// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "rx_common.h" #include "filter.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /* Preferred number of descriptors to fill at once */ #define EFX_RX_PREFERRED_BATCH 8U /* Maximum rx prefix used by any architecture. */ #define EFX_MAX_RX_PREFIX_SIZE 16 /* Number of RX buffers to recycle pages for. When creating the RX page recycle * ring, this number is divided by the number of buffers per page to calculate * the number of pages to store in the RX page recycle ring. */ #define EFX_RECYCLE_RING_SIZE_IOMMU 4096 #define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH) /* Size of buffer allocated for skb header area. */ #define EFX_SKB_HEADERS 128u /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */ #define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \ EFX_RX_USR_BUF_SIZE) static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf) { return page_address(buf->page) + buf->page_offset; } static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset)); #else const u8 *data = eh + efx->rx_packet_hash_offset; return (u32)data[0] | (u32)data[1] << 8 | (u32)data[2] << 16 | (u32)data[3] << 24; #endif } static inline void efx_sync_rx_buffer(struct efx_nic *efx, struct efx_rx_buffer *rx_buf, unsigned int len) { dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len, DMA_FROM_DEVICE); } /* Check the RX page recycle ring for a page that can be reused. */ struct page *efx_reuse_page(struct efx_rx_queue *rx_queue) { struct efx_nic *efx = rx_queue->efx; struct page *page; struct efx_rx_page_state *state; unsigned index; index = rx_queue->page_remove & rx_queue->page_ptr_mask; page = rx_queue->page_ring[index]; if (page == NULL) return NULL; rx_queue->page_ring[index] = NULL; /* page_remove cannot exceed page_add. */ if (rx_queue->page_remove != rx_queue->page_add) ++rx_queue->page_remove; /* If page_count is 1 then we hold the only reference to this page. */ if (page_count(page) == 1) { ++rx_queue->page_recycle_count; return page; } else { state = page_address(page); dma_unmap_page(&efx->pci_dev->dev, state->dma_addr, PAGE_SIZE << efx->rx_buffer_order, DMA_FROM_DEVICE); put_page(page); ++rx_queue->page_recycle_failed; } return NULL; } /* Attempt to recycle the page if there is an RX recycle ring; the page can * only be added if this is the final RX buffer, to prevent pages being used in * the descriptor ring and appearing in the recycle ring simultaneously. */ static void efx_recycle_rx_page(struct efx_channel *channel, struct efx_rx_buffer *rx_buf) { struct page *page = rx_buf->page; struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); struct efx_nic *efx = rx_queue->efx; unsigned index; /* Only recycle the page after processing the final buffer. */ if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE)) return; index = rx_queue->page_add & rx_queue->page_ptr_mask; if (rx_queue->page_ring[index] == NULL) { unsigned read_index = rx_queue->page_remove & rx_queue->page_ptr_mask; /* The next slot in the recycle ring is available, but * increment page_remove if the read pointer currently * points here. */ if (read_index == index) ++rx_queue->page_remove; rx_queue->page_ring[index] = page; ++rx_queue->page_add; return; } ++rx_queue->page_recycle_full; efx_unmap_rx_buffer(efx, rx_buf); put_page(rx_buf->page); } /* Recycle the pages that are used by buffers that have just been received. */ static void efx_recycle_rx_pages(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); do { efx_recycle_rx_page(channel, rx_buf); rx_buf = efx_rx_buf_next(rx_queue, rx_buf); } while (--n_frags); } static void efx_discard_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); efx_recycle_rx_pages(channel, rx_buf, n_frags); efx_free_rx_buffers(rx_queue, rx_buf, n_frags); } static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf, int len) { struct efx_nic *efx = rx_queue->efx; unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; if (likely(len <= max_len)) return; /* The packet must be discarded, but this is only a fatal error * if the caller indicated it was */ rx_buf->flags |= EFX_RX_PKT_DISCARD; if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, "RX queue %d overlength RX event (%#x > %#x)\n", efx_rx_queue_index(rx_queue), len, max_len); efx_rx_queue_channel(rx_queue)->n_rx_overlength++; } /* Pass a received packet up through GRO. GRO can handle pages * regardless of checksum state and skbs with a good checksum. */ static void efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh) { struct napi_struct *napi = &channel->napi_str; struct efx_nic *efx = channel->efx; struct sk_buff *skb; skb = napi_get_frags(napi); if (unlikely(!skb)) { struct efx_rx_queue *rx_queue; rx_queue = efx_channel_get_rx_queue(channel); efx_free_rx_buffers(rx_queue, rx_buf, n_frags); return; } if (efx->net_dev->features & NETIF_F_RXHASH) skb_set_hash(skb, efx_rx_buf_hash(efx, eh), PKT_HASH_TYPE_L3); skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE); skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } skb->data_len = skb->len; skb->truesize += n_frags * efx->rx_buffer_truesize; skb_record_rx_queue(skb, channel->rx_queue.core_index); napi_gro_frags(napi); } /* Allocate and construct an SKB around page fragments */ static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel, struct efx_rx_buffer *rx_buf, unsigned int n_frags, u8 *eh, int hdr_len) { struct efx_nic *efx = channel->efx; struct sk_buff *skb; /* Allocate an SKB to store the headers */ skb = netdev_alloc_skb(efx->net_dev, efx->rx_ip_align + efx->rx_prefix_size + hdr_len); if (unlikely(skb == NULL)) { atomic_inc(&efx->n_rx_noskb_drops); return NULL; } EFX_WARN_ON_ONCE_PARANOID(rx_buf->len < hdr_len); memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size, efx->rx_prefix_size + hdr_len); skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size); __skb_put(skb, hdr_len); /* Append the remaining page(s) onto the frag list */ if (rx_buf->len > hdr_len) { rx_buf->page_offset += hdr_len; rx_buf->len -= hdr_len; for (;;) { skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, rx_buf->page_offset, rx_buf->len); rx_buf->page = NULL; skb->len += rx_buf->len; skb->data_len += rx_buf->len; if (skb_shinfo(skb)->nr_frags == n_frags) break; rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf); } } else { __free_pages(rx_buf->page, efx->rx_buffer_order); rx_buf->page = NULL; n_frags = 0; } skb->truesize += n_frags * efx->rx_buffer_truesize; /* Move past the ethernet header */ skb->protocol = eth_type_trans(skb, efx->net_dev); skb_mark_napi_id(skb, &channel->napi_str); return skb; } void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, unsigned int n_frags, unsigned int len, u16 flags) { struct efx_nic *efx = rx_queue->efx; struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_rx_buffer *rx_buf; rx_queue->rx_packets++; rx_buf = efx_rx_buffer(rx_queue, index); rx_buf->flags |= flags; /* Validate the number of fragments and completed length */ if (n_frags == 1) { if (!(flags & EFX_RX_PKT_PREFIX_LEN)) efx_rx_packet__check_len(rx_queue, rx_buf, len); } else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) || unlikely(len <= (n_frags - 1) * efx->rx_dma_len) || unlikely(len > n_frags * efx->rx_dma_len) || unlikely(!efx->rx_scatter)) { /* If this isn't an explicit discard request, either * the hardware or the driver is broken. */ WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD)); rx_buf->flags |= EFX_RX_PKT_DISCARD; } netif_vdbg(efx, rx_status, efx->net_dev, "RX queue %d received ids %x-%x len %d %s%s\n", efx_rx_queue_index(rx_queue), index, (index + n_frags - 1) & rx_queue->ptr_mask, len, (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "", (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : ""); /* Discard packet, if instructed to do so. Process the * previous receive first. */ if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) { efx_rx_flush_packet(channel); efx_discard_rx_packet(channel, rx_buf, n_frags); return; } if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN)) rx_buf->len = len; /* Release and/or sync the DMA mapping - assumes all RX buffers * consumed in-order per RX queue. */ efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); /* Prefetch nice and early so data will (hopefully) be in cache by * the time we look at it. */ prefetch(efx_rx_buf_va(rx_buf)); rx_buf->page_offset += efx->rx_prefix_size; rx_buf->len -= efx->rx_prefix_size; if (n_frags > 1) { /* Release/sync DMA mapping for additional fragments. * Fix length for last fragment. */ unsigned int tail_frags = n_frags - 1; for (;;) { rx_buf = efx_rx_buf_next(rx_queue, rx_buf); if (--tail_frags == 0) break; efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len); } rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len; efx_sync_rx_buffer(efx, rx_buf, rx_buf->len); } /* All fragments have been DMA-synced, so recycle pages. */ rx_buf = efx_rx_buffer(rx_queue, index); efx_recycle_rx_pages(channel, rx_buf, n_frags); /* Pipeline receives so that we give time for packet headers to be * prefetched into cache. */ efx_rx_flush_packet(channel); channel->rx_pkt_n_frags = n_frags; channel->rx_pkt_index = index; } static void efx_rx_deliver(struct efx_channel *channel, u8 *eh, struct efx_rx_buffer *rx_buf, unsigned int n_frags) { struct sk_buff *skb; u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS); skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len); if (unlikely(skb == NULL)) { struct efx_rx_queue *rx_queue; rx_queue = efx_channel_get_rx_queue(channel); efx_free_rx_buffers(rx_queue, rx_buf, n_frags); return; } skb_record_rx_queue(skb, channel->rx_queue.core_index); /* Set the SKB flags */ skb_checksum_none_assert(skb); if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED)) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL); } efx_rx_skb_attach_timestamp(channel, skb); if (channel->type->receive_skb) if (channel->type->receive_skb(channel, skb)) return; /* Pass the packet up */ if (channel->rx_list != NULL) /* Add to list, will pass up later */ list_add_tail(&skb->list, channel->rx_list); else /* No list, so pass it up now */ netif_receive_skb(skb); } /** efx_do_xdp: perform XDP processing on a received packet * * Returns true if packet should still be delivered. */ static bool efx_do_xdp(struct efx_nic *efx, struct efx_channel *channel, struct efx_rx_buffer *rx_buf, u8 **ehp) { u8 rx_prefix[EFX_MAX_RX_PREFIX_SIZE]; struct efx_rx_queue *rx_queue; struct bpf_prog *xdp_prog; struct xdp_frame *xdpf; struct xdp_buff xdp; u32 xdp_act; s16 offset; int err; rcu_read_lock(); xdp_prog = rcu_dereference(efx->xdp_prog); if (!xdp_prog) { rcu_read_unlock(); return true; } rx_queue = efx_channel_get_rx_queue(channel); if (unlikely(channel->rx_pkt_n_frags > 1)) { /* We can't do XDP on fragmented packets - drop. */ rcu_read_unlock(); efx_free_rx_buffers(rx_queue, rx_buf, channel->rx_pkt_n_frags); if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, "XDP is not possible with multiple receive fragments (%d)\n", channel->rx_pkt_n_frags); channel->n_rx_xdp_bad_drops++; return false; } dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, rx_buf->len, DMA_FROM_DEVICE); /* Save the rx prefix. */ EFX_WARN_ON_PARANOID(efx->rx_prefix_size > EFX_MAX_RX_PREFIX_SIZE); memcpy(rx_prefix, *ehp - efx->rx_prefix_size, efx->rx_prefix_size); xdp.data = *ehp; xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; /* No support yet for XDP metadata */ xdp_set_data_meta_invalid(&xdp); xdp.data_end = xdp.data + rx_buf->len; xdp.rxq = &rx_queue->xdp_rxq_info; xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); rcu_read_unlock(); offset = (u8 *)xdp.data - *ehp; switch (xdp_act) { case XDP_PASS: /* Fix up rx prefix. */ if (offset) { *ehp += offset; rx_buf->page_offset += offset; rx_buf->len -= offset; memcpy(*ehp - efx->rx_prefix_size, rx_prefix, efx->rx_prefix_size); } break; case XDP_TX: /* Buffer ownership passes to tx on success. */ xdpf = convert_to_xdp_frame(&xdp); err = efx_xdp_tx_buffers(efx, 1, &xdpf, true); if (unlikely(err != 1)) { efx_free_rx_buffers(rx_queue, rx_buf, 1); if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, "XDP TX failed (%d)\n", err); channel->n_rx_xdp_bad_drops++; trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); } else { channel->n_rx_xdp_tx++; } break; case XDP_REDIRECT: err = xdp_do_redirect(efx->net_dev, &xdp, xdp_prog); if (unlikely(err)) { efx_free_rx_buffers(rx_queue, rx_buf, 1); if (net_ratelimit()) netif_err(efx, rx_err, efx->net_dev, "XDP redirect failed (%d)\n", err); channel->n_rx_xdp_bad_drops++; trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); } else { channel->n_rx_xdp_redirect++; } break; default: bpf_warn_invalid_xdp_action(xdp_act); efx_free_rx_buffers(rx_queue, rx_buf, 1); channel->n_rx_xdp_bad_drops++; trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); break; case XDP_ABORTED: trace_xdp_exception(efx->net_dev, xdp_prog, xdp_act); /* Fall through */ case XDP_DROP: efx_free_rx_buffers(rx_queue, rx_buf, 1); channel->n_rx_xdp_drops++; break; } return xdp_act == XDP_PASS; } /* Handle a received packet. Second half: Touches packet payload. */ void __efx_rx_packet(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; struct efx_rx_buffer *rx_buf = efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index); u8 *eh = efx_rx_buf_va(rx_buf); /* Read length from the prefix if necessary. This already * excludes the length of the prefix itself. */ if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN) rx_buf->len = le16_to_cpup((__le16 *) (eh + efx->rx_packet_len_offset)); /* If we're in loopback test, then pass the packet directly to the * loopback layer, and free the rx_buf here */ if (unlikely(efx->loopback_selftest)) { struct efx_rx_queue *rx_queue; efx_loopback_rx_packet(efx, eh, rx_buf->len); rx_queue = efx_channel_get_rx_queue(channel); efx_free_rx_buffers(rx_queue, rx_buf, channel->rx_pkt_n_frags); goto out; } if (!efx_do_xdp(efx, channel, rx_buf, &eh)) goto out; if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) rx_buf->flags &= ~EFX_RX_PKT_CSUMMED; if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb) efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh); else efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags); out: channel->rx_pkt_n_frags = 0; } void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue) { unsigned int bufs_in_recycle_ring, page_ring_size; struct efx_nic *efx = rx_queue->efx; /* Set the RX recycle ring size */ #ifdef CONFIG_PPC64 bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; #else if (iommu_present(&pci_bus_type)) bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU; else bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU; #endif /* CONFIG_PPC64 */ page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring / efx->rx_bufs_per_page); rx_queue->page_ring = kcalloc(page_ring_size, sizeof(*rx_queue->page_ring), GFP_KERNEL); rx_queue->page_ptr_mask = page_ring_size - 1; } #ifdef CONFIG_RFS_ACCEL static void efx_filter_rfs_work(struct work_struct *data) { struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion, work); struct efx_nic *efx = netdev_priv(req->net_dev); struct efx_channel *channel = efx_get_channel(efx, req->rxq_index); int slot_idx = req - efx->rps_slot; struct efx_arfs_rule *rule; u16 arfs_id = 0; int rc; rc = efx->type->filter_insert(efx, &req->spec, true); if (rc >= 0) /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */ rc %= efx->type->max_rx_ip_filters; if (efx->rps_hash_table) { spin_lock_bh(&efx->rps_hash_lock); rule = efx_rps_hash_find(efx, &req->spec); /* The rule might have already gone, if someone else's request * for the same spec was already worked and then expired before * we got around to our work. In that case we have nothing * tying us to an arfs_id, meaning that as soon as the filter * is considered for expiry it will be removed. */ if (rule) { if (rc < 0) rule->filter_id = EFX_ARFS_FILTER_ID_ERROR; else rule->filter_id = rc; arfs_id = rule->arfs_id; } spin_unlock_bh(&efx->rps_hash_lock); } if (rc >= 0) { /* Remember this so we can check whether to expire the filter * later. */ mutex_lock(&efx->rps_mutex); if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID) channel->rfs_filter_count++; channel->rps_flow_id[rc] = req->flow_id; mutex_unlock(&efx->rps_mutex); if (req->spec.ether_type == htons(ETH_P_IP)) netif_info(efx, rx_status, efx->net_dev, "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); else netif_info(efx, rx_status, efx->net_dev, "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); channel->n_rfs_succeeded++; } else { if (req->spec.ether_type == htons(ETH_P_IP)) netif_dbg(efx, rx_status, efx->net_dev, "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); else netif_dbg(efx, rx_status, efx->net_dev, "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n", (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP", req->spec.rem_host, ntohs(req->spec.rem_port), req->spec.loc_host, ntohs(req->spec.loc_port), req->rxq_index, req->flow_id, rc, arfs_id); channel->n_rfs_failed++; /* We're overloading the NIC's filter tables, so let's do a * chunk of extra expiry work. */ __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count, 100u)); } /* Release references */ clear_bit(slot_idx, &efx->rps_slot_map); dev_put(req->net_dev); } int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_async_filter_insertion *req; struct efx_arfs_rule *rule; struct flow_keys fk; int slot_idx; bool new; int rc; /* find a free slot */ for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++) if (!test_and_set_bit(slot_idx, &efx->rps_slot_map)) break; if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT) return -EBUSY; if (flow_id == RPS_FLOW_ID_INVALID) { rc = -EINVAL; goto out_clear; } if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) { rc = -EPROTONOSUPPORT; goto out_clear; } if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) { rc = -EPROTONOSUPPORT; goto out_clear; } if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) { rc = -EPROTONOSUPPORT; goto out_clear; } req = efx->rps_slot + slot_idx; efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT, efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0, rxq_index); req->spec.match_flags = EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO | EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT | EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT; req->spec.ether_type = fk.basic.n_proto; req->spec.ip_proto = fk.basic.ip_proto; if (fk.basic.n_proto == htons(ETH_P_IP)) { req->spec.rem_host[0] = fk.addrs.v4addrs.src; req->spec.loc_host[0] = fk.addrs.v4addrs.dst; } else { memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr)); memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr)); } req->spec.rem_port = fk.ports.src; req->spec.loc_port = fk.ports.dst; if (efx->rps_hash_table) { /* Add it to ARFS hash table */ spin_lock(&efx->rps_hash_lock); rule = efx_rps_hash_add(efx, &req->spec, &new); if (!rule) { rc = -ENOMEM; goto out_unlock; } if (new) rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER; rc = rule->arfs_id; /* Skip if existing or pending filter already does the right thing */ if (!new && rule->rxq_index == rxq_index && rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING) goto out_unlock; rule->rxq_index = rxq_index; rule->filter_id = EFX_ARFS_FILTER_ID_PENDING; spin_unlock(&efx->rps_hash_lock); } else { /* Without an ARFS hash table, we just use arfs_id 0 for all * filters. This means if multiple flows hash to the same * flow_id, all but the most recently touched will be eligible * for expiry. */ rc = 0; } /* Queue the request */ dev_hold(req->net_dev = net_dev); INIT_WORK(&req->work, efx_filter_rfs_work); req->rxq_index = rxq_index; req->flow_id = flow_id; schedule_work(&req->work); return rc; out_unlock: spin_unlock(&efx->rps_hash_lock); out_clear: clear_bit(slot_idx, &efx->rps_slot_map); return rc; } bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota) { bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index); struct efx_nic *efx = channel->efx; unsigned int index, size, start; u32 flow_id; if (!mutex_trylock(&efx->rps_mutex)) return false; expire_one = efx->type->filter_rfs_expire_one; index = channel->rfs_expire_index; start = index; size = efx->type->max_rx_ip_filters; while (quota) { flow_id = channel->rps_flow_id[index]; if (flow_id != RPS_FLOW_ID_INVALID) { quota--; if (expire_one(efx, flow_id, index)) { netif_info(efx, rx_status, efx->net_dev, "expired filter %d [channel %u flow %u]\n", index, channel->channel, flow_id); channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID; channel->rfs_filter_count--; } } if (++index == size) index = 0; /* If we were called with a quota that exceeds the total number * of filters in the table (which shouldn't happen, but could * if two callers race), ensure that we don't loop forever - * stop when we've examined every row of the table. */ if (index == start) break; } channel->rfs_expire_index = index; mutex_unlock(&efx->rps_mutex); return true; } #endif /* CONFIG_RFS_ACCEL */ /** * efx_filter_is_mc_recipient - test whether spec is a multicast recipient * @spec: Specification to test * * Return: %true if the specification is a non-drop RX filter that * matches a local MAC address I/G bit value of 1 or matches a local * IPv4 or IPv6 address value in the respective multicast address * range. Otherwise %false. */ bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec) { if (!(spec->flags & EFX_FILTER_FLAG_RX) || spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP) return false; if (spec->match_flags & (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) && is_multicast_ether_addr(spec->loc_mac)) return true; if ((spec->match_flags & (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) == (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) { if (spec->ether_type == htons(ETH_P_IP) && ipv4_is_multicast(spec->loc_host[0])) return true; if (spec->ether_type == htons(ETH_P_IPV6) && ((const u8 *)spec->loc_host)[0] == 0xff) return true; } return false; }