// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2018 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include "net_driver.h" #include #include "efx_channels.h" #include "efx.h" #include "efx_common.h" #include "tx_common.h" #include "rx_common.h" #include "nic.h" #include "sriov.h" /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each core. */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); static unsigned int irq_adapt_low_thresh = 8000; module_param(irq_adapt_low_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_low_thresh, "Threshold score for reducing IRQ moderation"); static unsigned int irq_adapt_high_thresh = 16000; module_param(irq_adapt_high_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_high_thresh, "Threshold score for increasing IRQ moderation"); /* This is the weight assigned to each of the (per-channel) virtual * NAPI devices. */ static int napi_weight = 64; /*************** * Housekeeping ***************/ int efx_channel_dummy_op_int(struct efx_channel *channel) { return 0; } void efx_channel_dummy_op_void(struct efx_channel *channel) { } static const struct efx_channel_type efx_default_channel_type = { .pre_probe = efx_channel_dummy_op_int, .post_remove = efx_channel_dummy_op_void, .get_name = efx_get_channel_name, .copy = efx_copy_channel, .want_txqs = efx_default_channel_want_txqs, .keep_eventq = false, .want_pio = true, }; /************* * INTERRUPTS *************/ static unsigned int efx_wanted_parallelism(struct efx_nic *efx) { cpumask_var_t thread_mask; unsigned int count; int cpu; if (rss_cpus) { count = rss_cpus; } else { if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { netif_warn(efx, probe, efx->net_dev, "RSS disabled due to allocation failure\n"); return 1; } count = 0; for_each_online_cpu(cpu) { if (!cpumask_test_cpu(cpu, thread_mask)) { ++count; cpumask_or(thread_mask, thread_mask, topology_sibling_cpumask(cpu)); } } free_cpumask_var(thread_mask); } if (count > EFX_MAX_RX_QUEUES) { netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, "Reducing number of rx queues from %u to %u.\n", count, EFX_MAX_RX_QUEUES); count = EFX_MAX_RX_QUEUES; } /* If RSS is requested for the PF *and* VFs then we can't write RSS * table entries that are inaccessible to VFs */ #ifdef CONFIG_SFC_SRIOV if (efx->type->sriov_wanted) { if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && count > efx_vf_size(efx)) { netif_warn(efx, probe, efx->net_dev, "Reducing number of RSS channels from %u to %u for " "VF support. Increase vf-msix-limit to use more " "channels on the PF.\n", count, efx_vf_size(efx)); count = efx_vf_size(efx); } } #endif return count; } static int efx_allocate_msix_channels(struct efx_nic *efx, unsigned int max_channels, unsigned int extra_channels, unsigned int parallelism) { unsigned int n_channels = parallelism; int vec_count; int n_xdp_tx; int n_xdp_ev; if (efx_separate_tx_channels) n_channels *= 2; n_channels += extra_channels; /* To allow XDP transmit to happen from arbitrary NAPI contexts * we allocate a TX queue per CPU. We share event queues across * multiple tx queues, assuming tx and ev queues are both * maximum size. */ n_xdp_tx = num_possible_cpus(); n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, EFX_TXQ_TYPES); vec_count = pci_msix_vec_count(efx->pci_dev); if (vec_count < 0) return vec_count; max_channels = min_t(unsigned int, vec_count, max_channels); /* Check resources. * We need a channel per event queue, plus a VI per tx queue. * This may be more pessimistic than it needs to be. */ if (n_channels + n_xdp_ev > max_channels) { netif_err(efx, drv, efx->net_dev, "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", n_xdp_ev, n_channels, max_channels); efx->n_xdp_channels = 0; efx->xdp_tx_per_channel = 0; efx->xdp_tx_queue_count = 0; } else { efx->n_xdp_channels = n_xdp_ev; efx->xdp_tx_per_channel = EFX_TXQ_TYPES; efx->xdp_tx_queue_count = n_xdp_tx; n_channels += n_xdp_ev; netif_dbg(efx, drv, efx->net_dev, "Allocating %d TX and %d event queues for XDP\n", n_xdp_tx, n_xdp_ev); } if (vec_count < n_channels) { netif_err(efx, drv, efx->net_dev, "WARNING: Insufficient MSI-X vectors available (%d < %u).\n", vec_count, n_channels); netif_err(efx, drv, efx->net_dev, "WARNING: Performance may be reduced.\n"); n_channels = vec_count; } n_channels = min(n_channels, max_channels); efx->n_channels = n_channels; /* Ignore XDP tx channels when creating rx channels. */ n_channels -= efx->n_xdp_channels; if (efx_separate_tx_channels) { efx->n_tx_channels = min(max(n_channels / 2, 1U), efx->max_tx_channels); efx->tx_channel_offset = n_channels - efx->n_tx_channels; efx->n_rx_channels = max(n_channels - efx->n_tx_channels, 1U); } else { efx->n_tx_channels = min(n_channels, efx->max_tx_channels); efx->tx_channel_offset = 0; efx->n_rx_channels = n_channels; } efx->n_rx_channels = min(efx->n_rx_channels, parallelism); efx->n_tx_channels = min(efx->n_tx_channels, parallelism); efx->xdp_channel_offset = n_channels; netif_dbg(efx, drv, efx->net_dev, "Allocating %u RX channels\n", efx->n_rx_channels); return efx->n_channels; } /* Probe the number and type of interrupts we are able to obtain, and * the resulting numbers of channels and RX queues. */ int efx_probe_interrupts(struct efx_nic *efx) { unsigned int extra_channels = 0; unsigned int rss_spread; unsigned int i, j; int rc; for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) if (efx->extra_channel_type[i]) ++extra_channels; if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { unsigned int parallelism = efx_wanted_parallelism(efx); struct msix_entry xentries[EFX_MAX_CHANNELS]; unsigned int n_channels; rc = efx_allocate_msix_channels(efx, efx->max_channels, extra_channels, parallelism); if (rc >= 0) { n_channels = rc; for (i = 0; i < n_channels; i++) xentries[i].entry = i; rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, n_channels); } if (rc < 0) { /* Fall back to single channel MSI */ netif_err(efx, drv, efx->net_dev, "could not enable MSI-X\n"); if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) efx->interrupt_mode = EFX_INT_MODE_MSI; else return rc; } else if (rc < n_channels) { netif_err(efx, drv, efx->net_dev, "WARNING: Insufficient MSI-X vectors" " available (%d < %u).\n", rc, n_channels); netif_err(efx, drv, efx->net_dev, "WARNING: Performance may be reduced.\n"); n_channels = rc; } if (rc > 0) { for (i = 0; i < efx->n_channels; i++) efx_get_channel(efx, i)->irq = xentries[i].vector; } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EFX_INT_MODE_MSI) { efx->n_channels = 1; efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->n_xdp_channels = 0; efx->xdp_channel_offset = efx->n_channels; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; } else { netif_err(efx, drv, efx->net_dev, "could not enable MSI\n"); if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) efx->interrupt_mode = EFX_INT_MODE_LEGACY; else return rc; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->n_xdp_channels = 0; efx->xdp_channel_offset = efx->n_channels; efx->legacy_irq = efx->pci_dev->irq; } /* Assign extra channels if possible, before XDP channels */ efx->n_extra_tx_channels = 0; j = efx->xdp_channel_offset; for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { if (!efx->extra_channel_type[i]) continue; if (j <= efx->tx_channel_offset + efx->n_tx_channels) { efx->extra_channel_type[i]->handle_no_channel(efx); } else { --j; efx_get_channel(efx, j)->type = efx->extra_channel_type[i]; if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) efx->n_extra_tx_channels++; } } rss_spread = efx->n_rx_channels; /* RSS might be usable on VFs even if it is disabled on the PF */ #ifdef CONFIG_SFC_SRIOV if (efx->type->sriov_wanted) { efx->rss_spread = ((rss_spread > 1 || !efx->type->sriov_wanted(efx)) ? rss_spread : efx_vf_size(efx)); return 0; } #endif efx->rss_spread = rss_spread; return 0; } #if defined(CONFIG_SMP) void efx_set_interrupt_affinity(struct efx_nic *efx) { struct efx_channel *channel; unsigned int cpu; efx_for_each_channel(channel, efx) { cpu = cpumask_local_spread(channel->channel, pcibus_to_node(efx->pci_dev->bus)); irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); } } void efx_clear_interrupt_affinity(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) irq_set_affinity_hint(channel->irq, NULL); } #else void efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) { } void efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) { } #endif /* CONFIG_SMP */ void efx_remove_interrupts(struct efx_nic *efx) { struct efx_channel *channel; /* Remove MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } /*************** * EVENT QUEUES ***************/ /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ int efx_probe_eventq(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; unsigned long entries; netif_dbg(efx, probe, efx->net_dev, "chan %d create event queue\n", channel->channel); /* Build an event queue with room for one event per tx and rx buffer, * plus some extra for link state events and MCDI completions. */ entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; return efx_nic_probe_eventq(channel); } /* Prepare channel's event queue */ int efx_init_eventq(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; int rc; EFX_WARN_ON_PARANOID(channel->eventq_init); netif_dbg(efx, drv, efx->net_dev, "chan %d init event queue\n", channel->channel); rc = efx_nic_init_eventq(channel); if (rc == 0) { efx->type->push_irq_moderation(channel); channel->eventq_read_ptr = 0; channel->eventq_init = true; } return rc; } /* Enable event queue processing and NAPI */ void efx_start_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, ifup, channel->efx->net_dev, "chan %d start event queue\n", channel->channel); /* Make sure the NAPI handler sees the enabled flag set */ channel->enabled = true; smp_wmb(); napi_enable(&channel->napi_str); efx_nic_eventq_read_ack(channel); } /* Disable event queue processing and NAPI */ void efx_stop_eventq(struct efx_channel *channel) { if (!channel->enabled) return; napi_disable(&channel->napi_str); channel->enabled = false; } void efx_fini_eventq(struct efx_channel *channel) { if (!channel->eventq_init) return; netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d fini event queue\n", channel->channel); efx_nic_fini_eventq(channel); channel->eventq_init = false; } void efx_remove_eventq(struct efx_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d remove event queue\n", channel->channel); efx_nic_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ /* Allocate and initialise a channel structure. */ struct efx_channel * efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) { struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; struct efx_channel *channel; int j; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->efx = efx; channel->channel = i; channel->type = &efx_default_channel_type; for (j = 0; j < EFX_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; tx_queue->efx = efx; tx_queue->queue = i * EFX_TXQ_TYPES + j; tx_queue->channel = channel; } #ifdef CONFIG_RFS_ACCEL INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); #endif rx_queue = &channel->rx_queue; rx_queue->efx = efx; timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); return channel; } int efx_init_channels(struct efx_nic *efx) { unsigned int i; for (i = 0; i < EFX_MAX_CHANNELS; i++) { efx->channel[i] = efx_alloc_channel(efx, i, NULL); if (!efx->channel[i]) return -ENOMEM; efx->msi_context[i].efx = efx; efx->msi_context[i].index = i; } /* Higher numbered interrupt modes are less capable! */ if (WARN_ON_ONCE(efx->type->max_interrupt_mode > efx->type->min_interrupt_mode)) { return -EIO; } efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); efx->interrupt_mode = min(efx->type->min_interrupt_mode, interrupt_mode); return 0; } void efx_fini_channels(struct efx_nic *efx) { unsigned int i; for (i = 0; i < EFX_MAX_CHANNELS; i++) if (efx->channel[i]) { kfree(efx->channel[i]); efx->channel[i] = NULL; } } /* Allocate and initialise a channel structure, copying parameters * (but not resources) from an old channel structure. */ struct efx_channel *efx_copy_channel(const struct efx_channel *old_channel) { struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; struct efx_channel *channel; int j; channel = kmalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; *channel = *old_channel; channel->napi_dev = NULL; INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); channel->napi_str.napi_id = 0; channel->napi_str.state = 0; memset(&channel->eventq, 0, sizeof(channel->eventq)); for (j = 0; j < EFX_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; if (tx_queue->channel) tx_queue->channel = channel; tx_queue->buffer = NULL; memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); } rx_queue = &channel->rx_queue; rx_queue->buffer = NULL; memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); #ifdef CONFIG_RFS_ACCEL INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); #endif return channel; } static int efx_probe_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; netif_dbg(channel->efx, probe, channel->efx->net_dev, "creating channel %d\n", channel->channel); rc = channel->type->pre_probe(channel); if (rc) goto fail; rc = efx_probe_eventq(channel); if (rc) goto fail; efx_for_each_channel_tx_queue(tx_queue, channel) { rc = efx_probe_tx_queue(tx_queue); if (rc) goto fail; } efx_for_each_channel_rx_queue(rx_queue, channel) { rc = efx_probe_rx_queue(rx_queue); if (rc) goto fail; } channel->rx_list = NULL; return 0; fail: efx_remove_channel(channel); return rc; } void efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) { struct efx_nic *efx = channel->efx; const char *type; int number; number = channel->channel; if (number >= efx->xdp_channel_offset && !WARN_ON_ONCE(!efx->n_xdp_channels)) { type = "-xdp"; number -= efx->xdp_channel_offset; } else if (efx->tx_channel_offset == 0) { type = ""; } else if (number < efx->tx_channel_offset) { type = "-rx"; } else { type = "-tx"; number -= efx->tx_channel_offset; } snprintf(buf, len, "%s%s-%d", efx->name, type, number); } void efx_set_channel_names(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) channel->type->get_name(channel, efx->msi_context[channel->channel].name, sizeof(efx->msi_context[0].name)); } int efx_probe_channels(struct efx_nic *efx) { struct efx_channel *channel; int rc; /* Restart special buffer allocation */ efx->next_buffer_table = 0; /* Probe channels in reverse, so that any 'extra' channels * use the start of the buffer table. This allows the traffic * channels to be resized without moving them or wasting the * entries before them. */ efx_for_each_channel_rev(channel, efx) { rc = efx_probe_channel(channel); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create channel %d\n", channel->channel); goto fail; } } efx_set_channel_names(efx); return 0; fail: efx_remove_channels(efx); return rc; } void efx_remove_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; netif_dbg(channel->efx, drv, channel->efx->net_dev, "destroy chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); efx_for_each_possible_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); efx_remove_eventq(channel); channel->type->post_remove(channel); } void efx_remove_channels(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_remove_channel(channel); kfree(efx->xdp_tx_queues); } int efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) { struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; unsigned int i, next_buffer_table = 0; u32 old_rxq_entries, old_txq_entries; int rc, rc2; rc = efx_check_disabled(efx); if (rc) return rc; /* Not all channels should be reallocated. We must avoid * reallocating their buffer table entries. */ efx_for_each_channel(channel, efx) { struct efx_rx_queue *rx_queue; struct efx_tx_queue *tx_queue; if (channel->type->copy) continue; next_buffer_table = max(next_buffer_table, channel->eventq.index + channel->eventq.entries); efx_for_each_channel_rx_queue(rx_queue, channel) next_buffer_table = max(next_buffer_table, rx_queue->rxd.index + rx_queue->rxd.entries); efx_for_each_channel_tx_queue(tx_queue, channel) next_buffer_table = max(next_buffer_table, tx_queue->txd.index + tx_queue->txd.entries); } efx_device_detach_sync(efx); efx_stop_all(efx); efx_soft_disable_interrupts(efx); /* Clone channels (where possible) */ memset(other_channel, 0, sizeof(other_channel)); for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (channel->type->copy) channel = channel->type->copy(channel); if (!channel) { rc = -ENOMEM; goto out; } other_channel[i] = channel; } /* Swap entry counts and channel pointers */ old_rxq_entries = efx->rxq_entries; old_txq_entries = efx->txq_entries; efx->rxq_entries = rxq_entries; efx->txq_entries = txq_entries; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; efx->channel[i] = other_channel[i]; other_channel[i] = channel; } /* Restart buffer table allocation */ efx->next_buffer_table = next_buffer_table; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (!channel->type->copy) continue; rc = efx_probe_channel(channel); if (rc) goto rollback; efx_init_napi_channel(efx->channel[i]); } out: /* Destroy unused channel structures */ for (i = 0; i < efx->n_channels; i++) { channel = other_channel[i]; if (channel && channel->type->copy) { efx_fini_napi_channel(channel); efx_remove_channel(channel); kfree(channel); } } rc2 = efx_soft_enable_interrupts(efx); if (rc2) { rc = rc ? rc : rc2; netif_err(efx, drv, efx->net_dev, "unable to restart interrupts on channel reallocation\n"); efx_schedule_reset(efx, RESET_TYPE_DISABLE); } else { efx_start_all(efx); efx_device_attach_if_not_resetting(efx); } return rc; rollback: /* Swap back */ efx->rxq_entries = old_rxq_entries; efx->txq_entries = old_txq_entries; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; efx->channel[i] = other_channel[i]; other_channel[i] = channel; } goto out; } int efx_set_channels(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; int xdp_queue_number; efx->tx_channel_offset = efx_separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; if (efx->xdp_tx_queue_count) { EFX_WARN_ON_PARANOID(efx->xdp_tx_queues); /* Allocate array for XDP TX queue lookup. */ efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count, sizeof(*efx->xdp_tx_queues), GFP_KERNEL); if (!efx->xdp_tx_queues) return -ENOMEM; } /* We need to mark which channels really have RX and TX * queues, and adjust the TX queue numbers if we have separate * RX-only and TX-only channels. */ xdp_queue_number = 0; efx_for_each_channel(channel, efx) { if (channel->channel < efx->n_rx_channels) channel->rx_queue.core_index = channel->channel; else channel->rx_queue.core_index = -1; efx_for_each_channel_tx_queue(tx_queue, channel) { tx_queue->queue -= (efx->tx_channel_offset * EFX_TXQ_TYPES); if (efx_channel_is_xdp_tx(channel) && xdp_queue_number < efx->xdp_tx_queue_count) { efx->xdp_tx_queues[xdp_queue_number] = tx_queue; xdp_queue_number++; } } } return 0; } bool efx_default_channel_want_txqs(struct efx_channel *channel) { return channel->channel - channel->efx->tx_channel_offset < channel->efx->n_tx_channels; } /************* * START/STOP *************/ int efx_soft_enable_interrupts(struct efx_nic *efx) { struct efx_channel *channel, *end_channel; int rc; BUG_ON(efx->state == STATE_DISABLED); efx->irq_soft_enabled = true; smp_wmb(); efx_for_each_channel(channel, efx) { if (!channel->type->keep_eventq) { rc = efx_init_eventq(channel); if (rc) goto fail; } efx_start_eventq(channel); } efx_mcdi_mode_event(efx); return 0; fail: end_channel = channel; efx_for_each_channel(channel, efx) { if (channel == end_channel) break; efx_stop_eventq(channel); if (!channel->type->keep_eventq) efx_fini_eventq(channel); } return rc; } void efx_soft_disable_interrupts(struct efx_nic *efx) { struct efx_channel *channel; if (efx->state == STATE_DISABLED) return; efx_mcdi_mode_poll(efx); efx->irq_soft_enabled = false; smp_wmb(); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); efx_for_each_channel(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); efx_stop_eventq(channel); if (!channel->type->keep_eventq) efx_fini_eventq(channel); } /* Flush the asynchronous MCDI request queue */ efx_mcdi_flush_async(efx); } int efx_enable_interrupts(struct efx_nic *efx) { struct efx_channel *channel, *end_channel; int rc; /* TODO: Is this really a bug? */ BUG_ON(efx->state == STATE_DISABLED); if (efx->eeh_disabled_legacy_irq) { enable_irq(efx->legacy_irq); efx->eeh_disabled_legacy_irq = false; } efx->type->irq_enable_master(efx); efx_for_each_channel(channel, efx) { if (channel->type->keep_eventq) { rc = efx_init_eventq(channel); if (rc) goto fail; } } rc = efx_soft_enable_interrupts(efx); if (rc) goto fail; return 0; fail: end_channel = channel; efx_for_each_channel(channel, efx) { if (channel == end_channel) break; if (channel->type->keep_eventq) efx_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); return rc; } void efx_disable_interrupts(struct efx_nic *efx) { struct efx_channel *channel; efx_soft_disable_interrupts(efx); efx_for_each_channel(channel, efx) { if (channel->type->keep_eventq) efx_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); } void efx_start_channels(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; struct efx_channel *channel; efx_for_each_channel(channel, efx) { efx_for_each_channel_tx_queue(tx_queue, channel) { efx_init_tx_queue(tx_queue); atomic_inc(&efx->active_queues); } efx_for_each_channel_rx_queue(rx_queue, channel) { efx_init_rx_queue(rx_queue); atomic_inc(&efx->active_queues); efx_stop_eventq(channel); efx_fast_push_rx_descriptors(rx_queue, false); efx_start_eventq(channel); } WARN_ON(channel->rx_pkt_n_frags); } } void efx_stop_channels(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; struct efx_channel *channel; int rc = 0; /* Stop RX refill */ efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) rx_queue->refill_enabled = false; } efx_for_each_channel(channel, efx) { /* RX packet processing is pipelined, so wait for the * NAPI handler to complete. At least event queue 0 * might be kept active by non-data events, so don't * use napi_synchronize() but actually disable NAPI * temporarily. */ if (efx_channel_has_rx_queue(channel)) { efx_stop_eventq(channel); efx_start_eventq(channel); } } if (efx->type->fini_dmaq) rc = efx->type->fini_dmaq(efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); } else { netif_dbg(efx, drv, efx->net_dev, "successfully flushed all queues\n"); } efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) efx_fini_rx_queue(rx_queue); efx_for_each_possible_channel_tx_queue(tx_queue, channel) efx_fini_tx_queue(tx_queue); } } /************************************************************************** * * NAPI interface * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static int efx_process_channel(struct efx_channel *channel, int budget) { struct efx_tx_queue *tx_queue; struct list_head rx_list; int spent; if (unlikely(!channel->enabled)) return 0; /* Prepare the batch receive list */ EFX_WARN_ON_PARANOID(channel->rx_list != NULL); INIT_LIST_HEAD(&rx_list); channel->rx_list = &rx_list; efx_for_each_channel_tx_queue(tx_queue, channel) { tx_queue->pkts_compl = 0; tx_queue->bytes_compl = 0; } spent = efx_nic_process_eventq(channel, budget); if (spent && efx_channel_has_rx_queue(channel)) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); efx_rx_flush_packet(channel); efx_fast_push_rx_descriptors(rx_queue, true); } /* Update BQL */ efx_for_each_channel_tx_queue(tx_queue, channel) { if (tx_queue->bytes_compl) { netdev_tx_completed_queue(tx_queue->core_txq, tx_queue->pkts_compl, tx_queue->bytes_compl); } } /* Receive any packets we queued up */ netif_receive_skb_list(channel->rx_list); channel->rx_list = NULL; return spent; } static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) { int step = efx->irq_mod_step_us; if (channel->irq_mod_score < irq_adapt_low_thresh) { if (channel->irq_moderation_us > step) { channel->irq_moderation_us -= step; efx->type->push_irq_moderation(channel); } } else if (channel->irq_mod_score > irq_adapt_high_thresh) { if (channel->irq_moderation_us < efx->irq_rx_moderation_us) { channel->irq_moderation_us += step; efx->type->push_irq_moderation(channel); } } channel->irq_count = 0; channel->irq_mod_score = 0; } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by efx_process_channel(). */ static int efx_poll(struct napi_struct *napi, int budget) { struct efx_channel *channel = container_of(napi, struct efx_channel, napi_str); struct efx_nic *efx = channel->efx; int spent; netif_vdbg(efx, intr, efx->net_dev, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); spent = efx_process_channel(channel, budget); xdp_do_flush_map(); if (spent < budget) { if (efx_channel_has_rx_queue(channel) && efx->irq_rx_adaptive && unlikely(++channel->irq_count == 1000)) { efx_update_irq_mod(efx, channel); } #ifdef CONFIG_RFS_ACCEL /* Perhaps expire some ARFS filters */ mod_delayed_work(system_wq, &channel->filter_work, 0); #endif /* There is no race here; although napi_disable() will * only wait for napi_complete(), this isn't a problem * since efx_nic_eventq_read_ack() will have no effect if * interrupts have already been disabled. */ if (napi_complete_done(napi, spent)) efx_nic_eventq_read_ack(channel); } return spent; } void efx_init_napi_channel(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; channel->napi_dev = efx->net_dev; netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll, napi_weight); } void efx_init_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_init_napi_channel(channel); } void efx_fini_napi_channel(struct efx_channel *channel) { if (channel->napi_dev) netif_napi_del(&channel->napi_str); channel->napi_dev = NULL; } void efx_fini_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_fini_napi_channel(channel); }