/* SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) */ /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ /* * nfp_net.h * Declarations for Netronome network device driver. * Authors: Jakub Kicinski * Jason McMullan * Rolf Neugebauer */ #ifndef _NFP_NET_H_ #define _NFP_NET_H_ #include #include #include #include #include #include #include #include #include #include #include "nfp_net_ctrl.h" #define nn_pr(nn, lvl, fmt, args...) \ ({ \ struct nfp_net *__nn = (nn); \ \ if (__nn->dp.netdev) \ netdev_printk(lvl, __nn->dp.netdev, fmt, ## args); \ else \ dev_printk(lvl, __nn->dp.dev, "ctrl: " fmt, ## args); \ }) #define nn_err(nn, fmt, args...) nn_pr(nn, KERN_ERR, fmt, ## args) #define nn_warn(nn, fmt, args...) nn_pr(nn, KERN_WARNING, fmt, ## args) #define nn_info(nn, fmt, args...) nn_pr(nn, KERN_INFO, fmt, ## args) #define nn_dbg(nn, fmt, args...) nn_pr(nn, KERN_DEBUG, fmt, ## args) #define nn_dp_warn(dp, fmt, args...) \ ({ \ struct nfp_net_dp *__dp = (dp); \ \ if (unlikely(net_ratelimit())) { \ if (__dp->netdev) \ netdev_warn(__dp->netdev, fmt, ## args); \ else \ dev_warn(__dp->dev, fmt, ## args); \ } \ }) /* Max time to wait for NFP to respond on updates (in seconds) */ #define NFP_NET_POLL_TIMEOUT 5 /* Interval for reading offloaded filter stats */ #define NFP_NET_STAT_POLL_IVL msecs_to_jiffies(100) /* Bar allocation */ #define NFP_NET_CTRL_BAR 0 #define NFP_NET_Q0_BAR 2 #define NFP_NET_Q1_BAR 4 /* OBSOLETE */ /* Max bits in DMA address */ #define NFP_NET_MAX_DMA_BITS 40 /* Default size for MTU and freelist buffer sizes */ #define NFP_NET_DEFAULT_MTU 1500U /* Maximum number of bytes prepended to a packet */ #define NFP_NET_MAX_PREPEND 64 /* Interrupt definitions */ #define NFP_NET_NON_Q_VECTORS 2 #define NFP_NET_IRQ_LSC_IDX 0 #define NFP_NET_IRQ_EXN_IDX 1 #define NFP_NET_MIN_VNIC_IRQS (NFP_NET_NON_Q_VECTORS + 1) /* Queue/Ring definitions */ #define NFP_NET_MAX_TX_RINGS 64 /* Max. # of Tx rings per device */ #define NFP_NET_MAX_RX_RINGS 64 /* Max. # of Rx rings per device */ #define NFP_NET_MAX_R_VECS (NFP_NET_MAX_TX_RINGS > NFP_NET_MAX_RX_RINGS ? \ NFP_NET_MAX_TX_RINGS : NFP_NET_MAX_RX_RINGS) #define NFP_NET_MAX_IRQS (NFP_NET_NON_Q_VECTORS + NFP_NET_MAX_R_VECS) #define NFP_NET_MIN_TX_DESCS 256 /* Min. # of Tx descs per ring */ #define NFP_NET_MIN_RX_DESCS 256 /* Min. # of Rx descs per ring */ #define NFP_NET_MAX_TX_DESCS (256 * 1024) /* Max. # of Tx descs per ring */ #define NFP_NET_MAX_RX_DESCS (256 * 1024) /* Max. # of Rx descs per ring */ #define NFP_NET_TX_DESCS_DEFAULT 4096 /* Default # of Tx descs per ring */ #define NFP_NET_RX_DESCS_DEFAULT 4096 /* Default # of Rx descs per ring */ #define NFP_NET_FL_BATCH 16 /* Add freelist in this Batch size */ #define NFP_NET_XDP_MAX_COMPLETE 2048 /* XDP bufs to reclaim in NAPI poll */ /* Offload definitions */ #define NFP_NET_N_VXLAN_PORTS (NFP_NET_CFG_VXLAN_SZ / sizeof(__be16)) #define NFP_NET_RX_BUF_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) #define NFP_NET_RX_BUF_NON_DATA (NFP_NET_RX_BUF_HEADROOM + \ SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) /* Forward declarations */ struct nfp_cpp; struct nfp_eth_table_port; struct nfp_net; struct nfp_net_r_vector; struct nfp_port; /* Convenience macro for wrapping descriptor index on ring size */ #define D_IDX(ring, idx) ((idx) & ((ring)->cnt - 1)) /* Convenience macro for writing dma address into RX/TX descriptors */ #define nfp_desc_set_dma_addr(desc, dma_addr) \ do { \ __typeof(desc) __d = (desc); \ dma_addr_t __addr = (dma_addr); \ \ __d->dma_addr_lo = cpu_to_le32(lower_32_bits(__addr)); \ __d->dma_addr_hi = upper_32_bits(__addr) & 0xff; \ } while (0) /* TX descriptor format */ #define PCIE_DESC_TX_EOP BIT(7) #define PCIE_DESC_TX_OFFSET_MASK GENMASK(6, 0) #define PCIE_DESC_TX_MSS_MASK GENMASK(13, 0) /* Flags in the host TX descriptor */ #define PCIE_DESC_TX_CSUM BIT(7) #define PCIE_DESC_TX_IP4_CSUM BIT(6) #define PCIE_DESC_TX_TCP_CSUM BIT(5) #define PCIE_DESC_TX_UDP_CSUM BIT(4) #define PCIE_DESC_TX_VLAN BIT(3) #define PCIE_DESC_TX_LSO BIT(2) #define PCIE_DESC_TX_ENCAP BIT(1) #define PCIE_DESC_TX_O_IP4_CSUM BIT(0) struct nfp_net_tx_desc { union { struct { u8 dma_addr_hi; /* High bits of host buf address */ __le16 dma_len; /* Length to DMA for this desc */ u8 offset_eop; /* Offset in buf where pkt starts + * highest bit is eop flag. */ __le32 dma_addr_lo; /* Low 32bit of host buf addr */ __le16 mss; /* MSS to be used for LSO */ u8 lso_hdrlen; /* LSO, TCP payload offset */ u8 flags; /* TX Flags, see @PCIE_DESC_TX_* */ union { struct { u8 l3_offset; /* L3 header offset */ u8 l4_offset; /* L4 header offset */ }; __le16 vlan; /* VLAN tag to add if indicated */ }; __le16 data_len; /* Length of frame + meta data */ } __packed; __le32 vals[4]; __le64 vals8[2]; }; }; /** * struct nfp_net_tx_buf - software TX buffer descriptor * @skb: normal ring, sk_buff associated with this buffer * @frag: XDP ring, page frag associated with this buffer * @dma_addr: DMA mapping address of the buffer * @fidx: Fragment index (-1 for the head and [0..nr_frags-1] for frags) * @pkt_cnt: Number of packets to be produced out of the skb associated * with this buffer (valid only on the head's buffer). * Will be 1 for all non-TSO packets. * @real_len: Number of bytes which to be produced out of the skb (valid only * on the head's buffer). Equal to skb->len for non-TSO packets. */ struct nfp_net_tx_buf { union { struct sk_buff *skb; void *frag; }; dma_addr_t dma_addr; short int fidx; u16 pkt_cnt; u32 real_len; }; /** * struct nfp_net_tx_ring - TX ring structure * @r_vec: Back pointer to ring vector structure * @idx: Ring index from Linux's perspective * @qcidx: Queue Controller Peripheral (QCP) queue index for the TX queue * @qcp_q: Pointer to base of the QCP TX queue * @cnt: Size of the queue in number of descriptors * @wr_p: TX ring write pointer (free running) * @rd_p: TX ring read pointer (free running) * @qcp_rd_p: Local copy of QCP TX queue read pointer * @wr_ptr_add: Accumulated number of buffers to add to QCP write pointer * (used for .xmit_more delayed kick) * @txbufs: Array of transmitted TX buffers, to free on transmit * @txds: Virtual address of TX ring in host memory * @dma: DMA address of the TX ring * @size: Size, in bytes, of the TX ring (needed to free) * @is_xdp: Is this a XDP TX ring? */ struct nfp_net_tx_ring { struct nfp_net_r_vector *r_vec; u32 idx; int qcidx; u8 __iomem *qcp_q; u32 cnt; u32 wr_p; u32 rd_p; u32 qcp_rd_p; u32 wr_ptr_add; struct nfp_net_tx_buf *txbufs; struct nfp_net_tx_desc *txds; dma_addr_t dma; size_t size; bool is_xdp; } ____cacheline_aligned; /* RX and freelist descriptor format */ #define PCIE_DESC_RX_DD BIT(7) #define PCIE_DESC_RX_META_LEN_MASK GENMASK(6, 0) /* Flags in the RX descriptor */ #define PCIE_DESC_RX_RSS cpu_to_le16(BIT(15)) #define PCIE_DESC_RX_I_IP4_CSUM cpu_to_le16(BIT(14)) #define PCIE_DESC_RX_I_IP4_CSUM_OK cpu_to_le16(BIT(13)) #define PCIE_DESC_RX_I_TCP_CSUM cpu_to_le16(BIT(12)) #define PCIE_DESC_RX_I_TCP_CSUM_OK cpu_to_le16(BIT(11)) #define PCIE_DESC_RX_I_UDP_CSUM cpu_to_le16(BIT(10)) #define PCIE_DESC_RX_I_UDP_CSUM_OK cpu_to_le16(BIT(9)) #define PCIE_DESC_RX_DECRYPTED cpu_to_le16(BIT(8)) #define PCIE_DESC_RX_EOP cpu_to_le16(BIT(7)) #define PCIE_DESC_RX_IP4_CSUM cpu_to_le16(BIT(6)) #define PCIE_DESC_RX_IP4_CSUM_OK cpu_to_le16(BIT(5)) #define PCIE_DESC_RX_TCP_CSUM cpu_to_le16(BIT(4)) #define PCIE_DESC_RX_TCP_CSUM_OK cpu_to_le16(BIT(3)) #define PCIE_DESC_RX_UDP_CSUM cpu_to_le16(BIT(2)) #define PCIE_DESC_RX_UDP_CSUM_OK cpu_to_le16(BIT(1)) #define PCIE_DESC_RX_VLAN cpu_to_le16(BIT(0)) #define PCIE_DESC_RX_CSUM_ALL (PCIE_DESC_RX_IP4_CSUM | \ PCIE_DESC_RX_TCP_CSUM | \ PCIE_DESC_RX_UDP_CSUM | \ PCIE_DESC_RX_I_IP4_CSUM | \ PCIE_DESC_RX_I_TCP_CSUM | \ PCIE_DESC_RX_I_UDP_CSUM) #define PCIE_DESC_RX_CSUM_OK_SHIFT 1 #define __PCIE_DESC_RX_CSUM_ALL le16_to_cpu(PCIE_DESC_RX_CSUM_ALL) #define __PCIE_DESC_RX_CSUM_ALL_OK (__PCIE_DESC_RX_CSUM_ALL >> \ PCIE_DESC_RX_CSUM_OK_SHIFT) struct nfp_net_rx_desc { union { struct { u8 dma_addr_hi; /* High bits of the buf address */ __le16 reserved; /* Must be zero */ u8 meta_len_dd; /* Must be zero */ __le32 dma_addr_lo; /* Low bits of the buffer address */ } __packed fld; struct { __le16 data_len; /* Length of the frame + meta data */ u8 reserved; u8 meta_len_dd; /* Length of meta data prepended + * descriptor done flag. */ __le16 flags; /* RX flags. See @PCIE_DESC_RX_* */ __le16 vlan; /* VLAN if stripped */ } __packed rxd; __le32 vals[2]; }; }; #define NFP_NET_META_FIELD_MASK GENMASK(NFP_NET_META_FIELD_SIZE - 1, 0) struct nfp_meta_parsed { u8 hash_type; u8 csum_type; u32 hash; u32 mark; u32 portid; __wsum csum; }; struct nfp_net_rx_hash { __be32 hash_type; __be32 hash; }; /** * struct nfp_net_rx_buf - software RX buffer descriptor * @frag: page fragment buffer * @dma_addr: DMA mapping address of the buffer */ struct nfp_net_rx_buf { void *frag; dma_addr_t dma_addr; }; /** * struct nfp_net_rx_ring - RX ring structure * @r_vec: Back pointer to ring vector structure * @cnt: Size of the queue in number of descriptors * @wr_p: FL/RX ring write pointer (free running) * @rd_p: FL/RX ring read pointer (free running) * @idx: Ring index from Linux's perspective * @fl_qcidx: Queue Controller Peripheral (QCP) queue index for the freelist * @qcp_fl: Pointer to base of the QCP freelist queue * @rxbufs: Array of transmitted FL/RX buffers * @rxds: Virtual address of FL/RX ring in host memory * @xdp_rxq: RX-ring info avail for XDP * @dma: DMA address of the FL/RX ring * @size: Size, in bytes, of the FL/RX ring (needed to free) */ struct nfp_net_rx_ring { struct nfp_net_r_vector *r_vec; u32 cnt; u32 wr_p; u32 rd_p; u32 idx; int fl_qcidx; u8 __iomem *qcp_fl; struct nfp_net_rx_buf *rxbufs; struct nfp_net_rx_desc *rxds; struct xdp_rxq_info xdp_rxq; dma_addr_t dma; size_t size; } ____cacheline_aligned; /** * struct nfp_net_r_vector - Per ring interrupt vector configuration * @nfp_net: Backpointer to nfp_net structure * @napi: NAPI structure for this ring vec * @tasklet: ctrl vNIC, tasklet for servicing the r_vec * @queue: ctrl vNIC, send queue * @lock: ctrl vNIC, r_vec lock protects @queue * @tx_ring: Pointer to TX ring * @rx_ring: Pointer to RX ring * @xdp_ring: Pointer to an extra TX ring for XDP * @irq_entry: MSI-X table entry (use for talking to the device) * @event_ctr: Number of interrupt * @rx_dim: Dynamic interrupt moderation structure for RX * @tx_dim: Dynamic interrupt moderation structure for TX * @rx_sync: Seqlock for atomic updates of RX stats * @rx_pkts: Number of received packets * @rx_bytes: Number of received bytes * @rx_drops: Number of packets dropped on RX due to lack of resources * @hw_csum_rx_ok: Counter of packets where the HW checksum was OK * @hw_csum_rx_inner_ok: Counter of packets where the inner HW checksum was OK * @hw_csum_rx_complete: Counter of packets with CHECKSUM_COMPLETE reported * @hw_csum_rx_error: Counter of packets with bad checksums * @hw_tls_rx: Number of packets with TLS decrypted by hardware * @tx_sync: Seqlock for atomic updates of TX stats * @tx_pkts: Number of Transmitted packets * @tx_bytes: Number of Transmitted bytes * @hw_csum_tx: Counter of packets with TX checksum offload requested * @hw_csum_tx_inner: Counter of inner TX checksum offload requests * @tx_gather: Counter of packets with Gather DMA * @tx_lso: Counter of LSO packets sent * @hw_tls_tx: Counter of TLS packets sent with crypto offloaded to HW * @tls_tx_fallback: Counter of TLS packets sent which had to be encrypted * by the fallback path because packets came out of order * @tls_tx_no_fallback: Counter of TLS packets not sent because the fallback * path could not encrypt them * @tx_errors: How many TX errors were encountered * @tx_busy: How often was TX busy (no space)? * @rx_replace_buf_alloc_fail: Counter of RX buffer allocation failures * @irq_vector: Interrupt vector number (use for talking to the OS) * @handler: Interrupt handler for this ring vector * @name: Name of the interrupt vector * @affinity_mask: SMP affinity mask for this vector * * This structure ties RX and TX rings to interrupt vectors and a NAPI * context. This currently only supports one RX and TX ring per * interrupt vector but might be extended in the future to allow * association of multiple rings per vector. */ struct nfp_net_r_vector { struct nfp_net *nfp_net; union { struct napi_struct napi; struct { struct tasklet_struct tasklet; struct sk_buff_head queue; spinlock_t lock; }; }; struct nfp_net_tx_ring *tx_ring; struct nfp_net_rx_ring *rx_ring; u16 irq_entry; u16 event_ctr; struct dim rx_dim; struct dim tx_dim; struct u64_stats_sync rx_sync; u64 rx_pkts; u64 rx_bytes; u64 rx_drops; u64 hw_csum_rx_ok; u64 hw_csum_rx_inner_ok; u64 hw_csum_rx_complete; u64 hw_tls_rx; u64 hw_csum_rx_error; u64 rx_replace_buf_alloc_fail; struct nfp_net_tx_ring *xdp_ring; struct u64_stats_sync tx_sync; u64 tx_pkts; u64 tx_bytes; u64 ____cacheline_aligned_in_smp hw_csum_tx; u64 hw_csum_tx_inner; u64 tx_gather; u64 tx_lso; u64 hw_tls_tx; u64 tls_tx_fallback; u64 tls_tx_no_fallback; u64 tx_errors; u64 tx_busy; /* Cold data follows */ u32 irq_vector; irq_handler_t handler; char name[IFNAMSIZ + 8]; cpumask_t affinity_mask; } ____cacheline_aligned; /* Firmware version as it is written in the 32bit value in the BAR */ struct nfp_net_fw_version { u8 minor; u8 major; u8 class; u8 resv; } __packed; static inline bool nfp_net_fw_ver_eq(struct nfp_net_fw_version *fw_ver, u8 resv, u8 class, u8 major, u8 minor) { return fw_ver->resv == resv && fw_ver->class == class && fw_ver->major == major && fw_ver->minor == minor; } struct nfp_stat_pair { u64 pkts; u64 bytes; }; /** * struct nfp_net_dp - NFP network device datapath data structure * @dev: Backpointer to struct device * @netdev: Backpointer to net_device structure * @is_vf: Is the driver attached to a VF? * @chained_metadata_format: Firemware will use new metadata format * @ktls_tx: Is kTLS TX enabled? * @rx_dma_dir: Mapping direction for RX buffers * @rx_dma_off: Offset at which DMA packets (for XDP headroom) * @rx_offset: Offset in the RX buffers where packet data starts * @ctrl: Local copy of the control register/word. * @fl_bufsz: Currently configured size of the freelist buffers * @xdp_prog: Installed XDP program * @tx_rings: Array of pre-allocated TX ring structures * @rx_rings: Array of pre-allocated RX ring structures * @ctrl_bar: Pointer to mapped control BAR * * @txd_cnt: Size of the TX ring in number of descriptors * @rxd_cnt: Size of the RX ring in number of descriptors * @num_r_vecs: Number of used ring vectors * @num_tx_rings: Currently configured number of TX rings * @num_stack_tx_rings: Number of TX rings used by the stack (not XDP) * @num_rx_rings: Currently configured number of RX rings * @mtu: Device MTU */ struct nfp_net_dp { struct device *dev; struct net_device *netdev; u8 is_vf:1; u8 chained_metadata_format:1; u8 ktls_tx:1; u8 rx_dma_dir; u8 rx_offset; u32 rx_dma_off; u32 ctrl; u32 fl_bufsz; struct bpf_prog *xdp_prog; struct nfp_net_tx_ring *tx_rings; struct nfp_net_rx_ring *rx_rings; u8 __iomem *ctrl_bar; /* Cold data follows */ unsigned int txd_cnt; unsigned int rxd_cnt; unsigned int num_r_vecs; unsigned int num_tx_rings; unsigned int num_stack_tx_rings; unsigned int num_rx_rings; unsigned int mtu; }; /** * struct nfp_net - NFP network device structure * @dp: Datapath structure * @id: vNIC id within the PF (0 for VFs) * @fw_ver: Firmware version * @cap: Capabilities advertised by the Firmware * @max_mtu: Maximum support MTU advertised by the Firmware * @rss_hfunc: RSS selected hash function * @rss_cfg: RSS configuration * @rss_key: RSS secret key * @rss_itbl: RSS indirection table * @xdp: Information about the driver XDP program * @xdp_hw: Information about the HW XDP program * @max_r_vecs: Number of allocated interrupt vectors for RX/TX * @max_tx_rings: Maximum number of TX rings supported by the Firmware * @max_rx_rings: Maximum number of RX rings supported by the Firmware * @stride_rx: Queue controller RX queue spacing * @stride_tx: Queue controller TX queue spacing * @r_vecs: Pre-allocated array of ring vectors * @irq_entries: Pre-allocated array of MSI-X entries * @lsc_handler: Handler for Link State Change interrupt * @lsc_name: Name for Link State Change interrupt * @exn_handler: Handler for Exception interrupt * @exn_name: Name for Exception interrupt * @shared_handler: Handler for shared interrupts * @shared_name: Name for shared interrupt * @me_freq_mhz: ME clock_freq (MHz) * @reconfig_lock: Protects @reconfig_posted, @reconfig_timer_active, * @reconfig_sync_present and HW reconfiguration request * regs/machinery from async requests (sync must take * @bar_lock) * @reconfig_posted: Pending reconfig bits coming from async sources * @reconfig_timer_active: Timer for reading reconfiguration results is pending * @reconfig_sync_present: Some thread is performing synchronous reconfig * @reconfig_timer: Timer for async reading of reconfig results * @reconfig_in_progress_update: Update FW is processing now (debug only) * @bar_lock: vNIC config BAR access lock, protects: update, * mailbox area, crypto TLV * @link_up: Is the link up? * @link_status_lock: Protects @link_* and ensures atomicity with BAR reading * @rx_coalesce_adapt_on: Is RX interrupt moderation adaptive? * @tx_coalesce_adapt_on: Is TX interrupt moderation adaptive? * @rx_coalesce_usecs: RX interrupt moderation usecs delay parameter * @rx_coalesce_max_frames: RX interrupt moderation frame count parameter * @tx_coalesce_usecs: TX interrupt moderation usecs delay parameter * @tx_coalesce_max_frames: TX interrupt moderation frame count parameter * @qcp_cfg: Pointer to QCP queue used for configuration notification * @tx_bar: Pointer to mapped TX queues * @rx_bar: Pointer to mapped FL/RX queues * @tlv_caps: Parsed TLV capabilities * @ktls_tx_conn_cnt: Number of offloaded kTLS TX connections * @ktls_rx_conn_cnt: Number of offloaded kTLS RX connections * @ktls_conn_id_gen: Trivial generator for kTLS connection ids (for TX) * @ktls_no_space: Counter of firmware rejecting kTLS connection due to * lack of space * @ktls_rx_resync_req: Counter of TLS RX resync requested * @ktls_rx_resync_ign: Counter of TLS RX resync requests ignored * @ktls_rx_resync_sent: Counter of TLS RX resync completed * @mbox_cmsg: Common Control Message via vNIC mailbox state * @mbox_cmsg.queue: CCM mbox queue of pending messages * @mbox_cmsg.wq: CCM mbox wait queue of waiting processes * @mbox_cmsg.workq: CCM mbox work queue for @wait_work and @runq_work * @mbox_cmsg.wait_work: CCM mbox posted msg reconfig wait work * @mbox_cmsg.runq_work: CCM mbox posted msg queue runner work * @mbox_cmsg.tag: CCM mbox message tag allocator * @debugfs_dir: Device directory in debugfs * @vnic_list: Entry on device vNIC list * @pdev: Backpointer to PCI device * @app: APP handle if available * @vnic_no_name: For non-port PF vNIC make ndo_get_phys_port_name return * -EOPNOTSUPP to keep backwards compatibility (set by app) * @port: Pointer to nfp_port structure if vNIC is a port * @app_priv: APP private data for this vNIC */ struct nfp_net { struct nfp_net_dp dp; struct nfp_net_fw_version fw_ver; u32 id; u32 cap; u32 max_mtu; u8 rss_hfunc; u32 rss_cfg; u8 rss_key[NFP_NET_CFG_RSS_KEY_SZ]; u8 rss_itbl[NFP_NET_CFG_RSS_ITBL_SZ]; struct xdp_attachment_info xdp; struct xdp_attachment_info xdp_hw; unsigned int max_tx_rings; unsigned int max_rx_rings; int stride_tx; int stride_rx; unsigned int max_r_vecs; struct nfp_net_r_vector r_vecs[NFP_NET_MAX_R_VECS]; struct msix_entry irq_entries[NFP_NET_MAX_IRQS]; irq_handler_t lsc_handler; char lsc_name[IFNAMSIZ + 8]; irq_handler_t exn_handler; char exn_name[IFNAMSIZ + 8]; irq_handler_t shared_handler; char shared_name[IFNAMSIZ + 8]; u32 me_freq_mhz; bool link_up; spinlock_t link_status_lock; spinlock_t reconfig_lock; u32 reconfig_posted; bool reconfig_timer_active; bool reconfig_sync_present; struct timer_list reconfig_timer; u32 reconfig_in_progress_update; struct semaphore bar_lock; bool rx_coalesce_adapt_on; bool tx_coalesce_adapt_on; u32 rx_coalesce_usecs; u32 rx_coalesce_max_frames; u32 tx_coalesce_usecs; u32 tx_coalesce_max_frames; u8 __iomem *qcp_cfg; u8 __iomem *tx_bar; u8 __iomem *rx_bar; struct nfp_net_tlv_caps tlv_caps; unsigned int ktls_tx_conn_cnt; unsigned int ktls_rx_conn_cnt; atomic64_t ktls_conn_id_gen; atomic_t ktls_no_space; atomic_t ktls_rx_resync_req; atomic_t ktls_rx_resync_ign; atomic_t ktls_rx_resync_sent; struct { struct sk_buff_head queue; wait_queue_head_t wq; struct workqueue_struct *workq; struct work_struct wait_work; struct work_struct runq_work; u16 tag; } mbox_cmsg; struct dentry *debugfs_dir; struct list_head vnic_list; struct pci_dev *pdev; struct nfp_app *app; bool vnic_no_name; struct nfp_port *port; void *app_priv; }; /* Functions to read/write from/to a BAR * Performs any endian conversion necessary. */ static inline u16 nn_readb(struct nfp_net *nn, int off) { return readb(nn->dp.ctrl_bar + off); } static inline void nn_writeb(struct nfp_net *nn, int off, u8 val) { writeb(val, nn->dp.ctrl_bar + off); } static inline u16 nn_readw(struct nfp_net *nn, int off) { return readw(nn->dp.ctrl_bar + off); } static inline void nn_writew(struct nfp_net *nn, int off, u16 val) { writew(val, nn->dp.ctrl_bar + off); } static inline u32 nn_readl(struct nfp_net *nn, int off) { return readl(nn->dp.ctrl_bar + off); } static inline void nn_writel(struct nfp_net *nn, int off, u32 val) { writel(val, nn->dp.ctrl_bar + off); } static inline u64 nn_readq(struct nfp_net *nn, int off) { return readq(nn->dp.ctrl_bar + off); } static inline void nn_writeq(struct nfp_net *nn, int off, u64 val) { writeq(val, nn->dp.ctrl_bar + off); } /* Flush posted PCI writes by reading something without side effects */ static inline void nn_pci_flush(struct nfp_net *nn) { nn_readl(nn, NFP_NET_CFG_VERSION); } /* Queue Controller Peripheral access functions and definitions. * * Some of the BARs of the NFP are mapped to portions of the Queue * Controller Peripheral (QCP) address space on the NFP. A QCP queue * has a read and a write pointer (as well as a size and flags, * indicating overflow etc). The QCP offers a number of different * operation on queue pointers, but here we only offer function to * either add to a pointer or to read the pointer value. */ #define NFP_QCP_QUEUE_ADDR_SZ 0x800 #define NFP_QCP_QUEUE_AREA_SZ 0x80000 #define NFP_QCP_QUEUE_OFF(_x) ((_x) * NFP_QCP_QUEUE_ADDR_SZ) #define NFP_QCP_QUEUE_ADD_RPTR 0x0000 #define NFP_QCP_QUEUE_ADD_WPTR 0x0004 #define NFP_QCP_QUEUE_STS_LO 0x0008 #define NFP_QCP_QUEUE_STS_LO_READPTR_mask 0x3ffff #define NFP_QCP_QUEUE_STS_HI 0x000c #define NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask 0x3ffff /* The offset of a QCP queues in the PCIe Target */ #define NFP_PCIE_QUEUE(_q) (0x80000 + (NFP_QCP_QUEUE_ADDR_SZ * ((_q) & 0xff))) /* nfp_qcp_ptr - Read or Write Pointer of a queue */ enum nfp_qcp_ptr { NFP_QCP_READ_PTR = 0, NFP_QCP_WRITE_PTR }; /* There appear to be an *undocumented* upper limit on the value which * one can add to a queue and that value is either 0x3f or 0x7f. We * go with 0x3f as a conservative measure. */ #define NFP_QCP_MAX_ADD 0x3f static inline void _nfp_qcp_ptr_add(u8 __iomem *q, enum nfp_qcp_ptr ptr, u32 val) { u32 off; if (ptr == NFP_QCP_READ_PTR) off = NFP_QCP_QUEUE_ADD_RPTR; else off = NFP_QCP_QUEUE_ADD_WPTR; while (val > NFP_QCP_MAX_ADD) { writel(NFP_QCP_MAX_ADD, q + off); val -= NFP_QCP_MAX_ADD; } writel(val, q + off); } /** * nfp_qcp_rd_ptr_add() - Add the value to the read pointer of a queue * * @q: Base address for queue structure * @val: Value to add to the queue pointer * * If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed. */ static inline void nfp_qcp_rd_ptr_add(u8 __iomem *q, u32 val) { _nfp_qcp_ptr_add(q, NFP_QCP_READ_PTR, val); } /** * nfp_qcp_wr_ptr_add() - Add the value to the write pointer of a queue * * @q: Base address for queue structure * @val: Value to add to the queue pointer * * If @val is greater than @NFP_QCP_MAX_ADD multiple writes are performed. */ static inline void nfp_qcp_wr_ptr_add(u8 __iomem *q, u32 val) { _nfp_qcp_ptr_add(q, NFP_QCP_WRITE_PTR, val); } static inline u32 _nfp_qcp_read(u8 __iomem *q, enum nfp_qcp_ptr ptr) { u32 off; u32 val; if (ptr == NFP_QCP_READ_PTR) off = NFP_QCP_QUEUE_STS_LO; else off = NFP_QCP_QUEUE_STS_HI; val = readl(q + off); if (ptr == NFP_QCP_READ_PTR) return val & NFP_QCP_QUEUE_STS_LO_READPTR_mask; else return val & NFP_QCP_QUEUE_STS_HI_WRITEPTR_mask; } /** * nfp_qcp_rd_ptr_read() - Read the current read pointer value for a queue * @q: Base address for queue structure * * Return: Value read. */ static inline u32 nfp_qcp_rd_ptr_read(u8 __iomem *q) { return _nfp_qcp_read(q, NFP_QCP_READ_PTR); } /** * nfp_qcp_wr_ptr_read() - Read the current write pointer value for a queue * @q: Base address for queue structure * * Return: Value read. */ static inline u32 nfp_qcp_wr_ptr_read(u8 __iomem *q) { return _nfp_qcp_read(q, NFP_QCP_WRITE_PTR); } static inline bool nfp_net_is_data_vnic(struct nfp_net *nn) { WARN_ON_ONCE(!nn->dp.netdev && nn->port); return !!nn->dp.netdev; } static inline bool nfp_net_running(struct nfp_net *nn) { return nn->dp.ctrl & NFP_NET_CFG_CTRL_ENABLE; } static inline const char *nfp_net_name(struct nfp_net *nn) { return nn->dp.netdev ? nn->dp.netdev->name : "ctrl"; } static inline void nfp_ctrl_lock(struct nfp_net *nn) __acquires(&nn->r_vecs[0].lock) { spin_lock_bh(&nn->r_vecs[0].lock); } static inline void nfp_ctrl_unlock(struct nfp_net *nn) __releases(&nn->r_vecs[0].lock) { spin_unlock_bh(&nn->r_vecs[0].lock); } static inline void nn_ctrl_bar_lock(struct nfp_net *nn) { down(&nn->bar_lock); } static inline bool nn_ctrl_bar_trylock(struct nfp_net *nn) { return !down_trylock(&nn->bar_lock); } static inline void nn_ctrl_bar_unlock(struct nfp_net *nn) { up(&nn->bar_lock); } /* Globals */ extern const char nfp_driver_version[]; extern const struct net_device_ops nfp_net_netdev_ops; static inline bool nfp_netdev_is_nfp_net(struct net_device *netdev) { return netdev->netdev_ops == &nfp_net_netdev_ops; } static inline int nfp_net_coalesce_para_check(u32 usecs, u32 pkts) { if ((usecs >= ((1 << 16) - 1)) || (pkts >= ((1 << 16) - 1))) return -EINVAL; return 0; } /* Prototypes */ void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, void __iomem *ctrl_bar); struct nfp_net * nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, unsigned int max_tx_rings, unsigned int max_rx_rings); void nfp_net_free(struct nfp_net *nn); int nfp_net_init(struct nfp_net *nn); void nfp_net_clean(struct nfp_net *nn); int nfp_ctrl_open(struct nfp_net *nn); void nfp_ctrl_close(struct nfp_net *nn); void nfp_net_set_ethtool_ops(struct net_device *netdev); void nfp_net_info(struct nfp_net *nn); int __nfp_net_reconfig(struct nfp_net *nn, u32 update); int nfp_net_reconfig(struct nfp_net *nn, u32 update); unsigned int nfp_net_rss_key_sz(struct nfp_net *nn); void nfp_net_rss_write_itbl(struct nfp_net *nn); void nfp_net_rss_write_key(struct nfp_net *nn); void nfp_net_coalesce_write_cfg(struct nfp_net *nn); int nfp_net_mbox_lock(struct nfp_net *nn, unsigned int data_size); int nfp_net_mbox_reconfig(struct nfp_net *nn, u32 mbox_cmd); int nfp_net_mbox_reconfig_and_unlock(struct nfp_net *nn, u32 mbox_cmd); void nfp_net_mbox_reconfig_post(struct nfp_net *nn, u32 update); int nfp_net_mbox_reconfig_wait_posted(struct nfp_net *nn); unsigned int nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, unsigned int min_irqs, unsigned int want_irqs); void nfp_net_irqs_disable(struct pci_dev *pdev); void nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, unsigned int n); struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn); int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *new, struct netlink_ext_ack *extack); #ifdef CONFIG_NFP_DEBUG void nfp_net_debugfs_create(void); void nfp_net_debugfs_destroy(void); struct dentry *nfp_net_debugfs_device_add(struct pci_dev *pdev); void nfp_net_debugfs_vnic_add(struct nfp_net *nn, struct dentry *ddir); void nfp_net_debugfs_dir_clean(struct dentry **dir); #else static inline void nfp_net_debugfs_create(void) { } static inline void nfp_net_debugfs_destroy(void) { } static inline struct dentry *nfp_net_debugfs_device_add(struct pci_dev *pdev) { return NULL; } static inline void nfp_net_debugfs_vnic_add(struct nfp_net *nn, struct dentry *ddir) { } static inline void nfp_net_debugfs_dir_clean(struct dentry **dir) { } #endif /* CONFIG_NFP_DEBUG */ #endif /* _NFP_NET_H_ */