// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2019 Solarflare Communications Inc. * Copyright 2020-2022 Xilinx Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "ef100_rep.h" #include "ef100_netdev.h" #include "ef100_nic.h" #include "mae.h" #include "rx_common.h" #define EFX_EF100_REP_DRIVER "efx_ef100_rep" #define EFX_REP_DEFAULT_PSEUDO_RING_SIZE 64 static int efx_ef100_rep_poll(struct napi_struct *napi, int weight); static int efx_ef100_rep_init_struct(struct efx_nic *efx, struct efx_rep *efv, unsigned int i) { efv->parent = efx; efv->idx = i; INIT_LIST_HEAD(&efv->list); efv->dflt.fw_id = MC_CMD_MAE_ACTION_RULE_INSERT_OUT_ACTION_RULE_ID_NULL; INIT_LIST_HEAD(&efv->dflt.acts.list); INIT_LIST_HEAD(&efv->rx_list); spin_lock_init(&efv->rx_lock); efv->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW; return 0; } static int efx_ef100_rep_open(struct net_device *net_dev) { struct efx_rep *efv = netdev_priv(net_dev); netif_napi_add(net_dev, &efv->napi, efx_ef100_rep_poll, NAPI_POLL_WEIGHT); napi_enable(&efv->napi); return 0; } static int efx_ef100_rep_close(struct net_device *net_dev) { struct efx_rep *efv = netdev_priv(net_dev); napi_disable(&efv->napi); netif_napi_del(&efv->napi); return 0; } static netdev_tx_t efx_ef100_rep_xmit(struct sk_buff *skb, struct net_device *dev) { struct efx_rep *efv = netdev_priv(dev); struct efx_nic *efx = efv->parent; netdev_tx_t rc; /* __ef100_hard_start_xmit() will always return success even in the * case of TX drops, where it will increment efx's tx_dropped. The * efv stats really only count attempted TX, not success/failure. */ atomic64_inc(&efv->stats.tx_packets); atomic64_add(skb->len, &efv->stats.tx_bytes); netif_tx_lock(efx->net_dev); rc = __ef100_hard_start_xmit(skb, efx, dev, efv); netif_tx_unlock(efx->net_dev); return rc; } static int efx_ef100_rep_get_port_parent_id(struct net_device *dev, struct netdev_phys_item_id *ppid) { struct efx_rep *efv = netdev_priv(dev); struct efx_nic *efx = efv->parent; struct ef100_nic_data *nic_data; nic_data = efx->nic_data; /* nic_data->port_id is a u8[] */ ppid->id_len = sizeof(nic_data->port_id); memcpy(ppid->id, nic_data->port_id, sizeof(nic_data->port_id)); return 0; } static int efx_ef100_rep_get_phys_port_name(struct net_device *dev, char *buf, size_t len) { struct efx_rep *efv = netdev_priv(dev); struct efx_nic *efx = efv->parent; struct ef100_nic_data *nic_data; int ret; nic_data = efx->nic_data; ret = snprintf(buf, len, "p%upf%uvf%u", efx->port_num, nic_data->pf_index, efv->idx); if (ret >= len) return -EOPNOTSUPP; return 0; } static void efx_ef100_rep_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct efx_rep *efv = netdev_priv(dev); stats->rx_packets = atomic64_read(&efv->stats.rx_packets); stats->tx_packets = atomic64_read(&efv->stats.tx_packets); stats->rx_bytes = atomic64_read(&efv->stats.rx_bytes); stats->tx_bytes = atomic64_read(&efv->stats.tx_bytes); stats->rx_dropped = atomic64_read(&efv->stats.rx_dropped); stats->tx_errors = atomic64_read(&efv->stats.tx_errors); } static const struct net_device_ops efx_ef100_rep_netdev_ops = { .ndo_open = efx_ef100_rep_open, .ndo_stop = efx_ef100_rep_close, .ndo_start_xmit = efx_ef100_rep_xmit, .ndo_get_port_parent_id = efx_ef100_rep_get_port_parent_id, .ndo_get_phys_port_name = efx_ef100_rep_get_phys_port_name, .ndo_get_stats64 = efx_ef100_rep_get_stats64, }; static void efx_ef100_rep_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strscpy(drvinfo->driver, EFX_EF100_REP_DRIVER, sizeof(drvinfo->driver)); } static u32 efx_ef100_rep_ethtool_get_msglevel(struct net_device *net_dev) { struct efx_rep *efv = netdev_priv(net_dev); return efv->msg_enable; } static void efx_ef100_rep_ethtool_set_msglevel(struct net_device *net_dev, u32 msg_enable) { struct efx_rep *efv = netdev_priv(net_dev); efv->msg_enable = msg_enable; } static void efx_ef100_rep_ethtool_get_ringparam(struct net_device *net_dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kring, struct netlink_ext_ack *ext_ack) { struct efx_rep *efv = netdev_priv(net_dev); ring->rx_max_pending = U32_MAX; ring->rx_pending = efv->rx_pring_size; } static int efx_ef100_rep_ethtool_set_ringparam(struct net_device *net_dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kring, struct netlink_ext_ack *ext_ack) { struct efx_rep *efv = netdev_priv(net_dev); if (ring->rx_mini_pending || ring->rx_jumbo_pending || ring->tx_pending) return -EINVAL; efv->rx_pring_size = ring->rx_pending; return 0; } static const struct ethtool_ops efx_ef100_rep_ethtool_ops = { .get_drvinfo = efx_ef100_rep_get_drvinfo, .get_msglevel = efx_ef100_rep_ethtool_get_msglevel, .set_msglevel = efx_ef100_rep_ethtool_set_msglevel, .get_ringparam = efx_ef100_rep_ethtool_get_ringparam, .set_ringparam = efx_ef100_rep_ethtool_set_ringparam, }; static struct efx_rep *efx_ef100_rep_create_netdev(struct efx_nic *efx, unsigned int i) { struct net_device *net_dev; struct efx_rep *efv; int rc; net_dev = alloc_etherdev_mq(sizeof(*efv), 1); if (!net_dev) return ERR_PTR(-ENOMEM); efv = netdev_priv(net_dev); rc = efx_ef100_rep_init_struct(efx, efv, i); if (rc) goto fail1; efv->net_dev = net_dev; rtnl_lock(); spin_lock_bh(&efx->vf_reps_lock); list_add_tail(&efv->list, &efx->vf_reps); spin_unlock_bh(&efx->vf_reps_lock); if (netif_running(efx->net_dev) && efx->state == STATE_NET_UP) { netif_device_attach(net_dev); netif_carrier_on(net_dev); } else { netif_carrier_off(net_dev); netif_tx_stop_all_queues(net_dev); } rtnl_unlock(); net_dev->netdev_ops = &efx_ef100_rep_netdev_ops; net_dev->ethtool_ops = &efx_ef100_rep_ethtool_ops; net_dev->min_mtu = EFX_MIN_MTU; net_dev->max_mtu = EFX_MAX_MTU; net_dev->features |= NETIF_F_LLTX; net_dev->hw_features |= NETIF_F_LLTX; return efv; fail1: free_netdev(net_dev); return ERR_PTR(rc); } static int efx_ef100_configure_rep(struct efx_rep *efv) { struct efx_nic *efx = efv->parent; u32 selector; int rc; efv->rx_pring_size = EFX_REP_DEFAULT_PSEUDO_RING_SIZE; /* Construct mport selector for corresponding VF */ efx_mae_mport_vf(efx, efv->idx, &selector); /* Look up actual mport ID */ rc = efx_mae_lookup_mport(efx, selector, &efv->mport); if (rc) return rc; pci_dbg(efx->pci_dev, "VF %u has mport ID %#x\n", efv->idx, efv->mport); /* mport label should fit in 16 bits */ WARN_ON(efv->mport >> 16); return efx_tc_configure_default_rule_rep(efv); } static void efx_ef100_deconfigure_rep(struct efx_rep *efv) { struct efx_nic *efx = efv->parent; efx_tc_deconfigure_default_rule(efx, &efv->dflt); } static void efx_ef100_rep_destroy_netdev(struct efx_rep *efv) { struct efx_nic *efx = efv->parent; rtnl_lock(); spin_lock_bh(&efx->vf_reps_lock); list_del(&efv->list); spin_unlock_bh(&efx->vf_reps_lock); rtnl_unlock(); synchronize_rcu(); free_netdev(efv->net_dev); } int efx_ef100_vfrep_create(struct efx_nic *efx, unsigned int i) { struct efx_rep *efv; int rc; efv = efx_ef100_rep_create_netdev(efx, i); if (IS_ERR(efv)) { rc = PTR_ERR(efv); pci_err(efx->pci_dev, "Failed to create representor for VF %d, rc %d\n", i, rc); return rc; } rc = efx_ef100_configure_rep(efv); if (rc) { pci_err(efx->pci_dev, "Failed to configure representor for VF %d, rc %d\n", i, rc); goto fail1; } rc = register_netdev(efv->net_dev); if (rc) { pci_err(efx->pci_dev, "Failed to register representor for VF %d, rc %d\n", i, rc); goto fail2; } pci_dbg(efx->pci_dev, "Representor for VF %d is %s\n", i, efv->net_dev->name); return 0; fail2: efx_ef100_deconfigure_rep(efv); fail1: efx_ef100_rep_destroy_netdev(efv); return rc; } void efx_ef100_vfrep_destroy(struct efx_nic *efx, struct efx_rep *efv) { struct net_device *rep_dev; rep_dev = efv->net_dev; if (!rep_dev) return; netif_dbg(efx, drv, rep_dev, "Removing VF representor\n"); unregister_netdev(rep_dev); efx_ef100_deconfigure_rep(efv); efx_ef100_rep_destroy_netdev(efv); } void efx_ef100_fini_vfreps(struct efx_nic *efx) { struct ef100_nic_data *nic_data = efx->nic_data; struct efx_rep *efv, *next; if (!nic_data->grp_mae) return; list_for_each_entry_safe(efv, next, &efx->vf_reps, list) efx_ef100_vfrep_destroy(efx, efv); } static int efx_ef100_rep_poll(struct napi_struct *napi, int weight) { struct efx_rep *efv = container_of(napi, struct efx_rep, napi); unsigned int read_index; struct list_head head; struct sk_buff *skb; bool need_resched; int spent = 0; INIT_LIST_HEAD(&head); /* Grab up to 'weight' pending SKBs */ spin_lock_bh(&efv->rx_lock); read_index = efv->write_index; while (spent < weight && !list_empty(&efv->rx_list)) { skb = list_first_entry(&efv->rx_list, struct sk_buff, list); list_del(&skb->list); list_add_tail(&skb->list, &head); spent++; } spin_unlock_bh(&efv->rx_lock); /* Receive them */ netif_receive_skb_list(&head); if (spent < weight) if (napi_complete_done(napi, spent)) { spin_lock_bh(&efv->rx_lock); efv->read_index = read_index; /* If write_index advanced while we were doing the * RX, then storing our read_index won't re-prime the * fake-interrupt. In that case, we need to schedule * NAPI again to consume the additional packet(s). */ need_resched = efv->write_index != read_index; spin_unlock_bh(&efv->rx_lock); if (need_resched) napi_schedule(&efv->napi); } return spent; } void efx_ef100_rep_rx_packet(struct efx_rep *efv, struct efx_rx_buffer *rx_buf) { u8 *eh = efx_rx_buf_va(rx_buf); struct sk_buff *skb; bool primed; /* Don't allow too many queued SKBs to build up, as they consume * GFP_ATOMIC memory. If we overrun, just start dropping. */ if (efv->write_index - READ_ONCE(efv->read_index) > efv->rx_pring_size) { atomic64_inc(&efv->stats.rx_dropped); if (net_ratelimit()) netif_dbg(efv->parent, rx_err, efv->net_dev, "nodesc-dropped packet of length %u\n", rx_buf->len); return; } skb = netdev_alloc_skb(efv->net_dev, rx_buf->len); if (!skb) { atomic64_inc(&efv->stats.rx_dropped); if (net_ratelimit()) netif_dbg(efv->parent, rx_err, efv->net_dev, "noskb-dropped packet of length %u\n", rx_buf->len); return; } memcpy(skb->data, eh, rx_buf->len); __skb_put(skb, rx_buf->len); skb_record_rx_queue(skb, 0); /* rep is single-queue */ /* Move past the ethernet header */ skb->protocol = eth_type_trans(skb, efv->net_dev); skb_checksum_none_assert(skb); atomic64_inc(&efv->stats.rx_packets); atomic64_add(rx_buf->len, &efv->stats.rx_bytes); /* Add it to the rx list */ spin_lock_bh(&efv->rx_lock); primed = efv->read_index == efv->write_index; list_add_tail(&skb->list, &efv->rx_list); efv->write_index++; spin_unlock_bh(&efv->rx_lock); /* Trigger rx work */ if (primed) napi_schedule(&efv->napi); } struct efx_rep *efx_ef100_find_rep_by_mport(struct efx_nic *efx, u16 mport) { struct efx_rep *efv, *out = NULL; /* spinlock guards against list mutation while we're walking it; * but caller must also hold rcu_read_lock() to ensure the netdev * isn't freed after we drop the spinlock. */ spin_lock_bh(&efx->vf_reps_lock); list_for_each_entry(efv, &efx->vf_reps, list) if (efv->mport == mport) { out = efv; break; } spin_unlock_bh(&efx->vf_reps_lock); return out; }