/* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "qed_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_reg_addr.h" #define CDU_VALIDATION_DEFAULT_CFG 61 static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = { {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */ {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */ {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */ }; static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = { {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */ }; /* General constants */ #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \ QM_PQ_ELEMENT_SIZE, \ 0x1000) : 0) #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \ 0x100) - 1 : 0) #define QM_INVALID_PQ_ID 0xffff /* Max link speed (in Mbps) */ #define QM_MAX_LINK_SPEED 100000 /* Feature enable */ #define QM_BYPASS_EN 1 #define QM_BYTE_CRD_EN 1 /* Other PQ constants */ #define QM_OTHER_PQS_PER_PF 4 /* WFQ constants */ /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */ #define QM_WFQ_UPPER_BOUND 62500000 /* Bit of VOQ in WFQ VP PQ map */ #define QM_WFQ_VP_PQ_VOQ_SHIFT 0 /* Bit of PF in WFQ VP PQ map */ #define QM_WFQ_VP_PQ_PF_E4_SHIFT 5 /* 0x9000 = 4*9*1024 */ #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000) /* Max WFQ increment value is 0.7 * upper bound */ #define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10) /* RL constants */ /* Period in us */ #define QM_RL_PERIOD 5 /* Period in 25MHz cycles */ #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD) /* RL increment value - rate is specified in mbps */ #define QM_RL_INC_VAL(rate) ({ \ typeof(rate) __rate = (rate); \ max_t(u32, \ (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \ (8 * 100)), \ 1); }) /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */ #define QM_PF_RL_UPPER_BOUND 62500000 /* Max PF RL increment value is 0.7 * upper bound */ #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10) /* Vport RL Upper bound, link speed is in Mpbs */ #define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \ QM_RL_INC_VAL(speed), \ 9700 + 1000)) /* Max Vport RL increment value is the Vport RL upper bound */ #define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed) /* Vport RL credit threshold in case of QM bypass */ #define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1) /* AFullOprtnstcCrdMask constants */ #define QM_OPPOR_LINE_VOQ_DEF 1 #define QM_OPPOR_FW_STOP_DEF 0 #define QM_OPPOR_PQ_EMPTY_DEF 1 /* Command Queue constants */ /* Pure LB CmdQ lines (+spare) */ #define PBF_CMDQ_PURE_LB_LINES 150 #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \ (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \ (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \ PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET)) #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \ (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \ (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \ PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET)) /* Returns the VOQ line credit for the specified number of PBF command lines. * PBF lines are specified in 256b units. */ #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \ ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT) /* BTB: blocks constants (block size = 256B) */ /* 256B blocks in 9700B packet */ #define BTB_JUMBO_PKT_BLOCKS 38 /* Headroom per-port */ #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS #define BTB_PURE_LB_FACTOR 10 /* Factored (hence really 0.7) */ #define BTB_PURE_LB_RATIO 7 /* QM stop command constants */ #define QM_STOP_PQ_MASK_WIDTH 32 #define QM_STOP_CMD_ADDR 2 #define QM_STOP_CMD_STRUCT_SIZE 2 #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0 #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0 #define QM_STOP_CMD_PAUSE_MASK_MASK -1 #define QM_STOP_CMD_GROUP_ID_OFFSET 1 #define QM_STOP_CMD_GROUP_ID_SHIFT 16 #define QM_STOP_CMD_GROUP_ID_MASK 15 #define QM_STOP_CMD_PQ_TYPE_OFFSET 1 #define QM_STOP_CMD_PQ_TYPE_SHIFT 24 #define QM_STOP_CMD_PQ_TYPE_MASK 1 #define QM_STOP_CMD_MAX_POLL_COUNT 100 #define QM_STOP_CMD_POLL_PERIOD_US 500 /* QM command macros */ #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE #define QM_CMD_SET_FIELD(var, cmd, field, value) \ SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \ cmd ## _ ## field, \ value) #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid, rl_id, \ ext_voq, wrr) \ do { \ typeof(map) __map; \ memset(&__map, 0, sizeof(__map)); \ SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \ SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \ rl_valid ? 1 : 0);\ SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \ vp_pq_id); \ SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \ SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \ SET_FIELD(__map.reg, \ QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \ STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \ *((u32 *)&__map)); \ (map) = __map; \ } while (0) #define WRITE_PQ_INFO_TO_RAM 1 #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \ (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \ ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \ (((rl) >> 8) << 9)) #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \ XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \ XSTORM_PQ_INFO_OFFSET(pq_id) /******************** INTERNAL IMPLEMENTATION *********************/ /* Returns the external VOQ number */ static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn, u8 port_id, u8 tc, u8 max_phys_tcs_per_port) { if (tc == PURE_LB_TC) return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id; else return port_id * max_phys_tcs_per_port + tc; } /* Prepare PF RL enable/disable runtime init values */ static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en) { STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0); if (pf_rl_en) { u8 num_ext_voqs = MAX_NUM_VOQS_E4; u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1; /* Enable RLs for all VOQs */ STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask); /* Write RL period */ STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M); STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M); /* Set credit threshold for QM bypass flow */ if (QM_BYPASS_EN) STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND); } } /* Prepare PF WFQ enable/disable runtime init values */ static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en) { STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0); /* Set credit threshold for QM bypass flow */ if (pf_wfq_en && QM_BYPASS_EN) STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND); } /* Prepare global RL enable/disable runtime init values */ static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en) { STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, global_rl_en ? 1 : 0); if (global_rl_en) { /* Write RL period (use timer 0 only) */ STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M); STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M); /* Set credit threshold for QM bypass flow */ if (QM_BYPASS_EN) STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED); } } /* Prepare VPORT WFQ enable/disable runtime init values */ static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en) { STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0); /* Set credit threshold for QM bypass flow */ if (vport_wfq_en && QM_BYPASS_EN) STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND); } /* Prepare runtime init values to allocate PBF command queue lines for * the specified VOQ. */ static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn, u8 ext_voq, u16 cmdq_lines) { u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines); OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines); STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd); STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd); } /* Prepare runtime init values to allocate PBF command queue lines. */ static void qed_cmdq_lines_rt_init( struct qed_hwfn *p_hwfn, u8 max_ports_per_engine, u8 max_phys_tcs_per_port, struct init_qm_port_params port_params[MAX_NUM_PORTS]) { u8 tc, ext_voq, port_id, num_tcs_in_port; u8 num_ext_voqs = MAX_NUM_VOQS_E4; /* Clear PBF lines of all VOQs */ for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++) STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0); for (port_id = 0; port_id < max_ports_per_engine; port_id++) { u16 phys_lines, phys_lines_per_tc; if (!port_params[port_id].active) continue; /* Find number of command queue lines to divide between the * active physical TCs. */ phys_lines = port_params[port_id].num_pbf_cmd_lines; phys_lines -= PBF_CMDQ_PURE_LB_LINES; /* Find #lines per active physical TC */ num_tcs_in_port = 0; for (tc = 0; tc < max_phys_tcs_per_port; tc++) if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) num_tcs_in_port++; phys_lines_per_tc = phys_lines / num_tcs_in_port; /* Init registers per active TC */ for (tc = 0; tc < max_phys_tcs_per_port; tc++) { ext_voq = qed_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port); if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc); } /* Init registers for pure LB TC */ ext_voq = qed_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port); qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES); } } /* Prepare runtime init values to allocate guaranteed BTB blocks for the * specified port. The guaranteed BTB space is divided between the TCs as * follows (shared space Is currently not used): * 1. Parameters: * B - BTB blocks for this port * C - Number of physical TCs for this port * 2. Calculation: * a. 38 blocks (9700B jumbo frame) are allocated for global per port * headroom. * b. B = B - 38 (remainder after global headroom allocation). * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ. * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation). * e. B/C blocks are allocated for each physical TC. * Assumptions: * - MTU is up to 9700 bytes (38 blocks) * - All TCs are considered symmetrical (same rate and packet size) * - No optimization for lossy TC (all are considered lossless). Shared space * is not enabled and allocated for each TC. */ static void qed_btb_blocks_rt_init( struct qed_hwfn *p_hwfn, u8 max_ports_per_engine, u8 max_phys_tcs_per_port, struct init_qm_port_params port_params[MAX_NUM_PORTS]) { u32 usable_blocks, pure_lb_blocks, phys_blocks; u8 tc, ext_voq, port_id, num_tcs_in_port; for (port_id = 0; port_id < max_ports_per_engine; port_id++) { if (!port_params[port_id].active) continue; /* Subtract headroom blocks */ usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS; /* Find blocks per physical TC. Use factor to avoid floating * arithmethic. */ num_tcs_in_port = 0; for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) num_tcs_in_port++; pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO); pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR); phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port; /* Init physical TCs */ for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) { if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) { ext_voq = qed_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port); STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET (ext_voq), phys_blocks); } } /* Init pure LB TC */ ext_voq = qed_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port); STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks); } } /* Prepare runtime init values for the specified RL. * Set max link speed (100Gbps) per rate limiter. * Return -1 on error. */ static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn) { u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) | (u32)QM_RL_CRD_REG_SIGN_BIT; u32 inc_val; u16 rl_id; /* Go over all global RLs */ for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) { inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED); STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + rl_id, (u32)QM_RL_CRD_REG_SIGN_BIT); STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id, upper_bound); STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val); } return 0; } /* Prepare Tx PQ mapping runtime init values for the specified PF */ static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_qm_pf_rt_init_params *p_params, u32 base_mem_addr_4kb) { u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 }; struct init_qm_vport_params *vport_params = p_params->vport_params; u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE; u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group; struct init_qm_pq_params *pq_params = p_params->pq_params; u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb; num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE; last_pq_group = (p_params->start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE; pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids); vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids); mem_addr_4kb = base_mem_addr_4kb; /* Set mapping from PQ group to PF */ for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++) STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(p_params->pf_id)); /* Set PQ sizes */ STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(p_params->num_pf_cids)); STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(p_params->num_vf_cids)); /* Go over all Tx PQs */ for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) { u16 *p_first_tx_pq_id, vport_id_in_pf; struct qm_rf_pq_map_e4 tx_pq_map; u8 tc_id = pq_params[i].tc_id; bool is_vf_pq; u8 ext_voq; ext_voq = qed_get_ext_voq(p_hwfn, pq_params[i].port_id, tc_id, p_params->max_phys_tcs_per_port); is_vf_pq = (i >= p_params->num_pf_pqs); /* Update first Tx PQ of VPORT/TC */ vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport; p_first_tx_pq_id = &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id]; if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) { u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT); /* Create new VP PQ */ *p_first_tx_pq_id = pq_id; /* Map VP PQ to VOQ and PF */ STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + *p_first_tx_pq_id, map_val); } /* Prepare PQ map entry */ QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, *p_first_tx_pq_id, pq_params[i].rl_valid, pq_params[i].rl_id, ext_voq, pq_params[i].wrr_group); /* Set PQ base address */ STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb); /* Clear PQ pointer table entry (64 bit) */ if (p_params->is_pf_loading) for (j = 0; j < 2; j++) STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0); /* Write PQ info to RAM */ if (WRITE_PQ_INFO_TO_RAM != 0) { u32 pq_info = 0; pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id, p_params->pf_id, tc_id, pq_params[i].port_id, pq_params[i].rl_valid, pq_params[i].rl_id); qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info); } /* If VF PQ, add indication to PQ VF mask */ if (is_vf_pq) { tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE)); mem_addr_4kb += vport_pq_mem_4kb; } else { mem_addr_4kb += pq_mem_4kb; } } /* Store Tx PQ VF mask to size select register */ for (i = 0; i < num_tx_pq_vf_masks; i++) if (tx_pq_vf_mask[i]) STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]); } /* Prepare Other PQ mapping runtime init values for the specified PF */ static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, bool is_pf_loading, u32 num_pf_cids, u32 num_tids, u32 base_mem_addr_4kb) { u32 pq_size, pq_mem_4kb, mem_addr_4kb; u16 i, j, pq_id, pq_group; /* A single other PQ group is used in each PF, where PQ group i is used * in PF i. */ pq_group = pf_id; pq_size = num_pf_cids + num_tids; pq_mem_4kb = QM_PQ_MEM_4KB(pq_size); mem_addr_4kb = base_mem_addr_4kb; /* Map PQ group to PF */ STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id)); /* Set PQ sizes */ STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size)); for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) { /* Set PQ base address */ STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb); /* Clear PQ pointer table entry */ if (is_pf_loading) for (j = 0; j < 2; j++) STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0); mem_addr_4kb += pq_mem_4kb; } } /* Prepare PF WFQ runtime init values for the specified PF. * Return -1 on error. */ static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn, struct qed_qm_pf_rt_init_params *p_params) { u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; struct init_qm_pq_params *pq_params = p_params->pq_params; u32 inc_val, crd_reg_offset; u8 ext_voq; u16 i; inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq); if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); return -1; } for (i = 0; i < num_tx_pqs; i++) { ext_voq = qed_get_ext_voq(p_hwfn, pq_params[i].port_id, pq_params[i].tc_id, p_params->max_phys_tcs_per_port); crd_reg_offset = (p_params->pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (p_params->pf_id % MAX_NUM_PFS_BB); OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT); } STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT); STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id, inc_val); return 0; } /* Prepare PF RL runtime init values for the specified PF. * Return -1 on error. */ static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl) { u32 inc_val = QM_RL_INC_VAL(pf_rl); if (inc_val > QM_PF_RL_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); return -1; } STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT); STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT); STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val); return 0; } /* Prepare VPORT WFQ runtime init values for the specified VPORTs. * Return -1 on error. */ static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn, u16 num_vports, struct init_qm_vport_params *vport_params) { u16 vport_pq_id, i; u32 inc_val; u8 tc; /* Go over all PF VPORTs */ for (i = 0; i < num_vports; i++) { if (!vport_params[i].wfq) continue; inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq); if (inc_val > QM_WFQ_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n"); return -1; } /* Each VPORT can have several VPORT PQ IDs for various TCs */ for (tc = 0; tc < NUM_OF_TCS; tc++) { vport_pq_id = vport_params[i].first_tx_pq_id[tc]; if (vport_pq_id != QM_INVALID_PQ_ID) { STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT); STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val); } } } return 0; } static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 reg_val, i; for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) { udelay(QM_STOP_CMD_POLL_PERIOD_US); reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY); } /* Check if timeout while waiting for SDM command ready */ if (i == QM_STOP_CMD_MAX_POLL_COUNT) { DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Timeout when waiting for QM SDM command ready signal\n"); return false; } return true; } static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb) { if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt)) return false; qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr); qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb); qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb); qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1); qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0); return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt); } /******************** INTERFACE IMPLEMENTATION *********************/ u32 qed_qm_pf_mem_size(u32 num_pf_cids, u32 num_vf_cids, u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs) { return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs + QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs + QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF; } int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn, struct qed_qm_common_rt_init_params *p_params) { u32 mask = 0; /* Init AFullOprtnstcCrdMask */ SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ, QM_OPPOR_LINE_VOQ_DEF); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL, p_params->global_rl_en); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF); SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF); STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask); /* Enable/disable PF RL */ qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en); /* Enable/disable PF WFQ */ qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en); /* Enable/disable global RL */ qed_enable_global_rl(p_hwfn, p_params->global_rl_en); /* Enable/disable VPORT WFQ */ qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en); /* Init PBF CMDQ line credit */ qed_cmdq_lines_rt_init(p_hwfn, p_params->max_ports_per_engine, p_params->max_phys_tcs_per_port, p_params->port_params); /* Init BTB blocks in PBF */ qed_btb_blocks_rt_init(p_hwfn, p_params->max_ports_per_engine, p_params->max_phys_tcs_per_port, p_params->port_params); qed_global_rl_rt_init(p_hwfn); return 0; } int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_qm_pf_rt_init_params *p_params) { struct init_qm_vport_params *vport_params = p_params->vport_params; u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids + p_params->num_tids) * QM_OTHER_PQS_PER_PF; u16 i; u8 tc; /* Clear first Tx PQ ID array for each VPORT */ for (i = 0; i < p_params->num_vports; i++) for (tc = 0; tc < NUM_OF_TCS; tc++) vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID; /* Map Other PQs (if any) */ qed_other_pq_map_rt_init(p_hwfn, p_params->pf_id, p_params->is_pf_loading, p_params->num_pf_cids, p_params->num_tids, 0); /* Map Tx PQs */ qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb); /* Init PF WFQ */ if (p_params->pf_wfq) if (qed_pf_wfq_rt_init(p_hwfn, p_params)) return -1; /* Init PF RL */ if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl)) return -1; /* Init VPORT WFQ */ if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params)) return -1; return 0; } int qed_init_pf_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq) { u32 inc_val = QM_WFQ_INC_VAL(pf_wfq); if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); return -1; } qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val); return 0; } int qed_init_pf_rl(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl) { u32 inc_val = QM_RL_INC_VAL(pf_rl); if (inc_val > QM_PF_RL_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); return -1; } qed_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val); return 0; } int qed_init_vport_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq) { u16 vport_pq_id; u32 inc_val; u8 tc; inc_val = QM_WFQ_INC_VAL(wfq); if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n"); return -1; } /* A VPORT can have several VPORT PQ IDs for various TCs */ for (tc = 0; tc < NUM_OF_TCS; tc++) { vport_pq_id = first_tx_pq_id[tc]; if (vport_pq_id != QM_INVALID_PQ_ID) qed_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val); } return 0; } int qed_init_global_rl(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit) { u32 inc_val; inc_val = QM_RL_INC_VAL(rate_limit); if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) { DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n"); return -1; } qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val); return 0; } bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool is_release_cmd, bool is_tx_pq, u16 start_pq, u16 num_pqs) { u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 }; u32 pq_mask = 0, last_pq, pq_id; last_pq = start_pq + num_pqs - 1; /* Set command's PQ type */ QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1); /* Go over requested PQs */ for (pq_id = start_pq; pq_id <= last_pq; pq_id++) { /* Set PQ bit in mask (stop command only) */ if (!is_release_cmd) pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH)); /* If last PQ or end of PQ mask, write command */ if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) { QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PAUSE_MASK, pq_mask); QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH); if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1])) return false; pq_mask = 0; } } return true; } #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \ do { \ typeof(var) *__p_var = &(var); \ typeof(offset) __offset = offset; \ *__p_var = (*__p_var & ~BIT(__offset)) | \ ((enable) ? BIT(__offset) : 0); \ } while (0) #define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910 #define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910 #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \ do { \ u32 i; \ \ for (i = 0; i < (arr_size); i++) \ qed_wr(dev, ptt, \ ((addr) + (4 * i)), \ ((u32 *)&(arr))[i]); \ } while (0) /** * @brief qed_dmae_to_grc - is an internal function - writes from host to * wide-bus registers (split registers are not supported yet) * * @param p_hwfn - HW device data * @param p_ptt - ptt window used for writing the registers. * @param p_data - pointer to source data. * @param addr - Destination register address. * @param len_in_dwords - data length in DWARDS (u32) */ static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 *p_data, u32 addr, u32 len_in_dwords) { struct qed_dmae_params params = {}; int rc; if (!p_data) return -1; /* Set DMAE params */ SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1); /* Execute DMAE command */ rc = qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)(p_data), addr, len_in_dwords, ¶ms); /* If not read using DMAE, read using GRC */ if (rc) { DP_VERBOSE(p_hwfn, QED_MSG_DEBUG, "Failed writing to chip using DMAE, using GRC instead\n"); /* write to registers using GRC */ ARR_REG_WR(p_hwfn, p_ptt, addr, p_data, len_in_dwords); } return len_in_dwords; } void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 dest_port) { /* Update PRS register */ qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port); /* Update NIG register */ qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port); /* Update PBF register */ qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port); } void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool vxlan_enable) { u32 reg_val; u8 shift; /* Update PRS register */ reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); if (reg_val) { reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); /* Update output only if tunnel blocks not included. */ if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); } /* Update NIG register */ reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); /* Update DORQ register */ qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0); } void qed_set_gre_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool eth_gre_enable, bool ip_gre_enable) { u32 reg_val; u8 shift; /* Update PRS register */ reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); if (reg_val) { reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); /* Update output only if tunnel blocks not included. */ if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); } /* Update NIG register */ reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); /* Update DORQ registers */ qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0); qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0); } void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 dest_port) { /* Update PRS register */ qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port); /* Update NIG register */ qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port); /* Update PBF register */ qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port); } void qed_set_geneve_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool eth_geneve_enable, bool ip_geneve_enable) { u32 reg_val; u8 shift; /* Update PRS register */ reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable); shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT; SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable); qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); if (reg_val) { reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); /* Update output only if tunnel blocks not included. */ if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); } /* Update NIG register */ qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0); qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0); /* EDPM with geneve tunnel not supported in BB */ if (QED_IS_BB_B0(p_hwfn->cdev)) return; /* Update DORQ registers */ qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0); qed_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0); } #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3 #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -925189872 void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool enable) { u32 reg_val, cfg_mask; /* read PRS config register */ reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO); /* set VXLAN_NO_L2_ENABLE mask */ cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET); if (enable) { /* set VXLAN_NO_L2_ENABLE flag */ reg_val |= cfg_mask; /* update PRS FIC register */ qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT); } else { /* clear VXLAN_NO_L2_ENABLE flag */ reg_val &= ~cfg_mask; } /* write PRS config register */ qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val); } #define T_ETH_PACKET_ACTION_GFT_EVENTID 23 #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272 #define T_ETH_PACKET_MATCH_RFS_EVENTID 25 #define PARSER_ETH_CONN_CM_HDR 0 #define CAM_LINE_SIZE sizeof(u32) #define RAM_LINE_SIZE sizeof(u64) #define REG_SIZE sizeof(u32) void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id) { struct regpair ram_line = { }; /* Disable gft search for PF */ qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0); /* Clean ram & cam for next gft session */ /* Zero camline */ qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0); /* Zero ramline */ qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, sizeof(ram_line) / REG_SIZE); } void qed_gft_config(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id, bool tcp, bool udp, bool ipv4, bool ipv6, enum gft_profile_type profile_type) { u32 reg_val, cam_line, search_non_ip_as_gft; struct regpair ram_line = { }; if (!ipv6 && !ipv4) DP_NOTICE(p_hwfn, "gft_config: must accept at least on of - ipv4 or ipv6'\n"); if (!tcp && !udp) DP_NOTICE(p_hwfn, "gft_config: must accept at least on of - udp or tcp\n"); if (profile_type >= MAX_GFT_PROFILE_TYPE) DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n"); /* Set RFS event ID to be awakened i Tstorm By Prs */ reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT; reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT; qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val); /* Do not load context only cid in PRS on match. */ qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); /* Do not use tenant ID exist bit for gft search */ qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0); /* Set Cam */ cam_line = 0; SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1); /* Filters are per PF!! */ SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK); SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id); if (!(tcp && udp)) { SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK); if (tcp) SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL); else SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL); } if (!(ipv4 && ipv6)) { SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1); if (ipv4) SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4); else SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6); } /* Write characteristics to cam */ qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, cam_line); cam_line = qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id); /* Write line to RAM - compare to filter 4 tuple */ /* Search no IP as GFT */ search_non_ip_as_gft = 0; /* Tunnel type */ SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1); if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) { SET_FIELD(ram_line.hi, GFT_RAM_LINE_DST_IP, 1); SET_FIELD(ram_line.hi, GFT_RAM_LINE_SRC_IP, 1); SET_FIELD(ram_line.hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_SRC_PORT, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_DST_PORT, 1); } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) { SET_FIELD(ram_line.hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_DST_PORT, 1); } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) { SET_FIELD(ram_line.hi, GFT_RAM_LINE_DST_IP, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1); } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) { SET_FIELD(ram_line.hi, GFT_RAM_LINE_SRC_IP, 1); SET_FIELD(ram_line.lo, GFT_RAM_LINE_ETHERTYPE, 1); } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) { SET_FIELD(ram_line.lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1); /* Allow tunneled traffic without inner IP */ search_non_ip_as_gft = 1; } qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft); qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, sizeof(ram_line) / REG_SIZE); /* Set default profile so that no filter match will happen */ ram_line.lo = 0xffffffff; ram_line.hi = 0x3ff; qed_dmae_to_grc(p_hwfn, p_ptt, (u32 *)&ram_line, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * PRS_GFT_CAM_LINES_NO_MATCH, sizeof(ram_line) / REG_SIZE); /* Enable gft search */ qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1); } DECLARE_CRC8_TABLE(cdu_crc8_table); /* Calculate and return CDU validation byte per connection type/region/cid */ static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid) { const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG; u8 crc, validation_byte = 0; static u8 crc8_table_valid; /* automatically initialized to 0 */ u32 validation_string = 0; u32 data_to_crc; if (!crc8_table_valid) { crc8_populate_msb(cdu_crc8_table, 0x07); crc8_table_valid = 1; } /* The CRC is calculated on the String-to-compress: * [31:8] = {CID[31:20],CID[11:0]} * [7:4] = Region * [3:0] = Type */ if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1) validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8); if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1) validation_string |= ((region & 0xF) << 4); if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1) validation_string |= (conn_type & 0xF); /* Convert to big-endian and calculate CRC8 */ data_to_crc = be32_to_cpu(validation_string); crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE); /* The validation byte [7:0] is composed: * for type A validation * [7] = active configuration bit * [6:0] = crc[6:0] * * for type B validation * [7] = active configuration bit * [6:3] = connection_type[3:0] * [2:0] = crc[2:0] */ validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7; if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1) validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7); else validation_byte |= crc & 0x7F; return validation_byte; } /* Calcualte and set validation bytes for session context */ void qed_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid) { u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; p_ctx = (u8 * const)p_ctx_mem; x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; memset(p_ctx, 0, ctx_size); *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid); *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid); *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid); } /* Calcualte and set validation bytes for task context */ void qed_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid) { u8 *p_ctx, *region1_val_ptr; p_ctx = (u8 * const)p_ctx_mem; region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; memset(p_ctx, 0, ctx_size); *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid); } /* Memset session context to 0 while preserving validation bytes */ void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) { u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; u8 x_val, t_val, u_val; p_ctx = (u8 * const)p_ctx_mem; x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; x_val = *x_val_ptr; t_val = *t_val_ptr; u_val = *u_val_ptr; memset(p_ctx, 0, ctx_size); *x_val_ptr = x_val; *t_val_ptr = t_val; *u_val_ptr = u_val; } /* Memset task context to 0 while preserving validation bytes */ void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) { u8 *p_ctx, *region1_val_ptr; u8 region1_val; p_ctx = (u8 * const)p_ctx_mem; region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; region1_val = *region1_val_ptr; memset(p_ctx, 0, ctx_size); *region1_val_ptr = region1_val; } /* Enable and configure context validation */ void qed_enable_context_validation(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 ctx_validation; /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */ ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24; qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation); /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */ ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation); /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */ ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation); } static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) { switch (storm_id) { case 0: return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); case 1: return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); case 2: return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); case 3: return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); case 4: return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); case 5: return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); default: return 0; } } void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 assert_level[NUM_STORMS]) { u8 storm_id; for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id); qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]); } } #define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4) #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4) static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) { switch (storm_id) { case 0: return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + TSTORM_OVERLAY_BUF_ADDR_OFFSET; case 1: return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + MSTORM_OVERLAY_BUF_ADDR_OFFSET; case 2: return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + USTORM_OVERLAY_BUF_ADDR_OFFSET; case 3: return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + XSTORM_OVERLAY_BUF_ADDR_OFFSET; case 4: return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + YSTORM_OVERLAY_BUF_ADDR_OFFSET; case 5: return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + PSTORM_OVERLAY_BUF_ADDR_OFFSET; default: return 0; } } struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn, const u32 * const fw_overlay_in_buf, u32 buf_size_in_bytes) { u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0; struct phys_mem_desc *allocated_mem; if (!buf_size) return NULL; allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc), GFP_KERNEL); if (!allocated_mem) return NULL; memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc)); /* For each Storm, set physical address in RAM */ while (buf_offset < buf_size) { struct phys_mem_desc *storm_mem_desc; struct fw_overlay_buf_hdr *hdr; u32 storm_buf_size; u8 storm_id; hdr = (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset]; storm_buf_size = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_BUF_SIZE); storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID); storm_mem_desc = allocated_mem + storm_id; storm_mem_desc->size = storm_buf_size * sizeof(u32); /* Allocate physical memory for Storm's overlays buffer */ storm_mem_desc->virt_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, storm_mem_desc->size, &storm_mem_desc->phys_addr, GFP_KERNEL); if (!storm_mem_desc->virt_addr) break; /* Skip overlays buffer header */ buf_offset += OVERLAY_HDR_SIZE_DWORDS; /* Copy Storm's overlays buffer to allocated memory */ memcpy(storm_mem_desc->virt_addr, &fw_overlay_in_buf[buf_offset], storm_mem_desc->size); /* Advance to next Storm */ buf_offset += storm_buf_size; } /* If memory allocation has failed, free all allocated memory */ if (buf_offset < buf_size) { qed_fw_overlay_mem_free(p_hwfn, allocated_mem); return NULL; } return allocated_mem; } void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct phys_mem_desc *fw_overlay_mem) { u8 storm_id; for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { struct phys_mem_desc *storm_mem_desc = (struct phys_mem_desc *)fw_overlay_mem + storm_id; u32 ram_addr, i; /* Skip Storms with no FW overlays */ if (!storm_mem_desc->virt_addr) continue; /* Calculate overlay RAM GRC address of current PF */ ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) + sizeof(dma_addr_t) * p_hwfn->rel_pf_id; /* Write Storm's overlay physical address to RAM */ for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32)) qed_wr(p_hwfn, p_ptt, ram_addr, ((u32 *)&storm_mem_desc->phys_addr)[i]); } } void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn, struct phys_mem_desc *fw_overlay_mem) { u8 storm_id; if (!fw_overlay_mem) return; for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { struct phys_mem_desc *storm_mem_desc = (struct phys_mem_desc *)fw_overlay_mem + storm_id; /* Free Storm's physical memory */ if (storm_mem_desc->virt_addr) dma_free_coherent(&p_hwfn->cdev->pdev->dev, storm_mem_desc->size, storm_mem_desc->virt_addr, storm_mem_desc->phys_addr); } /* Free allocated virtual memory */ kfree(fw_overlay_mem); }