = reg_xfer(idx + 2); wrp_reg_or_subpart(nfp_prog, dst_lo, src_mid, REG_WIDTH - len_lo, len_lo); wrp_reg_subpart(nfp_prog, dst_hi, src_mid, len_lo, REG_WIDTH - len_lo); wrp_reg_or_subpart(nfp_prog, dst_hi, src_hi, REG_WIDTH - len_lo, len_lo); } return 0; } static int mem_ldx_data_from_pktcache_aligned(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { swreg dst_lo, dst_hi, src_lo; u8 dst_gpr, idx; idx = (meta->insn.off - meta->pkt_cache.range_start) / REG_WIDTH; dst_gpr = meta->insn.dst_reg * 2; dst_hi = reg_both(dst_gpr + 1); dst_lo = reg_both(dst_gpr); src_lo = reg_xfer(idx); if (size < REG_WIDTH) { wrp_reg_subpart(nfp_prog, dst_lo, src_lo, size, 0); wrp_zext(nfp_prog, meta, dst_gpr); } else if (size == REG_WIDTH) { wrp_mov(nfp_prog, dst_lo, src_lo); wrp_zext(nfp_prog, meta, dst_gpr); } else { swreg src_hi = reg_xfer(idx + 1); wrp_mov(nfp_prog, dst_lo, src_lo); wrp_mov(nfp_prog, dst_hi, src_hi); } return 0; } static int mem_ldx_data_from_pktcache(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { u8 off = meta->insn.off - meta->pkt_cache.range_start; if (IS_ALIGNED(off, REG_WIDTH)) return mem_ldx_data_from_pktcache_aligned(nfp_prog, meta, size); return mem_ldx_data_from_pktcache_unaligned(nfp_prog, meta, size); } static int mem_ldx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { if (meta->ldst_gather_len) return nfp_cpp_memcpy(nfp_prog, meta); if (meta->ptr.type == PTR_TO_CTX) { if (nfp_prog->type == BPF_PROG_TYPE_XDP) return mem_ldx_xdp(nfp_prog, meta, size); else return mem_ldx_skb(nfp_prog, meta, size); } if (meta->ptr.type == PTR_TO_PACKET) { if (meta->pkt_cache.range_end) { if (meta->pkt_cache.do_init) mem_ldx_data_init_pktcache(nfp_prog, meta); return mem_ldx_data_from_pktcache(nfp_prog, meta, size); } else { return mem_ldx_data(nfp_prog, meta, size); } } if (meta->ptr.type == PTR_TO_STACK) return mem_ldx_stack(nfp_prog, meta, size, meta->ptr.off + meta->ptr.var_off.value); if (meta->ptr.type == PTR_TO_MAP_VALUE) return mem_ldx_emem(nfp_prog, meta, size); return -EOPNOTSUPP; } static int mem_ldx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_ldx(nfp_prog, meta, 1); } static int mem_ldx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_ldx(nfp_prog, meta, 2); } static int mem_ldx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_ldx(nfp_prog, meta, 4); } static int mem_ldx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_ldx(nfp_prog, meta, 8); } static int mem_st_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { u64 imm = meta->insn.imm; /* sign extend */ swreg off_reg; off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); return data_st_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, imm, size); } static int mem_st(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { if (meta->ptr.type == PTR_TO_PACKET) return mem_st_data(nfp_prog, meta, size); return -EOPNOTSUPP; } static int mem_st1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_st(nfp_prog, meta, 1); } static int mem_st2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_st(nfp_prog, meta, 2); } static int mem_st4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_st(nfp_prog, meta, 4); } static int mem_st8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_st(nfp_prog, meta, 8); } static int mem_stx_data(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { swreg off_reg; off_reg = re_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); return data_stx_host_order(nfp_prog, meta->insn.dst_reg * 2, off_reg, meta->insn.src_reg * 2, size); } static int mem_stx_stack(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size, unsigned int ptr_off) { return mem_op_stack(nfp_prog, meta, size, ptr_off, meta->insn.src_reg * 2, meta->insn.dst_reg * 2, false, wrp_lmem_store); } static int mem_stx_xdp(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { switch (meta->insn.off) { case offsetof(struct xdp_md, rx_queue_index): return nfp_queue_select(nfp_prog, meta); } WARN_ON_ONCE(1); /* verifier should have rejected bad accesses */ return -EOPNOTSUPP; } static int mem_stx(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, unsigned int size) { if (meta->ptr.type == PTR_TO_PACKET) return mem_stx_data(nfp_prog, meta, size); if (meta->ptr.type == PTR_TO_STACK) return mem_stx_stack(nfp_prog, meta, size, meta->ptr.off + meta->ptr.var_off.value); return -EOPNOTSUPP; } static int mem_stx1(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_stx(nfp_prog, meta, 1); } static int mem_stx2(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_stx(nfp_prog, meta, 2); } static int mem_stx4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (meta->ptr.type == PTR_TO_CTX) if (nfp_prog->type == BPF_PROG_TYPE_XDP) return mem_stx_xdp(nfp_prog, meta); return mem_stx(nfp_prog, meta, 4); } static int mem_stx8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_stx(nfp_prog, meta, 8); } static int mem_xadd(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, bool is64) { u8 dst_gpr = meta->insn.dst_reg * 2; u8 src_gpr = meta->insn.src_reg * 2; unsigned int full_add, out; swreg addra, addrb, off; off = ur_load_imm_any(nfp_prog, meta->insn.off, imm_b(nfp_prog)); /* We can fit 16 bits into command immediate, if we know the immediate * is guaranteed to either always or never fit into 16 bit we only * generate code to handle that particular case, otherwise generate * code for both. */ out = nfp_prog_current_offset(nfp_prog); full_add = nfp_prog_current_offset(nfp_prog); if (meta->insn.off) { out += 2; full_add += 2; } if (meta->xadd_maybe_16bit) { out += 3; full_add += 3; } if (meta->xadd_over_16bit) out += 2 + is64; if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { out += 5; full_add += 5; } /* Generate the branch for choosing add_imm vs add */ if (meta->xadd_maybe_16bit && meta->xadd_over_16bit) { swreg max_imm = imm_a(nfp_prog); wrp_immed(nfp_prog, max_imm, 0xffff); emit_alu(nfp_prog, reg_none(), max_imm, ALU_OP_SUB, reg_b(src_gpr)); emit_alu(nfp_prog, reg_none(), reg_imm(0), ALU_OP_SUB_C, reg_b(src_gpr + 1)); emit_br(nfp_prog, BR_BLO, full_add, meta->insn.off ? 2 : 0); /* defer for add */ } /* If insn has an offset add to the address */ if (!meta->insn.off) { addra = reg_a(dst_gpr); addrb = reg_b(dst_gpr + 1); } else { emit_alu(nfp_prog, imma_a(nfp_prog), reg_a(dst_gpr), ALU_OP_ADD, off); emit_alu(nfp_prog, imma_b(nfp_prog), reg_a(dst_gpr + 1), ALU_OP_ADD_C, reg_imm(0)); addra = imma_a(nfp_prog); addrb = imma_b(nfp_prog); } /* Generate the add_imm if 16 bits are possible */ if (meta->xadd_maybe_16bit) { swreg prev_alu = imm_a(nfp_prog); wrp_immed(nfp_prog, prev_alu, FIELD_PREP(CMD_OVE_DATA, 2) | CMD_OVE_LEN | FIELD_PREP(CMD_OV_LEN, 0x8 | is64 << 2)); wrp_reg_or_subpart(nfp_prog, prev_alu, reg_b(src_gpr), 2, 2); emit_cmd_indir(nfp_prog, CMD_TGT_ADD_IMM, CMD_MODE_40b_BA, 0, addra, addrb, 0, CMD_CTX_NO_SWAP); if (meta->xadd_over_16bit) emit_br(nfp_prog, BR_UNC, out, 0); } if (!nfp_prog_confirm_current_offset(nfp_prog, full_add)) return -EINVAL; /* Generate the add if 16 bits are not guaranteed */ if (meta->xadd_over_16bit) { emit_cmd(nfp_prog, CMD_TGT_ADD, CMD_MODE_40b_BA, 0, addra, addrb, is64 << 2, is64 ? CMD_CTX_SWAP_DEFER2 : CMD_CTX_SWAP_DEFER1); wrp_mov(nfp_prog, reg_xfer(0), reg_a(src_gpr)); if (is64) wrp_mov(nfp_prog, reg_xfer(1), reg_a(src_gpr + 1)); } if (!nfp_prog_confirm_current_offset(nfp_prog, out)) return -EINVAL; return 0; } static int mem_xadd4(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_xadd(nfp_prog, meta, false); } static int mem_xadd8(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return mem_xadd(nfp_prog, meta, true); } static int jump(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { emit_br(nfp_prog, BR_UNC, meta->insn.off, 0); return 0; } static int jeq_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ swreg or1, or2, tmp_reg; or1 = reg_a(insn->dst_reg * 2); or2 = reg_b(insn->dst_reg * 2 + 1); if (imm & ~0U) { tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); or1 = imm_a(nfp_prog); } if (imm >> 32) { tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); or2 = imm_b(nfp_prog); } emit_alu(nfp_prog, reg_none(), or1, ALU_OP_OR, or2); emit_br(nfp_prog, BR_BEQ, insn->off, 0); return 0; } static int jeq32_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; swreg tmp_reg; tmp_reg = ur_load_imm_any(nfp_prog, insn->imm, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); emit_br(nfp_prog, BR_BEQ, insn->off, 0); return 0; } static int jset_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ u8 dst_gpr = insn->dst_reg * 2; swreg tmp_reg; tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(dst_gpr), ALU_OP_AND, tmp_reg); /* Upper word of the mask can only be 0 or ~0 from sign extension, * so either ignore it or OR the whole thing in. */ if (is_mbpf_jmp64(meta) && imm >> 32) { emit_alu(nfp_prog, reg_none(), reg_a(dst_gpr + 1), ALU_OP_OR, imm_b(nfp_prog)); } emit_br(nfp_prog, BR_BNE, insn->off, 0); return 0; } static int jne_imm(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; u64 imm = insn->imm; /* sign extend */ bool is_jmp32 = is_mbpf_jmp32(meta); swreg tmp_reg; if (!imm) { if (is_jmp32) emit_alu(nfp_prog, reg_none(), reg_none(), ALU_OP_NONE, reg_b(insn->dst_reg * 2)); else emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_OR, reg_b(insn->dst_reg * 2 + 1)); emit_br(nfp_prog, BR_BNE, insn->off, 0); return 0; } tmp_reg = ur_load_imm_any(nfp_prog, imm & ~0U, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2), ALU_OP_XOR, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); if (is_jmp32) return 0; tmp_reg = ur_load_imm_any(nfp_prog, imm >> 32, imm_b(nfp_prog)); emit_alu(nfp_prog, reg_none(), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, tmp_reg); emit_br(nfp_prog, BR_BNE, insn->off, 0); return 0; } static int jeq_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { const struct bpf_insn *insn = &meta->insn; emit_alu(nfp_prog, imm_a(nfp_prog), reg_a(insn->dst_reg * 2), ALU_OP_XOR, reg_b(insn->src_reg * 2)); if (is_mbpf_jmp64(meta)) { emit_alu(nfp_prog, imm_b(nfp_prog), reg_a(insn->dst_reg * 2 + 1), ALU_OP_XOR, reg_b(insn->src_reg * 2 + 1)); emit_alu(nfp_prog, reg_none(), imm_a(nfp_prog), ALU_OP_OR, imm_b(nfp_prog)); } emit_br(nfp_prog, BR_BEQ, insn->off, 0); return 0; } static int jset_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_test_reg(nfp_prog, meta, ALU_OP_AND, BR_BNE); } static int jne_reg(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { return wrp_test_reg(nfp_prog, meta, ALU_OP_XOR, BR_BNE); } static int bpf_to_bpf_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { u32 ret_tgt, stack_depth, offset_br; swreg tmp_reg; stack_depth = round_up(nfp_prog->stack_frame_depth, STACK_FRAME_ALIGN); /* Space for saving the return address is accounted for by the callee, * so stack_depth can be zero for the main function. */ if (stack_depth) { tmp_reg = ur_load_imm_any(nfp_prog, stack_depth, stack_imm(nfp_prog)); emit_alu(nfp_prog, stack_reg(nfp_prog), stack_reg(nfp_prog), ALU_OP_ADD, tmp_reg); emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0); } /* Two cases for jumping to the callee: * * - If callee uses and needs to save R6~R9 then: * 1. Put the start offset of the callee into imm_b(). This will * require a fixup step, as we do not necessarily know this * address yet. * 2. Put the return address from the callee to the caller into * register ret_reg(). * 3. (After defer slots are consumed) Jump to the subroutine that * pushes the registers to the stack. * The subroutine acts as a trampoline, and returns to the address in * imm_b(), i.e. jumps to the callee. * * - If callee does not need to save R6~R9 then just load return * address to the caller in ret_reg(), and jump to the callee * directly. * * Using ret_reg() to pass the return address to the callee is set here * as a convention. The callee can then push this address onto its * stack frame in its prologue. The advantages of passing the return * address through ret_reg(), instead of pushing it to the stack right * here, are the following: * - It looks cleaner. * - If the called function is called multiple time, we get a lower * program size. * - We save two no-op instructions that should be added just before * the emit_br() when stack depth is not null otherwise. * - If we ever find a register to hold the return address during whole * execution of the callee, we will not have to push the return * address to the stack for leaf functions. */ if (!meta->jmp_dst) { pr_err("BUG: BPF-to-BPF call has no destination recorded\n"); return -ELOOP; } if (nfp_prog->subprog[meta->jmp_dst->subprog_idx].needs_reg_push) { ret_tgt = nfp_prog_current_offset(nfp_prog) + 3; emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_GO_CALL_PUSH_REGS); offset_br = nfp_prog_current_offset(nfp_prog); wrp_immed_relo(nfp_prog, imm_b(nfp_prog), 0, RELO_IMMED_REL); } else { ret_tgt = nfp_prog_current_offset(nfp_prog) + 2; emit_br(nfp_prog, BR_UNC, meta->insn.imm, 1); offset_br = nfp_prog_current_offset(nfp_prog); } wrp_immed_relo(nfp_prog, ret_reg(nfp_prog), ret_tgt, RELO_IMMED_REL); if (!nfp_prog_confirm_current_offset(nfp_prog, ret_tgt)) return -EINVAL; if (stack_depth) { tmp_reg = ur_load_imm_any(nfp_prog, stack_depth, stack_imm(nfp_prog)); emit_alu(nfp_prog, stack_reg(nfp_prog), stack_reg(nfp_prog), ALU_OP_SUB, tmp_reg); emit_csr_wr(nfp_prog, stack_reg(nfp_prog), NFP_CSR_ACT_LM_ADDR0); wrp_nops(nfp_prog, 3); } meta->num_insns_after_br = nfp_prog_current_offset(nfp_prog); meta->num_insns_after_br -= offset_br; return 0; } static int helper_call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { switch (meta->insn.imm) { case BPF_FUNC_xdp_adjust_head: return adjust_head(nfp_prog, meta); case BPF_FUNC_xdp_adjust_tail: return adjust_tail(nfp_prog, meta); case BPF_FUNC_map_lookup_elem: case BPF_FUNC_map_update_elem: case BPF_FUNC_map_delete_elem: return map_call_stack_common(nfp_prog, meta); case BPF_FUNC_get_prandom_u32: return nfp_get_prandom_u32(nfp_prog, meta); case BPF_FUNC_perf_event_output: return nfp_perf_event_output(nfp_prog, meta); default: WARN_ONCE(1, "verifier allowed unsupported function\n"); return -EOPNOTSUPP; } } static int call(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (is_mbpf_pseudo_call(meta)) return bpf_to_bpf_call(nfp_prog, meta); else return helper_call(nfp_prog, meta); } static bool nfp_is_main_function(struct nfp_insn_meta *meta) { return meta->subprog_idx == 0; } static int goto_out(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 0, RELO_BR_GO_OUT); return 0; } static int nfp_subprog_epilogue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (nfp_prog->subprog[meta->subprog_idx].needs_reg_push) { /* Pop R6~R9 to the stack via related subroutine. * We loaded the return address to the caller into ret_reg(). * This means that the subroutine does not come back here, we * make it jump back to the subprogram caller directly! */ emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 1, RELO_BR_GO_CALL_POP_REGS); /* Pop return address from the stack. */ wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0)); } else { /* Pop return address from the stack. */ wrp_mov(nfp_prog, ret_reg(nfp_prog), reg_lm(0, 0)); /* Jump back to caller if no callee-saved registers were used * by the subprogram. */ emit_rtn(nfp_prog, ret_reg(nfp_prog), 0); } return 0; } static int jmp_exit(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { if (nfp_is_main_function(meta)) return goto_out(nfp_prog, meta); else return nfp_subprog_epilogue(nfp_prog, meta); } static const instr_cb_t instr_cb[256] = { [BPF_ALU64 | BPF_MOV | BPF_X] = mov_reg64, [BPF_ALU64 | BPF_MOV | BPF_K] = mov_imm64, [BPF_ALU64 | BPF_XOR | BPF_X] = xor_reg64, [BPF_ALU64 | BPF_XOR | BPF_K] = xor_imm64, [BPF_ALU64 | BPF_AND | BPF_X] = and_reg64, [BPF_ALU64 | BPF_AND | BPF_K] = and_imm64, [BPF_ALU64 | BPF_OR | BPF_X] = or_reg64, [BPF_ALU64 | BPF_OR | BPF_K] = or_imm64, [BPF_ALU64 | BPF_ADD | BPF_X] = add_reg64, [BPF_ALU64 | BPF_ADD | BPF_K] = add_imm64, [BPF_ALU64 | BPF_SUB | BPF_X] = sub_reg64, [BPF_ALU64 | BPF_SUB | BPF_K] = sub_imm64, [BPF_ALU64 | BPF_MUL | BPF_X] = mul_reg64, [BPF_ALU64 | BPF_MUL | BPF_K] = mul_imm64, [BPF_ALU64 | BPF_DIV | BPF_X] = div_reg64, [BPF_ALU64 | BPF_DIV | BPF_K] = div_imm64, [BPF_ALU64 | BPF_NEG] = neg_reg64, [BPF_ALU64 | BPF_LSH | BPF_X] = shl_reg64, [BPF_ALU64 | BPF_LSH | BPF_K] = shl_imm64, [BPF_ALU64 | BPF_RSH | BPF_X] = shr_reg64, [BPF_ALU64 | BPF_RSH | BPF_K] = shr_imm64, [BPF_ALU64 | BPF_ARSH | BPF_X] = ashr_reg64, [BPF_ALU64 | BPF_ARSH | BPF_K] = ashr_imm64, [BPF_ALU | BPF_MOV | BPF_X] = mov_reg, [BPF_ALU | BPF_MOV | BPF_K] = mov_imm, [BPF_ALU | BPF_XOR | BPF_X] = xor_reg, [BPF_ALU | BPF_XOR | BPF_K] = xor_imm, [BPF_ALU | BPF_AND | BPF_X] = and_reg, [BPF_ALU | BPF_AND | BPF_K] = and_imm, [BPF_ALU | BPF_OR | BPF_X] = or_reg, [BPF_ALU | BPF_OR | BPF_K] = or_imm, [BPF_ALU | BPF_ADD | BPF_X] = add_reg, [BPF_ALU | BPF_ADD | BPF_K] = add_imm, [BPF_ALU | BPF_SUB | BPF_X] = sub_reg, [BPF_ALU | BPF_SUB | BPF_K] = sub_imm, [BPF_ALU | BPF_MUL | BPF_X] = mul_reg, [BPF_ALU | BPF_MUL | BPF_K] = mul_imm, [BPF_ALU | BPF_DIV | BPF_X] = div_reg, [BPF_ALU | BPF_DIV | BPF_K] = div_imm, [BPF_ALU | BPF_NEG] = neg_reg, [BPF_ALU | BPF_LSH | BPF_X] = shl_reg, [BPF_ALU | BPF_LSH | BPF_K] = shl_imm, [BPF_ALU | BPF_RSH | BPF_X] = shr_reg, [BPF_ALU | BPF_RSH | BPF_K] = shr_imm, [BPF_ALU | BPF_ARSH | BPF_X] = ashr_reg, [BPF_ALU | BPF_ARSH | BPF_K] = ashr_imm, [BPF_ALU | BPF_END | BPF_X] = end_reg32, [BPF_LD | BPF_IMM | BPF_DW] = imm_ld8, [BPF_LD | BPF_ABS | BPF_B] = data_ld1, [BPF_LD | BPF_ABS | BPF_H] = data_ld2, [BPF_LD | BPF_ABS | BPF_W] = data_ld4, [BPF_LD | BPF_IND | BPF_B] = data_ind_ld1, [BPF_LD | BPF_IND | BPF_H] = data_ind_ld2, [BPF_LD | BPF_IND | BPF_W] = data_ind_ld4, [BPF_LDX | BPF_MEM | BPF_B] = mem_ldx1, [BPF_LDX | BPF_MEM | BPF_H] = mem_ldx2, [BPF_LDX | BPF_MEM | BPF_W] = mem_ldx4, [BPF_LDX | BPF_MEM | BPF_DW] = mem_ldx8, [BPF_STX | BPF_MEM | BPF_B] = mem_stx1, [BPF_STX | BPF_MEM | BPF_H] = mem_stx2, [BPF_STX | BPF_MEM | BPF_W] = mem_stx4, [BPF_STX | BPF_MEM | BPF_DW] = mem_stx8, [BPF_STX | BPF_XADD | BPF_W] = mem_xadd4, [BPF_STX | BPF_XADD | BPF_DW] = mem_xadd8, [BPF_ST | BPF_MEM | BPF_B] = mem_st1, [BPF_ST | BPF_MEM | BPF_H] = mem_st2, [BPF_ST | BPF_MEM | BPF_W] = mem_st4, [BPF_ST | BPF_MEM | BPF_DW] = mem_st8, [BPF_JMP | BPF_JA | BPF_K] = jump, [BPF_JMP | BPF_JEQ | BPF_K] = jeq_imm, [BPF_JMP | BPF_JGT | BPF_K] = cmp_imm, [BPF_JMP | BPF_JGE | BPF_K] = cmp_imm, [BPF_JMP | BPF_JLT | BPF_K] = cmp_imm, [BPF_JMP | BPF_JLE | BPF_K] = cmp_imm, [BPF_JMP | BPF_JSGT | BPF_K] = cmp_imm, [BPF_JMP | BPF_JSGE | BPF_K] = cmp_imm, [BPF_JMP | BPF_JSLT | BPF_K] = cmp_imm, [BPF_JMP | BPF_JSLE | BPF_K] = cmp_imm, [BPF_JMP | BPF_JSET | BPF_K] = jset_imm, [BPF_JMP | BPF_JNE | BPF_K] = jne_imm, [BPF_JMP | BPF_JEQ | BPF_X] = jeq_reg, [BPF_JMP | BPF_JGT | BPF_X] = cmp_reg, [BPF_JMP | BPF_JGE | BPF_X] = cmp_reg, [BPF_JMP | BPF_JLT | BPF_X] = cmp_reg, [BPF_JMP | BPF_JLE | BPF_X] = cmp_reg, [BPF_JMP | BPF_JSGT | BPF_X] = cmp_reg, [BPF_JMP | BPF_JSGE | BPF_X] = cmp_reg, [BPF_JMP | BPF_JSLT | BPF_X] = cmp_reg, [BPF_JMP | BPF_JSLE | BPF_X] = cmp_reg, [BPF_JMP | BPF_JSET | BPF_X] = jset_reg, [BPF_JMP | BPF_JNE | BPF_X] = jne_reg, [BPF_JMP32 | BPF_JEQ | BPF_K] = jeq32_imm, [BPF_JMP32 | BPF_JGT | BPF_K] = cmp_imm, [BPF_JMP32 | BPF_JGE | BPF_K] = cmp_imm, [BPF_JMP32 | BPF_JLT | BPF_K] = cmp_imm, [BPF_JMP32 | BPF_JLE | BPF_K] = cmp_imm, [BPF_JMP32 | BPF_JSGT | BPF_K] =cmp_imm, [BPF_JMP32 | BPF_JSGE | BPF_K] =cmp_imm, [BPF_JMP32 | BPF_JSLT | BPF_K] =cmp_imm, [BPF_JMP32 | BPF_JSLE | BPF_K] =cmp_imm, [BPF_JMP32 | BPF_JSET | BPF_K] =jset_imm, [BPF_JMP32 | BPF_JNE | BPF_K] = jne_imm, [BPF_JMP32 | BPF_JEQ | BPF_X] = jeq_reg, [BPF_JMP32 | BPF_JGT | BPF_X] = cmp_reg, [BPF_JMP32 | BPF_JGE | BPF_X] = cmp_reg, [BPF_JMP32 | BPF_JLT | BPF_X] = cmp_reg, [BPF_JMP32 | BPF_JLE | BPF_X] = cmp_reg, [BPF_JMP32 | BPF_JSGT | BPF_X] =cmp_reg, [BPF_JMP32 | BPF_JSGE | BPF_X] =cmp_reg, [BPF_JMP32 | BPF_JSLT | BPF_X] =cmp_reg, [BPF_JMP32 | BPF_JSLE | BPF_X] =cmp_reg, [BPF_JMP32 | BPF_JSET | BPF_X] =jset_reg, [BPF_JMP32 | BPF_JNE | BPF_X] = jne_reg, [BPF_JMP | BPF_CALL] = call, [BPF_JMP | BPF_EXIT] = jmp_exit, }; /* --- Assembler logic --- */ static int nfp_fixup_immed_relo(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta, struct nfp_insn_meta *jmp_dst, u32 br_idx) { if (immed_get_value(nfp_prog->prog[br_idx + 1])) { pr_err("BUG: failed to fix up callee register saving\n"); return -EINVAL; } immed_set_value(&nfp_prog->prog[br_idx + 1], jmp_dst->off); return 0; } static int nfp_fixup_branches(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta, *jmp_dst; u32 idx, br_idx; int err; list_for_each_entry(meta, &nfp_prog->insns, l) { if (meta->flags & FLAG_INSN_SKIP_MASK) continue; if (!is_mbpf_jmp(meta)) continue; if (meta->insn.code == (BPF_JMP | BPF_EXIT) && !nfp_is_main_function(meta)) continue; if (is_mbpf_helper_call(meta)) continue; if (list_is_last(&meta->l, &nfp_prog->insns)) br_idx = nfp_prog->last_bpf_off; else br_idx = list_next_entry(meta, l)->off - 1; /* For BPF-to-BPF function call, a stack adjustment sequence is * generated after the return instruction. Therefore, we must * withdraw the length of this sequence to have br_idx pointing * to where the "branch" NFP instruction is expected to be. */ if (is_mbpf_pseudo_call(meta)) br_idx -= meta->num_insns_after_br; if (!nfp_is_br(nfp_prog->prog[br_idx])) { pr_err("Fixup found block not ending in branch %d %02x %016llx!!\n", br_idx, meta->insn.code, nfp_prog->prog[br_idx]); return -ELOOP; } if (meta->insn.code == (BPF_JMP | BPF_EXIT)) continue; /* Leave special branches for later */ if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) != RELO_BR_REL && !is_mbpf_pseudo_call(meta)) continue; if (!meta->jmp_dst) { pr_err("Non-exit jump doesn't have destination info recorded!!\n"); return -ELOOP; } jmp_dst = meta->jmp_dst; if (jmp_dst->flags & FLAG_INSN_SKIP_PREC_DEPENDENT) { pr_err("Branch landing on removed instruction!!\n"); return -ELOOP; } if (is_mbpf_pseudo_call(meta) && nfp_prog->subprog[jmp_dst->subprog_idx].needs_reg_push) { err = nfp_fixup_immed_relo(nfp_prog, meta, jmp_dst, br_idx); if (err) return err; } if (FIELD_GET(OP_RELO_TYPE, nfp_prog->prog[br_idx]) != RELO_BR_REL) continue; for (idx = meta->off; idx <= br_idx; idx++) { if (!nfp_is_br(nfp_prog->prog[idx])) continue; br_set_offset(&nfp_prog->prog[idx], jmp_dst->off); } } return 0; } static void nfp_intro(struct nfp_prog *nfp_prog) { wrp_immed(nfp_prog, plen_reg(nfp_prog), GENMASK(13, 0)); emit_alu(nfp_prog, plen_reg(nfp_prog), plen_reg(nfp_prog), ALU_OP_AND, pv_len(nfp_prog)); } static void nfp_subprog_prologue(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { /* Save return address into the stack. */ wrp_mov(nfp_prog, reg_lm(0, 0), ret_reg(nfp_prog)); } static void nfp_start_subprog(struct nfp_prog *nfp_prog, struct nfp_insn_meta *meta) { unsigned int depth = nfp_prog->subprog[meta->subprog_idx].stack_depth; nfp_prog->stack_frame_depth = round_up(depth, 4); nfp_subprog_prologue(nfp_prog, meta); } bool nfp_is_subprog_start(struct nfp_insn_meta *meta) { return meta->flags & FLAG_INSN_IS_SUBPROG_START; } static void nfp_outro_tc_da(struct nfp_prog *nfp_prog) { /* TC direct-action mode: * 0,1 ok NOT SUPPORTED[1] * 2 drop 0x22 -> drop, count as stat1 * 4,5 nuke 0x02 -> drop * 7 redir 0x44 -> redir, count as stat2 * * unspec 0x11 -> pass, count as stat0 * * [1] We can't support OK and RECLASSIFY because we can't tell TC * the exact decision made. We are forced to support UNSPEC * to handle aborts so that's the only one we handle for passing * packets up the stack. */ /* Target for aborts */ nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x11), SHF_SC_L_SHF, 16); /* Target for normal exits */ nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); /* if R0 > 7 jump to abort */ emit_alu(nfp_prog, reg_none(), reg_imm(7), ALU_OP_SUB, reg_b(0)); emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); wrp_immed(nfp_prog, reg_b(2), 0x41221211); wrp_immed(nfp_prog, reg_b(3), 0x41001211); emit_shf(nfp_prog, reg_a(1), reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 2); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_a(2), reg_imm(0xf), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_b(2), reg_imm(0xf), SHF_OP_AND, reg_b(3), SHF_SC_R_SHF, 0); emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); emit_shf(nfp_prog, reg_b(2), reg_a(2), SHF_OP_OR, reg_b(2), SHF_SC_L_SHF, 4); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); } static void nfp_outro_xdp(struct nfp_prog *nfp_prog) { /* XDP return codes: * 0 aborted 0x82 -> drop, count as stat3 * 1 drop 0x22 -> drop, count as stat1 * 2 pass 0x11 -> pass, count as stat0 * 3 tx 0x44 -> redir, count as stat2 * * unknown 0x82 -> drop, count as stat3 */ /* Target for aborts */ nfp_prog->tgt_abort = nfp_prog_current_offset(nfp_prog); emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_imm(0x82), SHF_SC_L_SHF, 16); /* Target for normal exits */ nfp_prog->tgt_out = nfp_prog_current_offset(nfp_prog); /* if R0 > 3 jump to abort */ emit_alu(nfp_prog, reg_none(), reg_imm(3), ALU_OP_SUB, reg_b(0)); emit_br(nfp_prog, BR_BLO, nfp_prog->tgt_abort, 0); wrp_immed(nfp_prog, reg_b(2), 0x44112282); emit_shf(nfp_prog, reg_a(1), reg_none(), SHF_OP_NONE, reg_b(0), SHF_SC_L_SHF, 3); emit_alu(nfp_prog, reg_none(), reg_a(1), ALU_OP_OR, reg_imm(0)); emit_shf(nfp_prog, reg_b(2), reg_imm(0xff), SHF_OP_AND, reg_b(2), SHF_SC_R_SHF, 0); emit_br_relo(nfp_prog, BR_UNC, BR_OFF_RELO, 2, RELO_BR_NEXT_PKT); wrp_mov(nfp_prog, reg_a(0), NFP_BPF_ABI_FLAGS); emit_ld_field(nfp_prog, reg_a(0), 0xc, reg_b(2), SHF_SC_L_SHF, 16); } static bool nfp_prog_needs_callee_reg_save(struct nfp_prog *nfp_prog) { unsigned int idx; for (idx = 1; idx < nfp_prog->subprog_cnt; idx++) if (nfp_prog->subprog[idx].needs_reg_push) return true; return false; } static void nfp_push_callee_registers(struct nfp_prog *nfp_prog) { u8 reg; /* Subroutine: Save all callee saved registers (R6 ~ R9). * imm_b() holds the return address. */ nfp_prog->tgt_call_push_regs = nfp_prog_current_offset(nfp_prog); for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) { u8 adj = (reg - BPF_REG_0) * 2; u8 idx = (reg - BPF_REG_6) * 2; /* The first slot in the stack frame is used to push the return * address in bpf_to_bpf_call(), start just after. */ wrp_mov(nfp_prog, reg_lm(0, 1 + idx), reg_b(adj)); if (reg == BPF_REG_8) /* Prepare to jump back, last 3 insns use defer slots */ emit_rtn(nfp_prog, imm_b(nfp_prog), 3); wrp_mov(nfp_prog, reg_lm(0, 1 + idx + 1), reg_b(adj + 1)); } } static void nfp_pop_callee_registers(struct nfp_prog *nfp_prog) { u8 reg; /* Subroutine: Restore all callee saved registers (R6 ~ R9). * ret_reg() holds the return address. */ nfp_prog->tgt_call_pop_regs = nfp_prog_current_offset(nfp_prog); for (reg = BPF_REG_6; reg <= BPF_REG_9; reg++) { u8 adj = (reg - BPF_REG_0) * 2; u8 idx = (reg - BPF_REG_6) * 2; /* The first slot in the stack frame holds the return address, * start popping just after that. */ wrp_mov(nfp_prog, reg_both(adj), reg_lm(0, 1 + idx)); if (reg == BPF_REG_8) /* Prepare to jump back, last 3 insns use defer slots */ emit_rtn(nfp_prog, ret_reg(nfp_prog), 3); wrp_mov(nfp_prog, reg_both(adj + 1), reg_lm(0, 1 + idx + 1)); } } static void nfp_outro(struct nfp_prog *nfp_prog) { switch (nfp_prog->type) { case BPF_PROG_TYPE_SCHED_CLS: nfp_outro_tc_da(nfp_prog); break; case BPF_PROG_TYPE_XDP: nfp_outro_xdp(nfp_prog); break; default: WARN_ON(1); } if (!nfp_prog_needs_callee_reg_save(nfp_prog)) return; nfp_push_callee_registers(nfp_prog); nfp_pop_callee_registers(nfp_prog); } static int nfp_translate(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; unsigned int depth; int err; depth = nfp_prog->subprog[0].stack_depth; nfp_prog->stack_frame_depth = round_up(depth, 4); nfp_intro(nfp_prog); if (nfp_prog->error) return nfp_prog->error; list_for_each_entry(meta, &nfp_prog->insns, l) { instr_cb_t cb = instr_cb[meta->insn.code]; meta->off = nfp_prog_current_offset(nfp_prog); if (nfp_is_subprog_start(meta)) { nfp_start_subprog(nfp_prog, meta); if (nfp_prog->error) return nfp_prog->error; } if (meta->flags & FLAG_INSN_SKIP_MASK) { nfp_prog->n_translated++; continue; } if (nfp_meta_has_prev(nfp_prog, meta) && nfp_meta_prev(meta)->double_cb) cb = nfp_meta_prev(meta)->double_cb; if (!cb) return -ENOENT; err = cb(nfp_prog, meta); if (err) return err; if (nfp_prog->error) return nfp_prog->error; nfp_prog->n_translated++; } nfp_prog->last_bpf_off = nfp_prog_current_offset(nfp_prog) - 1; nfp_outro(nfp_prog); if (nfp_prog->error) return nfp_prog->error; wrp_nops(nfp_prog, NFP_USTORE_PREFETCH_WINDOW); if (nfp_prog->error) return nfp_prog->error; return nfp_fixup_branches(nfp_prog); } /* --- Optimizations --- */ static void nfp_bpf_opt_reg_init(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; list_for_each_entry(meta, &nfp_prog->insns, l) { struct bpf_insn insn = meta->insn; /* Programs converted from cBPF start with register xoring */ if (insn.code == (BPF_ALU64 | BPF_XOR | BPF_X) && insn.src_reg == insn.dst_reg) continue; /* Programs start with R6 = R1 but we ignore the skb pointer */ if (insn.code == (BPF_ALU64 | BPF_MOV | BPF_X) && insn.src_reg == 1 && insn.dst_reg == 6) meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; /* Return as soon as something doesn't match */ if (!(meta->flags & FLAG_INSN_SKIP_MASK)) return; } } /* abs(insn.imm) will fit better into unrestricted reg immediate - * convert add/sub of a negative number into a sub/add of a positive one. */ static void nfp_bpf_opt_neg_add_sub(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; list_for_each_entry(meta, &nfp_prog->insns, l) { struct bpf_insn insn = meta->insn; if (meta->flags & FLAG_INSN_SKIP_MASK) continue; if (!is_mbpf_alu(meta) && !is_mbpf_jmp(meta)) continue; if (BPF_SRC(insn.code) != BPF_K) continue; if (insn.imm >= 0) continue; if (is_mbpf_jmp(meta)) { switch (BPF_OP(insn.code)) { case BPF_JGE: case BPF_JSGE: case BPF_JLT: case BPF_JSLT: meta->jump_neg_op = true; break; default: continue; } } else { if (BPF_OP(insn.code) == BPF_ADD) insn.code = BPF_CLASS(insn.code) | BPF_SUB; else if (BPF_OP(insn.code) == BPF_SUB) insn.code = BPF_CLASS(insn.code) | BPF_ADD; else continue; meta->insn.code = insn.code | BPF_K; } meta->insn.imm = -insn.imm; } } /* Remove masking after load since our load guarantees this is not needed */ static void nfp_bpf_opt_ld_mask(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta1, *meta2; const s32 exp_mask[] = { [BPF_B] = 0x000000ffU, [BPF_H] = 0x0000ffffU, [BPF_W] = 0xffffffffU, }; nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { struct bpf_insn insn, next; insn = meta1->insn; next = meta2->insn; if (BPF_CLASS(insn.code) != BPF_LD) continue; if (BPF_MODE(insn.code) != BPF_ABS && BPF_MODE(insn.code) != BPF_IND) continue; if (next.code != (BPF_ALU64 | BPF_AND | BPF_K)) continue; if (!exp_mask[BPF_SIZE(insn.code)]) continue; if (exp_mask[BPF_SIZE(insn.code)] != next.imm) continue; if (next.src_reg || next.dst_reg) continue; if (meta2->flags & FLAG_INSN_IS_JUMP_DST) continue; meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; } } static void nfp_bpf_opt_ld_shift(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta1, *meta2, *meta3; nfp_for_each_insn_walk3(nfp_prog, meta1, meta2, meta3) { struct bpf_insn insn, next1, next2; insn = meta1->insn; next1 = meta2->insn; next2 = meta3->insn; if (BPF_CLASS(insn.code) != BPF_LD) continue; if (BPF_MODE(insn.code) != BPF_ABS && BPF_MODE(insn.code) != BPF_IND) continue; if (BPF_SIZE(insn.code) != BPF_W) continue; if (!(next1.code == (BPF_LSH | BPF_K | BPF_ALU64) && next2.code == (BPF_RSH | BPF_K | BPF_ALU64)) && !(next1.code == (BPF_RSH | BPF_K | BPF_ALU64) && next2.code == (BPF_LSH | BPF_K | BPF_ALU64))) continue; if (next1.src_reg || next1.dst_reg || next2.src_reg || next2.dst_reg) continue; if (next1.imm != 0x20 || next2.imm != 0x20) continue; if (meta2->flags & FLAG_INSN_IS_JUMP_DST || meta3->flags & FLAG_INSN_IS_JUMP_DST) continue; meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; meta3->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; } } /* load/store pair that forms memory copy sould look like the following: * * ld_width R, [addr_src + offset_src] * st_width [addr_dest + offset_dest], R * * The destination register of load and source register of store should * be the same, load and store should also perform at the same width. * If either of addr_src or addr_dest is stack pointer, we don't do the * CPP optimization as stack is modelled by registers on NFP. */ static bool curr_pair_is_memcpy(struct nfp_insn_meta *ld_meta, struct nfp_insn_meta *st_meta) { struct bpf_insn *ld = &ld_meta->insn; struct bpf_insn *st = &st_meta->insn; if (!is_mbpf_load(ld_meta) || !is_mbpf_store(st_meta)) return false; if (ld_meta->ptr.type != PTR_TO_PACKET && ld_meta->ptr.type != PTR_TO_MAP_VALUE) return false; if (st_meta->ptr.type != PTR_TO_PACKET) return false; if (BPF_SIZE(ld->code) != BPF_SIZE(st->code)) return false; if (ld->dst_reg != st->src_reg) return false; /* There is jump to the store insn in this pair. */ if (st_meta->flags & FLAG_INSN_IS_JUMP_DST) return false; return true; } /* Currently, we only support chaining load/store pairs if: * * - Their address base registers are the same. * - Their address offsets are in the same order. * - They operate at the same memory width. * - There is no jump into the middle of them. */ static bool curr_pair_chain_with_previous(struct nfp_insn_meta *ld_meta, struct nfp_insn_meta *st_meta, struct bpf_insn *prev_ld, struct bpf_insn *prev_st) { u8 prev_size, curr_size, prev_ld_base, prev_st_base, prev_ld_dst; struct bpf_insn *ld = &ld_meta->insn; struct bpf_insn *st = &st_meta->insn; s16 prev_ld_off, prev_st_off; /* This pair is the start pair. */ if (!prev_ld) return true; prev_size = BPF_LDST_BYTES(prev_ld); curr_size = BPF_LDST_BYTES(ld); prev_ld_base = prev_ld->src_reg; prev_st_base = prev_st->dst_reg; prev_ld_dst = prev_ld->dst_reg; prev_ld_off = prev_ld->off; prev_st_off = prev_st->off; if (ld->dst_reg != prev_ld_dst) return false; if (ld->src_reg != prev_ld_base || st->dst_reg != prev_st_base) return false; if (curr_size != prev_size) return false; /* There is jump to the head of this pair. */ if (ld_meta->flags & FLAG_INSN_IS_JUMP_DST) return false; /* Both in ascending order. */ if (prev_ld_off + prev_size == ld->off && prev_st_off + prev_size == st->off) return true; /* Both in descending order. */ if (ld->off + curr_size == prev_ld_off && st->off + curr_size == prev_st_off) return true; return false; } /* Return TRUE if cross memory access happens. Cross memory access means * store area is overlapping with load area that a later load might load * the value from previous store, for this case we can't treat the sequence * as an memory copy. */ static bool cross_mem_access(struct bpf_insn *ld, struct nfp_insn_meta *head_ld_meta, struct nfp_insn_meta *head_st_meta) { s16 head_ld_off, head_st_off, ld_off; /* Different pointer types does not overlap. */ if (head_ld_meta->ptr.type != head_st_meta->ptr.type) return false; /* load and store are both PTR_TO_PACKET, check ID info. */ if (head_ld_meta->ptr.id != head_st_meta->ptr.id) return true; /* Canonicalize the offsets. Turn all of them against the original * base register. */ head_ld_off = head_ld_meta->insn.off + head_ld_meta->ptr.off; head_st_off = head_st_meta->insn.off + head_st_meta->ptr.off; ld_off = ld->off + head_ld_meta->ptr.off; /* Ascending order cross. */ if (ld_off > head_ld_off && head_ld_off < head_st_off && ld_off >= head_st_off) return true; /* Descending order cross. */ if (ld_off < head_ld_off && head_ld_off > head_st_off && ld_off <= head_st_off) return true; return false; } /* This pass try to identify the following instructoin sequences. * * load R, [regA + offA] * store [regB + offB], R * load R, [regA + offA + const_imm_A] * store [regB + offB + const_imm_A], R * load R, [regA + offA + 2 * const_imm_A] * store [regB + offB + 2 * const_imm_A], R * ... * * Above sequence is typically generated by compiler when lowering * memcpy. NFP prefer using CPP instructions to accelerate it. */ static void nfp_bpf_opt_ldst_gather(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *head_ld_meta = NULL; struct nfp_insn_meta *head_st_meta = NULL; struct nfp_insn_meta *meta1, *meta2; struct bpf_insn *prev_ld = NULL; struct bpf_insn *prev_st = NULL; u8 count = 0; nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { struct bpf_insn *ld = &meta1->insn; struct bpf_insn *st = &meta2->insn; /* Reset record status if any of the following if true: * - The current insn pair is not load/store. * - The load/store pair doesn't chain with previous one. * - The chained load/store pair crossed with previous pair. * - The chained load/store pair has a total size of memory * copy beyond 128 bytes which is the maximum length a * single NFP CPP command can transfer. */ if (!curr_pair_is_memcpy(meta1, meta2) || !curr_pair_chain_with_previous(meta1, meta2, prev_ld, prev_st) || (head_ld_meta && (cross_mem_access(ld, head_ld_meta, head_st_meta) || head_ld_meta->ldst_gather_len >= 128))) { if (!count) continue; if (count > 1) { s16 prev_ld_off = prev_ld->off; s16 prev_st_off = prev_st->off; s16 head_ld_off = head_ld_meta->insn.off; if (prev_ld_off < head_ld_off) { head_ld_meta->insn.off = prev_ld_off; head_st_meta->insn.off = prev_st_off; head_ld_meta->ldst_gather_len = -head_ld_meta->ldst_gather_len; } head_ld_meta->paired_st = &head_st_meta->insn; head_st_meta->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; } else { head_ld_meta->ldst_gather_len = 0; } /* If the chain is ended by an load/store pair then this * could serve as the new head of the the next chain. */ if (curr_pair_is_memcpy(meta1, meta2)) { head_ld_meta = meta1; head_st_meta = meta2; head_ld_meta->ldst_gather_len = BPF_LDST_BYTES(ld); meta1 = nfp_meta_next(meta1); meta2 = nfp_meta_next(meta2); prev_ld = ld; prev_st = st; count = 1; } else { head_ld_meta = NULL; head_st_meta = NULL; prev_ld = NULL; prev_st = NULL; count = 0; } continue; } if (!head_ld_meta) { head_ld_meta = meta1; head_st_meta = meta2; } else { meta1->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; meta2->flags |= FLAG_INSN_SKIP_PREC_DEPENDENT; } head_ld_meta->ldst_gather_len += BPF_LDST_BYTES(ld); meta1 = nfp_meta_next(meta1); meta2 = nfp_meta_next(meta2); prev_ld = ld; prev_st = st; count++; } } static void nfp_bpf_opt_pkt_cache(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta, *range_node = NULL; s16 range_start = 0, range_end = 0; bool cache_avail = false; struct bpf_insn *insn; s32 range_ptr_off = 0; u32 range_ptr_id = 0; list_for_each_entry(meta, &nfp_prog->insns, l) { if (meta->flags & FLAG_INSN_IS_JUMP_DST) cache_avail = false; if (meta->flags & FLAG_INSN_SKIP_MASK) continue; insn = &meta->insn; if (is_mbpf_store_pkt(meta) || insn->code == (BPF_JMP | BPF_CALL) || is_mbpf_classic_store_pkt(meta) || is_mbpf_classic_load(meta)) { cache_avail = false; continue; } if (!is_mbpf_load(meta)) continue; if (meta->ptr.type != PTR_TO_PACKET || meta->ldst_gather_len) { cache_avail = false; continue; } if (!cache_avail) { cache_avail = true; if (range_node) goto end_current_then_start_new; goto start_new; } /* Check ID to make sure two reads share the same * variable offset against PTR_TO_PACKET, and check OFF * to make sure they also share the same constant * offset. * * OFFs don't really need to be the same, because they * are the constant offsets against PTR_TO_PACKET, so * for different OFFs, we could canonicalize them to * offsets against original packet pointer. We don't * support this. */ if (meta->ptr.id == range_ptr_id && meta->ptr.off == range_ptr_off) { s16 new_start = range_start; s16 end, off = insn->off; s16 new_end = range_end; bool changed = false; if (off < range_start) { new_start = off; changed = true; } end = off + BPF_LDST_BYTES(insn); if (end > range_end) { new_end = end; changed = true; } if (!changed) continue; if (new_end - new_start <= 64) { /* Install new range. */ range_start = new_start; range_end = new_end; continue; } } end_current_then_start_new: range_node->pkt_cache.range_start = range_start; range_node->pkt_cache.range_end = range_end; start_new: range_node = meta; range_node->pkt_cache.do_init = true; range_ptr_id = range_node->ptr.id; range_ptr_off = range_node->ptr.off; range_start = insn->off; range_end = insn->off + BPF_LDST_BYTES(insn); } if (range_node) { range_node->pkt_cache.range_start = range_start; range_node->pkt_cache.range_end = range_end; } list_for_each_entry(meta, &nfp_prog->insns, l) { if (meta->flags & FLAG_INSN_SKIP_MASK) continue; if (is_mbpf_load_pkt(meta) && !meta->ldst_gather_len) { if (meta->pkt_cache.do_init) { range_start = meta->pkt_cache.range_start; range_end = meta->pkt_cache.range_end; } else { meta->pkt_cache.range_start = range_start; meta->pkt_cache.range_end = range_end; } } } } static int nfp_bpf_optimize(struct nfp_prog *nfp_prog) { nfp_bpf_opt_reg_init(nfp_prog); nfp_bpf_opt_neg_add_sub(nfp_prog); nfp_bpf_opt_ld_mask(nfp_prog); nfp_bpf_opt_ld_shift(nfp_prog); nfp_bpf_opt_ldst_gather(nfp_prog); nfp_bpf_opt_pkt_cache(nfp_prog); return 0; } static int nfp_bpf_replace_map_ptrs(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta1, *meta2; struct nfp_bpf_map *nfp_map; struct bpf_map *map; u32 id; nfp_for_each_insn_walk2(nfp_prog, meta1, meta2) { if (meta1->flags & FLAG_INSN_SKIP_MASK || meta2->flags & FLAG_INSN_SKIP_MASK) continue; if (meta1->insn.code != (BPF_LD | BPF_IMM | BPF_DW) || meta1->insn.src_reg != BPF_PSEUDO_MAP_FD) continue; map = (void *)(unsigned long)((u32)meta1->insn.imm | (u64)meta2->insn.imm << 32); if (bpf_map_offload_neutral(map)) { id = map->id; } else { nfp_map = map_to_offmap(map)->dev_priv; id = nfp_map->tid; } meta1->insn.imm = id; meta2->insn.imm = 0; } return 0; } static int nfp_bpf_ustore_calc(u64 *prog, unsigned int len) { __le64 *ustore = (__force __le64 *)prog; int i; for (i = 0; i < len; i++) { int err; err = nfp_ustore_check_valid_no_ecc(prog[i]); if (err) return err; ustore[i] = cpu_to_le64(nfp_ustore_calc_ecc_insn(prog[i])); } return 0; } static void nfp_bpf_prog_trim(struct nfp_prog *nfp_prog) { void *prog; prog = kvmalloc_array(nfp_prog->prog_len, sizeof(u64), GFP_KERNEL); if (!prog) return; nfp_prog->__prog_alloc_len = nfp_prog->prog_len * sizeof(u64); memcpy(prog, nfp_prog->prog, nfp_prog->__prog_alloc_len); kvfree(nfp_prog->prog); nfp_prog->prog = prog; } int nfp_bpf_jit(struct nfp_prog *nfp_prog) { int ret; ret = nfp_bpf_replace_map_ptrs(nfp_prog); if (ret) return ret; ret = nfp_bpf_optimize(nfp_prog); if (ret) return ret; ret = nfp_translate(nfp_prog); if (ret) { pr_err("Translation failed with error %d (translated: %u)\n", ret, nfp_prog->n_translated); return -EINVAL; } nfp_bpf_prog_trim(nfp_prog); return ret; } void nfp_bpf_jit_prepare(struct nfp_prog *nfp_prog) { struct nfp_insn_meta *meta; /* Another pass to record jump information. */ list_for_each_entry(meta, &nfp_prog->insns, l) { struct nfp_insn_meta *dst_meta; u64 code = meta->insn.code; unsigned int dst_idx; bool pseudo_call; if (!is_mbpf_jmp(meta)) continue; if (BPF_OP(code) == BPF_EXIT) continue; if (is_mbpf_helper_call(meta)) continue; /* If opcode is BPF_CALL at this point, this can only be a * BPF-to-BPF call (a.k.a pseudo call). */ pseudo_call = BPF_OP(code) == BPF_CALL; if (pseudo_call) dst_idx = meta->n + 1 + meta->insn.imm; else dst_idx = meta->n + 1 + meta->insn.off; dst_meta = nfp_bpf_goto_meta(nfp_prog, meta, dst_idx); if (pseudo_call) dst_meta->flags |= FLAG_INSN_IS_SUBPROG_START; dst_meta->flags |= FLAG_INSN_IS_JUMP_DST; meta->jmp_dst = dst_meta; } } bool nfp_bpf_supported_opcode(u8 code) { return !!instr_cb[code]; } void *nfp_bpf_relo_for_vnic(struct nfp_prog *nfp_prog, struct nfp_bpf_vnic *bv) { unsigned int i; u64 *prog; int err; prog = kmemdup(nfp_prog->prog, nfp_prog->prog_len * sizeof(u64), GFP_KERNEL); if (!prog) return ERR_PTR(-ENOMEM); for (i = 0; i < nfp_prog->prog_len; i++) { enum nfp_relo_type special; u32 val; u16 off; special = FIELD_GET(OP_RELO_TYPE, prog[i]); switch (special) { case RELO_NONE: continue; case RELO_BR_REL: br_add_offset(&prog[i], bv->start_off); break; case RELO_BR_GO_OUT: br_set_offset(&prog[i], nfp_prog->tgt_out + bv->start_off); break; case RELO_BR_GO_ABORT: br_set_offset(&prog[i], nfp_prog->tgt_abort + bv->start_off); break; case RELO_BR_GO_CALL_PUSH_REGS: if (!nfp_prog->tgt_call_push_regs) { pr_err("BUG: failed to detect subprogram registers needs\n"); err = -EINVAL; goto err_free_prog; } off = nfp_prog->tgt_call_push_regs + bv->start_off; br_set_offset(&prog[i], off); break; case RELO_BR_GO_CALL_POP_REGS: if (!nfp_prog->tgt_call_pop_regs) { pr_err("BUG: failed to detect subprogram registers needs\n"); err = -EINVAL; goto err_free_prog; } off = nfp_prog->tgt_call_pop_regs + bv->start_off; br_set_offset(&prog[i], off); break; case RELO_BR_NEXT_PKT: br_set_offset(&prog[i], bv->tgt_done); break; case RELO_BR_HELPER: val = br_get_offset(prog[i]); val -= BR_OFF_RELO; switch (val) { case BPF_FUNC_map_lookup_elem: val = nfp_prog->bpf->helpers.map_lookup; break; case BPF_FUNC_map_update_elem: val = nfp_prog->bpf->helpers.map_update; break; case BPF_FUNC_map_delete_elem: val = nfp_prog->bpf->helpers.map_delete; break; case BPF_FUNC_perf_event_output: val = nfp_prog->bpf->helpers.perf_event_output; break; default: pr_err("relocation of unknown helper %d\n", val); err = -EINVAL; goto err_free_prog; } br_set_offset(&prog[i], val); break; case RELO_IMMED_REL: immed_add_value(&prog[i], bv->start_off); break; } prog[i] &= ~OP_RELO_TYPE; } err = nfp_bpf_ustore_calc(prog, nfp_prog->prog_len); if (err) goto err_free_prog; return prog; err_free_prog: kfree(prog); return ERR_PTR(err); }