// SPDX-License-Identifier: GPL-2.0 /* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card. * * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc. * * References: * o IOC3 ASIC specification 4.51, 1996-04-18 * o IEEE 802.3 specification, 2000 edition * o DP38840A Specification, National Semiconductor, March 1997 * * To do: * * o Handle allocation failures in ioc3_alloc_skb() more gracefully. * o Handle allocation failures in ioc3_init_rings(). * o Use prefetching for large packets. What is a good lower limit for * prefetching? * o We're probably allocating a bit too much memory. * o Use hardware checksums. * o Convert to using a IOC3 meta driver. * o Which PHYs might possibly be attached to the IOC3 in real live, * which workarounds are required for them? Do we ever have Lucent's? * o For the 2.5 branch kill the mii-tool ioctls. */ #define IOC3_NAME "ioc3-eth" #define IOC3_VERSION "2.6.3-4" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SERIAL_8250 #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include /* 64 RX buffers. This is tunable in the range of 16 <= x < 512. The * value must be a power of two. */ #define RX_BUFFS 64 #define ETCSR_FD ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21) #define ETCSR_HD ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21) /* Private per NIC data of the driver. */ struct ioc3_private { struct ioc3_ethregs *regs; struct ioc3 *all_regs; u32 *ssram; unsigned long *rxr; /* pointer to receiver ring */ struct ioc3_etxd *txr; struct sk_buff *rx_skbs[512]; struct sk_buff *tx_skbs[128]; int rx_ci; /* RX consumer index */ int rx_pi; /* RX producer index */ int tx_ci; /* TX consumer index */ int tx_pi; /* TX producer index */ int txqlen; u32 emcr, ehar_h, ehar_l; spinlock_t ioc3_lock; struct mii_if_info mii; struct net_device *dev; struct pci_dev *pdev; /* Members used by autonegotiation */ struct timer_list ioc3_timer; }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static void ioc3_set_multicast_list(struct net_device *dev); static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ioc3_timeout(struct net_device *dev); static inline unsigned int ioc3_hash(const unsigned char *addr); static inline void ioc3_stop(struct ioc3_private *ip); static void ioc3_init(struct net_device *dev); static const char ioc3_str[] = "IOC3 Ethernet"; static const struct ethtool_ops ioc3_ethtool_ops; /* We use this to acquire receive skb's that we can DMA directly into. */ #define IOC3_CACHELINE 128UL static inline unsigned long aligned_rx_skb_addr(unsigned long addr) { return (~addr + 1) & (IOC3_CACHELINE - 1UL); } static inline struct sk_buff *ioc3_alloc_skb(unsigned long length, unsigned int gfp_mask) { struct sk_buff *skb; skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask); if (likely(skb)) { int offset = aligned_rx_skb_addr((unsigned long)skb->data); if (offset) skb_reserve(skb, offset); } return skb; } static inline unsigned long ioc3_map(void *ptr, unsigned long vdev) { #ifdef CONFIG_SGI_IP27 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */ return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF | ((unsigned long)ptr & TO_PHYS_MASK); #else return virt_to_bus(ptr); #endif } /* BEWARE: The IOC3 documentation documents the size of rx buffers as * 1644 while it's actually 1664. This one was nasty to track down ... */ #define RX_OFFSET 10 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE) #define IOC3_SIZE 0x100000 static inline u32 mcr_pack(u32 pulse, u32 sample) { return (pulse << 10) | (sample << 2); } static int nic_wait(u32 __iomem *mcr) { u32 m; do { m = readl(mcr); } while (!(m & 2)); return m & 1; } static int nic_reset(u32 __iomem *mcr) { int presence; writel(mcr_pack(500, 65), mcr); presence = nic_wait(mcr); writel(mcr_pack(0, 500), mcr); nic_wait(mcr); return presence; } static inline int nic_read_bit(u32 __iomem *mcr) { int result; writel(mcr_pack(6, 13), mcr); result = nic_wait(mcr); writel(mcr_pack(0, 100), mcr); nic_wait(mcr); return result; } static inline void nic_write_bit(u32 __iomem *mcr, int bit) { if (bit) writel(mcr_pack(6, 110), mcr); else writel(mcr_pack(80, 30), mcr); nic_wait(mcr); } /* Read a byte from an iButton device */ static u32 nic_read_byte(u32 __iomem *mcr) { u32 result = 0; int i; for (i = 0; i < 8; i++) result = (result >> 1) | (nic_read_bit(mcr) << 7); return result; } /* Write a byte to an iButton device */ static void nic_write_byte(u32 __iomem *mcr, int byte) { int i, bit; for (i = 8; i; i--) { bit = byte & 1; byte >>= 1; nic_write_bit(mcr, bit); } } static u64 nic_find(u32 __iomem *mcr, int *last) { int a, b, index, disc; u64 address = 0; nic_reset(mcr); /* Search ROM. */ nic_write_byte(mcr, 0xf0); /* Algorithm from ``Book of iButton Standards''. */ for (index = 0, disc = 0; index < 64; index++) { a = nic_read_bit(mcr); b = nic_read_bit(mcr); if (a && b) { pr_warn("NIC search failed (not fatal).\n"); *last = 0; return 0; } if (!a && !b) { if (index == *last) { address |= 1UL << index; } else if (index > *last) { address &= ~(1UL << index); disc = index; } else if ((address & (1UL << index)) == 0) { disc = index; } nic_write_bit(mcr, address & (1UL << index)); continue; } else { if (a) address |= 1UL << index; else address &= ~(1UL << index); nic_write_bit(mcr, a); continue; } } *last = disc; return address; } static int nic_init(u32 __iomem *mcr) { const char *unknown = "unknown"; const char *type = unknown; u8 crc; u8 serial[6]; int save = 0, i; while (1) { u64 reg; reg = nic_find(mcr, &save); switch (reg & 0xff) { case 0x91: type = "DS1981U"; break; default: if (save == 0) { /* Let the caller try again. */ return -1; } continue; } nic_reset(mcr); /* Match ROM. */ nic_write_byte(mcr, 0x55); for (i = 0; i < 8; i++) nic_write_byte(mcr, (reg >> (i << 3)) & 0xff); reg >>= 8; /* Shift out type. */ for (i = 0; i < 6; i++) { serial[i] = reg & 0xff; reg >>= 8; } crc = reg & 0xff; break; } pr_info("Found %s NIC", type); if (type != unknown) pr_cont(" registration number %pM, CRC %02x", serial, crc); pr_cont(".\n"); return 0; } /* Read the NIC (Number-In-a-Can) device used to store the MAC address on * SN0 / SN00 nodeboards and PCI cards. */ static void ioc3_get_eaddr_nic(struct ioc3_private *ip) { u32 __iomem *mcr = &ip->all_regs->mcr; int tries = 2; /* There may be some problem with the battery? */ u8 nic[14]; int i; writel(1 << 21, &ip->all_regs->gpcr_s); while (tries--) { if (!nic_init(mcr)) break; udelay(500); } if (tries < 0) { pr_err("Failed to read MAC address\n"); return; } /* Read Memory. */ nic_write_byte(mcr, 0xf0); nic_write_byte(mcr, 0x00); nic_write_byte(mcr, 0x00); for (i = 13; i >= 0; i--) nic[i] = nic_read_byte(mcr); for (i = 2; i < 8; i++) ip->dev->dev_addr[i - 2] = nic[i]; } /* Ok, this is hosed by design. It's necessary to know what machine the * NIC is in in order to know how to read the NIC address. We also have * to know if it's a PCI card or a NIC in on the node board ... */ static void ioc3_get_eaddr(struct ioc3_private *ip) { ioc3_get_eaddr_nic(ip); pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr); } static void __ioc3_set_mac_address(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); writel((dev->dev_addr[5] << 8) | dev->dev_addr[4], &ip->regs->emar_h); writel((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) | (dev->dev_addr[1] << 8) | dev->dev_addr[0], &ip->regs->emar_l); } static int ioc3_set_mac_address(struct net_device *dev, void *addr) { struct ioc3_private *ip = netdev_priv(dev); struct sockaddr *sa = addr; memcpy(dev->dev_addr, sa->sa_data, dev->addr_len); spin_lock_irq(&ip->ioc3_lock); __ioc3_set_mac_address(dev); spin_unlock_irq(&ip->ioc3_lock); return 0; } /* Caller must hold the ioc3_lock ever for MII readers. This is also * used to protect the transmitter side but it's low contention. */ static int ioc3_mdio_read(struct net_device *dev, int phy, int reg) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; while (readl(®s->micr) & MICR_BUSY) ; writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG, ®s->micr); while (readl(®s->micr) & MICR_BUSY) ; return readl(®s->midr_r) & MIDR_DATA_MASK; } static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; while (readl(®s->micr) & MICR_BUSY) ; writel(data, ®s->midr_w); writel((phy << MICR_PHYADDR_SHIFT) | reg, ®s->micr); while (readl(®s->micr) & MICR_BUSY) ; } static int ioc3_mii_init(struct ioc3_private *ip); static struct net_device_stats *ioc3_get_stats(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; dev->stats.collisions += readl(®s->etcdc) & ETCDC_COLLCNT_MASK; return &dev->stats; } static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len) { struct ethhdr *eh = eth_hdr(skb); unsigned int proto; unsigned char *cp; struct iphdr *ih; u32 csum, ehsum; u16 *ew; /* Did hardware handle the checksum at all? The cases we can handle * are: * * - TCP and UDP checksums of IPv4 only. * - IPv6 would be doable but we keep that for later ... * - Only unfragmented packets. Did somebody already tell you * fragmentation is evil? * - don't care about packet size. Worst case when processing a * malformed packet we'll try to access the packet at ip header + * 64 bytes which is still inside the skb. Even in the unlikely * case where the checksum is right the higher layers will still * drop the packet as appropriate. */ if (eh->h_proto != htons(ETH_P_IP)) return; ih = (struct iphdr *)((char *)eh + ETH_HLEN); if (ip_is_fragment(ih)) return; proto = ih->protocol; if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) return; /* Same as tx - compute csum of pseudo header */ csum = hwsum + (ih->tot_len - (ih->ihl << 2)) + htons((u16)ih->protocol) + (ih->saddr >> 16) + (ih->saddr & 0xffff) + (ih->daddr >> 16) + (ih->daddr & 0xffff); /* Sum up ethernet dest addr, src addr and protocol */ ew = (u16 *)eh; ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6]; ehsum = (ehsum & 0xffff) + (ehsum >> 16); ehsum = (ehsum & 0xffff) + (ehsum >> 16); csum += 0xffff ^ ehsum; /* In the next step we also subtract the 1's complement * checksum of the trailing ethernet CRC. */ cp = (char *)eh + len; /* points at trailing CRC */ if (len & 1) { csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]); csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]); } else { csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]); csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]); } csum = (csum & 0xffff) + (csum >> 16); csum = (csum & 0xffff) + (csum >> 16); if (csum == 0xffff) skb->ip_summed = CHECKSUM_UNNECESSARY; } static inline void ioc3_rx(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct sk_buff *skb, *new_skb; int rx_entry, n_entry, len; struct ioc3_erxbuf *rxb; unsigned long *rxr; u32 w0, err; rxr = ip->rxr; /* Ring base */ rx_entry = ip->rx_ci; /* RX consume index */ n_entry = ip->rx_pi; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); while (w0 & ERXBUF_V) { err = be32_to_cpu(rxb->err); /* It's valid ... */ if (err & ERXBUF_GOODPKT) { len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4; skb_trim(skb, len); skb->protocol = eth_type_trans(skb, dev); new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!new_skb) { /* Ouch, drop packet and just recycle packet * to keep the ring filled. */ dev->stats.rx_dropped++; new_skb = skb; goto next; } if (likely(dev->features & NETIF_F_RXCSUM)) ioc3_tcpudp_checksum(skb, w0 & ERXBUF_IPCKSUM_MASK, len); netif_rx(skb); ip->rx_skbs[rx_entry] = NULL; /* Poison */ /* Because we reserve afterwards. */ skb_put(new_skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *)new_skb->data; skb_reserve(new_skb, RX_OFFSET); dev->stats.rx_packets++; /* Statistics */ dev->stats.rx_bytes += len; } else { /* The frame is invalid and the skb never * reached the network layer so we can just * recycle it. */ new_skb = skb; dev->stats.rx_errors++; } if (err & ERXBUF_CRCERR) /* Statistics */ dev->stats.rx_crc_errors++; if (err & ERXBUF_FRAMERR) dev->stats.rx_frame_errors++; next: ip->rx_skbs[n_entry] = new_skb; rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1)); rxb->w0 = 0; /* Clear valid flag */ n_entry = (n_entry + 1) & 511; /* Update erpir */ /* Now go on to the next ring entry. */ rx_entry = (rx_entry + 1) & 511; skb = ip->rx_skbs[rx_entry]; rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET); w0 = be32_to_cpu(rxb->w0); } writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir); ip->rx_pi = n_entry; ip->rx_ci = rx_entry; } static inline void ioc3_tx(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; unsigned long packets, bytes; int tx_entry, o_entry; struct sk_buff *skb; u32 etcir; spin_lock(&ip->ioc3_lock); etcir = readl(®s->etcir); tx_entry = (etcir >> 7) & 127; o_entry = ip->tx_ci; packets = 0; bytes = 0; while (o_entry != tx_entry) { packets++; skb = ip->tx_skbs[o_entry]; bytes += skb->len; dev_consume_skb_irq(skb); ip->tx_skbs[o_entry] = NULL; o_entry = (o_entry + 1) & 127; /* Next */ etcir = readl(®s->etcir); /* More pkts sent? */ tx_entry = (etcir >> 7) & 127; } dev->stats.tx_packets += packets; dev->stats.tx_bytes += bytes; ip->txqlen -= packets; if (ip->txqlen < 128) netif_wake_queue(dev); ip->tx_ci = o_entry; spin_unlock(&ip->ioc3_lock); } /* Deal with fatal IOC3 errors. This condition might be caused by a hard or * software problems, so we should try to recover * more gracefully if this ever happens. In theory we might be flooded * with such error interrupts if something really goes wrong, so we might * also consider to take the interface down. */ static void ioc3_error(struct net_device *dev, u32 eisr) { struct ioc3_private *ip = netdev_priv(dev); spin_lock(&ip->ioc3_lock); if (eisr & EISR_RXOFLO) net_err_ratelimited("%s: RX overflow.\n", dev->name); if (eisr & EISR_RXBUFOFLO) net_err_ratelimited("%s: RX buffer overflow.\n", dev->name); if (eisr & EISR_RXMEMERR) net_err_ratelimited("%s: RX PCI error.\n", dev->name); if (eisr & EISR_RXPARERR) net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name); if (eisr & EISR_TXBUFUFLO) net_err_ratelimited("%s: TX buffer underflow.\n", dev->name); if (eisr & EISR_TXMEMERR) net_err_ratelimited("%s: TX PCI error.\n", dev->name); ioc3_stop(ip); ioc3_init(dev); ioc3_mii_init(ip); netif_wake_queue(dev); spin_unlock(&ip->ioc3_lock); } /* The interrupt handler does all of the Rx thread work and cleans up * after the Tx thread. */ static irqreturn_t ioc3_interrupt(int irq, void *dev_id) { struct ioc3_private *ip = netdev_priv(dev_id); struct ioc3_ethregs *regs = ip->regs; u32 eisr; eisr = readl(®s->eisr); writel(eisr, ®s->eisr); readl(®s->eisr); /* Flush */ if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR)) ioc3_error(dev_id, eisr); if (eisr & EISR_RXTIMERINT) ioc3_rx(dev_id); if (eisr & EISR_TXEXPLICIT) ioc3_tx(dev_id); return IRQ_HANDLED; } static inline void ioc3_setup_duplex(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; if (ip->mii.full_duplex) { writel(ETCSR_FD, ®s->etcsr); ip->emcr |= EMCR_DUPLEX; } else { writel(ETCSR_HD, ®s->etcsr); ip->emcr &= ~EMCR_DUPLEX; } writel(ip->emcr, ®s->emcr); } static void ioc3_timer(struct timer_list *t) { struct ioc3_private *ip = from_timer(ip, t, ioc3_timer); /* Print the link status if it has changed */ mii_check_media(&ip->mii, 1, 0); ioc3_setup_duplex(ip); ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */ add_timer(&ip->ioc3_timer); } /* Try to find a PHY. There is no apparent relation between the MII addresses * in the SGI documentation and what we find in reality, so we simply probe * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my * onboard IOC3s has the special oddity that probing doesn't seem to find it * yet the interface seems to work fine, so if probing fails we for now will * simply default to PHY 31 instead of bailing out. */ static int ioc3_mii_init(struct ioc3_private *ip) { int ioc3_phy_workaround = 1; int i, found = 0, res = 0; u16 word; for (i = 0; i < 32; i++) { word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1); if (word != 0xffff && word != 0x0000) { found = 1; break; /* Found a PHY */ } } if (!found) { if (ioc3_phy_workaround) { i = 31; } else { ip->mii.phy_id = -1; res = -ENODEV; goto out; } } ip->mii.phy_id = i; out: return res; } static void ioc3_mii_start(struct ioc3_private *ip) { ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10; /* 1.2 sec. */ add_timer(&ip->ioc3_timer); } static inline void ioc3_clean_rx_ring(struct ioc3_private *ip) { struct ioc3_erxbuf *rxb; struct sk_buff *skb; int i; for (i = ip->rx_ci; i & 15; i++) { ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci]; ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++]; } ip->rx_pi &= 511; ip->rx_ci &= 511; for (i = ip->rx_ci; i != ip->rx_pi; i = (i + 1) & 511) { skb = ip->rx_skbs[i]; rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET); rxb->w0 = 0; } } static inline void ioc3_clean_tx_ring(struct ioc3_private *ip) { struct sk_buff *skb; int i; for (i = 0; i < 128; i++) { skb = ip->tx_skbs[i]; if (skb) { ip->tx_skbs[i] = NULL; dev_kfree_skb_any(skb); } ip->txr[i].cmd = 0; } ip->tx_pi = 0; ip->tx_ci = 0; } static void ioc3_free_rings(struct ioc3_private *ip) { struct sk_buff *skb; int rx_entry, n_entry; if (ip->txr) { ioc3_clean_tx_ring(ip); free_pages((unsigned long)ip->txr, 2); ip->txr = NULL; } if (ip->rxr) { n_entry = ip->rx_ci; rx_entry = ip->rx_pi; while (n_entry != rx_entry) { skb = ip->rx_skbs[n_entry]; if (skb) dev_kfree_skb_any(skb); n_entry = (n_entry + 1) & 511; } free_page((unsigned long)ip->rxr); ip->rxr = NULL; } } static void ioc3_alloc_rings(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_erxbuf *rxb; unsigned long *rxr; int i; if (!ip->rxr) { /* Allocate and initialize rx ring. 4kb = 512 entries */ ip->rxr = (unsigned long *)get_zeroed_page(GFP_ATOMIC); rxr = ip->rxr; if (!rxr) pr_err("%s: get_zeroed_page() failed!\n", __func__); /* Now the rx buffers. The RX ring may be larger but * we only allocate 16 buffers for now. Need to tune * this for performance and memory later. */ for (i = 0; i < RX_BUFFS; i++) { struct sk_buff *skb; skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC); if (!skb) { show_free_areas(0, NULL); continue; } ip->rx_skbs[i] = skb; /* Because we reserve afterwards. */ skb_put(skb, (1664 + RX_OFFSET)); rxb = (struct ioc3_erxbuf *)skb->data; rxr[i] = cpu_to_be64(ioc3_map(rxb, 1)); skb_reserve(skb, RX_OFFSET); } ip->rx_ci = 0; ip->rx_pi = RX_BUFFS; } if (!ip->txr) { /* Allocate and initialize tx rings. 16kb = 128 bufs. */ ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2); if (!ip->txr) pr_err("%s: __get_free_pages() failed!\n", __func__); ip->tx_pi = 0; ip->tx_ci = 0; } } static void ioc3_init_rings(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; unsigned long ring; ioc3_free_rings(ip); ioc3_alloc_rings(dev); ioc3_clean_rx_ring(ip); ioc3_clean_tx_ring(ip); /* Now the rx ring base, consume & produce registers. */ ring = ioc3_map(ip->rxr, 0); writel(ring >> 32, ®s->erbr_h); writel(ring & 0xffffffff, ®s->erbr_l); writel(ip->rx_ci << 3, ®s->ercir); writel((ip->rx_pi << 3) | ERPIR_ARM, ®s->erpir); ring = ioc3_map(ip->txr, 0); ip->txqlen = 0; /* nothing queued */ /* Now the tx ring base, consume & produce registers. */ writel(ring >> 32, ®s->etbr_h); writel(ring & 0xffffffff, ®s->etbr_l); writel(ip->tx_pi << 7, ®s->etpir); writel(ip->tx_ci << 7, ®s->etcir); readl(®s->etcir); /* Flush */ } static inline void ioc3_ssram_disc(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; u32 *ssram0 = &ip->ssram[0x0000]; u32 *ssram1 = &ip->ssram[0x4000]; u32 pattern = 0x5555; /* Assume the larger size SSRAM and enable parity checking */ writel(readl(®s->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), ®s->emcr); readl(®s->emcr); /* Flush */ writel(pattern, ssram0); writel(~pattern & IOC3_SSRAM_DM, ssram1); if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern || (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) { /* set ssram size to 64 KB */ ip->emcr |= EMCR_RAMPAR; writel(readl(®s->emcr) & ~EMCR_BUFSIZ, ®s->emcr); } else { ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR; } } static void ioc3_init(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; del_timer_sync(&ip->ioc3_timer); /* Kill if running */ writel(EMCR_RST, ®s->emcr); /* Reset */ readl(®s->emcr); /* Flush WB */ udelay(4); /* Give it time ... */ writel(0, ®s->emcr); readl(®s->emcr); /* Misc registers */ #ifdef CONFIG_SGI_IP27 /* Barrier on last store */ writel(PCI64_ATTR_BAR >> 32, ®s->erbar); #else /* Let PCI API get it right */ writel(0, ®s->erbar); #endif readl(®s->etcdc); /* Clear on read */ writel(15, ®s->ercsr); /* RX low watermark */ writel(0, ®s->ertr); /* Interrupt immediately */ __ioc3_set_mac_address(dev); writel(ip->ehar_h, ®s->ehar_h); writel(ip->ehar_l, ®s->ehar_l); writel(42, ®s->ersr); /* XXX should be random */ ioc3_init_rings(dev); ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN | EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN; writel(ip->emcr, ®s->emcr); writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXEXPLICIT | EISR_TXMEMERR, ®s->eier); readl(®s->eier); } static inline void ioc3_stop(struct ioc3_private *ip) { struct ioc3_ethregs *regs = ip->regs; writel(0, ®s->emcr); /* Shutup */ writel(0, ®s->eier); /* Disable interrupts */ readl(®s->eier); /* Flush */ } static int ioc3_open(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) { netdev_err(dev, "Can't get irq %d\n", dev->irq); return -EAGAIN; } ip->ehar_h = 0; ip->ehar_l = 0; ioc3_init(dev); ioc3_mii_start(ip); netif_start_queue(dev); return 0; } static int ioc3_close(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); del_timer_sync(&ip->ioc3_timer); netif_stop_queue(dev); ioc3_stop(ip); free_irq(dev->irq, dev); ioc3_free_rings(ip); return 0; } /* MENET cards have four IOC3 chips, which are attached to two sets of * PCI slot resources each: the primary connections are on slots * 0..3 and the secondaries are on 4..7 * * All four ethernets are brought out to connectors; six serial ports * (a pair from each of the first three IOC3s) are brought out to * MiniDINs; all other subdevices are left swinging in the wind, leave * them disabled. */ static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot) { struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0)); int ret = 0; if (dev) { if (dev->vendor == PCI_VENDOR_ID_SGI && dev->device == PCI_DEVICE_ID_SGI_IOC3) ret = 1; pci_dev_put(dev); } return ret; } static int ioc3_is_menet(struct pci_dev *pdev) { return !pdev->bus->parent && ioc3_adjacent_is_ioc3(pdev, 0) && ioc3_adjacent_is_ioc3(pdev, 1) && ioc3_adjacent_is_ioc3(pdev, 2); } #ifdef CONFIG_SERIAL_8250 /* Note about serial ports and consoles: * For console output, everyone uses the IOC3 UARTA (offset 0x178) * connected to the master node (look in ip27_setup_console() and * ip27prom_console_write()). * * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port * addresses on a partitioned machine. Since we currently use the ioc3 * serial ports, we use dynamic serial port discovery that the serial.c * driver uses for pci/pnp ports (there is an entry for the SGI ioc3 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater * than UARTB's, although UARTA on o200s has traditionally been known as * port 0. So, we just use one serial port from each ioc3 (since the * serial driver adds addresses to get to higher ports). * * The first one to do a register_console becomes the preferred console * (if there is no kernel command line console= directive). /dev/console * (ie 5, 1) is then "aliased" into the device number returned by the * "device" routine referred to in this console structure * (ip27prom_console_dev). * * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working * around ioc3 oddities in this respect. * * The IOC3 serials use a 22MHz clock rate with an additional divider which * can be programmed in the SCR register if the DLAB bit is set. * * Register to interrupt zero because we share the interrupt with * the serial driver which we don't properly support yet. * * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been * registered. */ static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart) { #define COSMISC_CONSTANT 6 struct uart_8250_port port = { .port = { .irq = 0, .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF, .iotype = UPIO_MEM, .regshift = 0, .uartclk = (22000000 << 1) / COSMISC_CONSTANT, .membase = (unsigned char __iomem *)uart, .mapbase = (unsigned long)uart, } }; unsigned char lcr; lcr = readb(&uart->iu_lcr); writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr); writeb(COSMISC_CONSTANT, &uart->iu_scr); writeb(lcr, &uart->iu_lcr); readb(&uart->iu_lcr); serial8250_register_8250_port(&port); } static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3) { u32 sio_iec; /* We need to recognice and treat the fourth MENET serial as it * does not have an SuperIO chip attached to it, therefore attempting * to access it will result in bus errors. We call something an * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3 * in it. This is paranoid but we want to avoid blowing up on a * showhorn PCI box that happens to have 4 IOC3 cards in it so it's * not paranoid enough ... */ if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3) return; /* Switch IOC3 to PIO mode. It probably already was but let's be * paranoid */ writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s); readl(&ioc3->gpcr_s); writel(0, &ioc3->gppr[6]); readl(&ioc3->gppr[6]); writel(0, &ioc3->gppr[7]); readl(&ioc3->gppr[7]); writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr); readl(&ioc3->port_a.sscr); writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr); readl(&ioc3->port_b.sscr); /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */ sio_iec = readl(&ioc3->sio_iec); sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL | SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER | SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS | SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR); sio_iec |= SIO_IR_SA_INT; sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL | SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER | SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS | SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR); sio_iec |= SIO_IR_SB_INT; writel(sio_iec, &ioc3->sio_iec); writel(0, &ioc3->port_a.sscr); writel(0, &ioc3->port_b.sscr); ioc3_8250_register(&ioc3->sregs.uarta); ioc3_8250_register(&ioc3->sregs.uartb); } #endif static const struct net_device_ops ioc3_netdev_ops = { .ndo_open = ioc3_open, .ndo_stop = ioc3_close, .ndo_start_xmit = ioc3_start_xmit, .ndo_tx_timeout = ioc3_timeout, .ndo_get_stats = ioc3_get_stats, .ndo_set_rx_mode = ioc3_set_multicast_list, .ndo_do_ioctl = ioc3_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ioc3_set_mac_address, }; static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { unsigned int sw_physid1, sw_physid2; struct net_device *dev = NULL; struct ioc3_private *ip; struct ioc3 *ioc3; unsigned long ioc3_base, ioc3_size; u32 vendor, model, rev; int err, pci_using_dac; /* Configure DMA attributes. */ err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (!err) { pci_using_dac = 1; err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err < 0) { pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n", pci_name(pdev)); goto out; } } else { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { pr_err("%s: No usable DMA configuration, aborting.\n", pci_name(pdev)); goto out; } pci_using_dac = 0; } if (pci_enable_device(pdev)) return -ENODEV; dev = alloc_etherdev(sizeof(struct ioc3_private)); if (!dev) { err = -ENOMEM; goto out_disable; } if (pci_using_dac) dev->features |= NETIF_F_HIGHDMA; err = pci_request_regions(pdev, "ioc3"); if (err) goto out_free; SET_NETDEV_DEV(dev, &pdev->dev); ip = netdev_priv(dev); ip->dev = dev; dev->irq = pdev->irq; ioc3_base = pci_resource_start(pdev, 0); ioc3_size = pci_resource_len(pdev, 0); ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size); if (!ioc3) { pr_err("ioc3eth(%s): ioremap failed, goodbye.\n", pci_name(pdev)); err = -ENOMEM; goto out_res; } ip->regs = &ioc3->eth; ip->ssram = ioc3->ssram; ip->all_regs = ioc3; #ifdef CONFIG_SERIAL_8250 ioc3_serial_probe(pdev, ioc3); #endif spin_lock_init(&ip->ioc3_lock); timer_setup(&ip->ioc3_timer, ioc3_timer, 0); ioc3_stop(ip); ioc3_init(dev); ip->pdev = pdev; ip->mii.phy_id_mask = 0x1f; ip->mii.reg_num_mask = 0x1f; ip->mii.dev = dev; ip->mii.mdio_read = ioc3_mdio_read; ip->mii.mdio_write = ioc3_mdio_write; ioc3_mii_init(ip); if (ip->mii.phy_id == -1) { pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n", pci_name(pdev)); err = -ENODEV; goto out_stop; } ioc3_mii_start(ip); ioc3_ssram_disc(ip); ioc3_get_eaddr(ip); /* The IOC3-specific entries in the device structure. */ dev->watchdog_timeo = 5 * HZ; dev->netdev_ops = &ioc3_netdev_ops; dev->ethtool_ops = &ioc3_ethtool_ops; dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM; dev->features = NETIF_F_IP_CSUM; sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1); sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2); err = register_netdev(dev); if (err) goto out_stop; mii_check_media(&ip->mii, 1, 1); ioc3_setup_duplex(ip); vendor = (sw_physid1 << 12) | (sw_physid2 >> 4); model = (sw_physid2 >> 4) & 0x3f; rev = sw_physid2 & 0xf; netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n", ip->mii.phy_id, vendor, model, rev); netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n", ip->emcr & EMCR_BUFSIZ ? 128 : 64); return 0; out_stop: ioc3_stop(ip); del_timer_sync(&ip->ioc3_timer); ioc3_free_rings(ip); out_res: pci_release_regions(pdev); out_free: free_netdev(dev); out_disable: /* We should call pci_disable_device(pdev); here if the IOC3 wasn't * such a weird device ... */ out: return err; } static void ioc3_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct ioc3_private *ip = netdev_priv(dev); unregister_netdev(dev); del_timer_sync(&ip->ioc3_timer); iounmap(ip->all_regs); pci_release_regions(pdev); free_netdev(dev); /* We should call pci_disable_device(pdev); here if the IOC3 wasn't * such a weird device ... */ } static const struct pci_device_id ioc3_pci_tbl[] = { { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID }, { 0 } }; MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl); static struct pci_driver ioc3_driver = { .name = "ioc3-eth", .id_table = ioc3_pci_tbl, .probe = ioc3_probe, .remove = ioc3_remove_one, }; static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_etxd *desc; unsigned long data; unsigned int len; int produce; u32 w0 = 0; /* IOC3 has a fairly simple minded checksumming hardware which simply * adds up the 1's complement checksum for the entire packet and * inserts it at an offset which can be specified in the descriptor * into the transmit packet. This means we have to compensate for the * MAC header which should not be summed and the TCP/UDP pseudo headers * manually. */ if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ih = ip_hdr(skb); const int proto = ntohs(ih->protocol); unsigned int csoff; u32 csum, ehsum; u16 *eh; /* The MAC header. skb->mac seem the logic approach * to find the MAC header - except it's a NULL pointer ... */ eh = (u16 *)skb->data; /* Sum up dest addr, src addr and protocol */ ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6]; /* Fold ehsum. can't use csum_fold which negates also ... */ ehsum = (ehsum & 0xffff) + (ehsum >> 16); ehsum = (ehsum & 0xffff) + (ehsum >> 16); /* Skip IP header; it's sum is always zero and was * already filled in by ip_output.c */ csum = csum_tcpudp_nofold(ih->saddr, ih->daddr, ih->tot_len - (ih->ihl << 2), proto, 0xffff ^ ehsum); csum = (csum & 0xffff) + (csum >> 16); /* Fold again */ csum = (csum & 0xffff) + (csum >> 16); csoff = ETH_HLEN + (ih->ihl << 2); if (proto == IPPROTO_UDP) { csoff += offsetof(struct udphdr, check); udp_hdr(skb)->check = csum; } if (proto == IPPROTO_TCP) { csoff += offsetof(struct tcphdr, check); tcp_hdr(skb)->check = csum; } w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT); } spin_lock_irq(&ip->ioc3_lock); data = (unsigned long)skb->data; len = skb->len; produce = ip->tx_pi; desc = &ip->txr[produce]; if (len <= 104) { /* Short packet, let's copy it directly into the ring. */ skb_copy_from_linear_data(skb, desc->data, skb->len); if (len < ETH_ZLEN) { /* Very short packet, pad with zeros at the end. */ memset(desc->data + len, 0, ETH_ZLEN - len); len = ETH_ZLEN; } desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0); desc->bufcnt = cpu_to_be32(len); } else if ((data ^ (data + len - 1)) & 0x4000) { unsigned long b2 = (data | 0x3fffUL) + 1UL; unsigned long s1 = b2 - data; unsigned long s2 = data + len - b2; desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | ETXD_B2V | w0); desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) | (s2 << ETXD_B2CNT_SHIFT)); desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1)); desc->p2 = cpu_to_be64(ioc3_map((void *)b2, 1)); } else { /* Normal sized packet that doesn't cross a page boundary. */ desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0); desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT); desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1)); } mb(); /* make sure all descriptor changes are visible */ ip->tx_skbs[produce] = skb; /* Remember skb */ produce = (produce + 1) & 127; ip->tx_pi = produce; writel(produce << 7, &ip->regs->etpir); /* Fire ... */ ip->txqlen++; if (ip->txqlen >= 127) netif_stop_queue(dev); spin_unlock_irq(&ip->ioc3_lock); return NETDEV_TX_OK; } static void ioc3_timeout(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); netdev_err(dev, "transmit timed out, resetting\n"); spin_lock_irq(&ip->ioc3_lock); ioc3_stop(ip); ioc3_init(dev); ioc3_mii_init(ip); ioc3_mii_start(ip); spin_unlock_irq(&ip->ioc3_lock); netif_wake_queue(dev); } /* Given a multicast ethernet address, this routine calculates the * address's bit index in the logical address filter mask */ static inline unsigned int ioc3_hash(const unsigned char *addr) { unsigned int temp = 0; int bits; u32 crc; crc = ether_crc_le(ETH_ALEN, addr); crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */ for (bits = 6; --bits >= 0; ) { temp <<= 1; temp |= (crc & 0x1); crc >>= 1; } return temp; } static void ioc3_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct ioc3_private *ip = netdev_priv(dev); strlcpy(info->driver, IOC3_NAME, sizeof(info->driver)); strlcpy(info->version, IOC3_VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info)); } static int ioc3_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ioc3_private *ip = netdev_priv(dev); spin_lock_irq(&ip->ioc3_lock); mii_ethtool_get_link_ksettings(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return 0; } static int ioc3_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd); spin_unlock_irq(&ip->ioc3_lock); return rc; } static int ioc3_nway_reset(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_nway_restart(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static u32 ioc3_get_link(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = mii_link_ok(&ip->mii); spin_unlock_irq(&ip->ioc3_lock); return rc; } static const struct ethtool_ops ioc3_ethtool_ops = { .get_drvinfo = ioc3_get_drvinfo, .nway_reset = ioc3_nway_reset, .get_link = ioc3_get_link, .get_link_ksettings = ioc3_get_link_ksettings, .set_link_ksettings = ioc3_set_link_ksettings, }; static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct ioc3_private *ip = netdev_priv(dev); int rc; spin_lock_irq(&ip->ioc3_lock); rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL); spin_unlock_irq(&ip->ioc3_lock); return rc; } static void ioc3_set_multicast_list(struct net_device *dev) { struct ioc3_private *ip = netdev_priv(dev); struct ioc3_ethregs *regs = ip->regs; struct netdev_hw_addr *ha; u64 ehar = 0; netif_stop_queue(dev); /* Lock out others. */ if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ ip->emcr |= EMCR_PROMISC; writel(ip->emcr, ®s->emcr); readl(®s->emcr); } else { ip->emcr &= ~EMCR_PROMISC; writel(ip->emcr, ®s->emcr); /* Clear promiscuous. */ readl(®s->emcr); if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) { /* Too many for hashing to make sense or we want all * multicast packets anyway, so skip computing all the * hashes and just accept all packets. */ ip->ehar_h = 0xffffffff; ip->ehar_l = 0xffffffff; } else { netdev_for_each_mc_addr(ha, dev) { ehar |= (1UL << ioc3_hash(ha->addr)); } ip->ehar_h = ehar >> 32; ip->ehar_l = ehar & 0xffffffff; } writel(ip->ehar_h, ®s->ehar_h); writel(ip->ehar_l, ®s->ehar_l); } netif_wake_queue(dev); /* Let us get going again. */ } module_pci_driver(ioc3_driver); MODULE_AUTHOR("Ralf Baechle "); MODULE_DESCRIPTION("SGI IOC3 Ethernet driver"); MODULE_LICENSE("GPL");