// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* This contains the functions to handle the enhanced descriptors. Copyright (C) 2007-2014 STMicroelectronics Ltd Author: Giuseppe Cavallaro *******************************************************************************/ #include #include "common.h" #include "descs_com.h" static int enh_desc_get_tx_status(void *data, struct stmmac_extra_stats *x, struct dma_desc *p, void __iomem *ioaddr) { struct net_device_stats *stats = (struct net_device_stats *)data; unsigned int tdes0 = le32_to_cpu(p->des0); int ret = tx_done; /* Get tx owner first */ if (unlikely(tdes0 & ETDES0_OWN)) return tx_dma_own; /* Verify tx error by looking at the last segment. */ if (likely(!(tdes0 & ETDES0_LAST_SEGMENT))) return tx_not_ls; if (unlikely(tdes0 & ETDES0_ERROR_SUMMARY)) { if (unlikely(tdes0 & ETDES0_JABBER_TIMEOUT)) x->tx_jabber++; if (unlikely(tdes0 & ETDES0_FRAME_FLUSHED)) { x->tx_frame_flushed++; dwmac_dma_flush_tx_fifo(ioaddr); } if (unlikely(tdes0 & ETDES0_LOSS_CARRIER)) { x->tx_losscarrier++; stats->tx_carrier_errors++; } if (unlikely(tdes0 & ETDES0_NO_CARRIER)) { x->tx_carrier++; stats->tx_carrier_errors++; } if (unlikely((tdes0 & ETDES0_LATE_COLLISION) || (tdes0 & ETDES0_EXCESSIVE_COLLISIONS))) stats->collisions += (tdes0 & ETDES0_COLLISION_COUNT_MASK) >> 3; if (unlikely(tdes0 & ETDES0_EXCESSIVE_DEFERRAL)) x->tx_deferred++; if (unlikely(tdes0 & ETDES0_UNDERFLOW_ERROR)) { dwmac_dma_flush_tx_fifo(ioaddr); x->tx_underflow++; } if (unlikely(tdes0 & ETDES0_IP_HEADER_ERROR)) x->tx_ip_header_error++; if (unlikely(tdes0 & ETDES0_PAYLOAD_ERROR)) { x->tx_payload_error++; dwmac_dma_flush_tx_fifo(ioaddr); } ret = tx_err; } if (unlikely(tdes0 & ETDES0_DEFERRED)) x->tx_deferred++; #ifdef STMMAC_VLAN_TAG_USED if (tdes0 & ETDES0_VLAN_FRAME) x->tx_vlan++; #endif return ret; } static int enh_desc_get_tx_len(struct dma_desc *p) { return (le32_to_cpu(p->des1) & ETDES1_BUFFER1_SIZE_MASK); } static int enh_desc_coe_rdes0(int ipc_err, int type, int payload_err) { int ret = good_frame; u32 status = (type << 2 | ipc_err << 1 | payload_err) & 0x7; /* bits 5 7 0 | Frame status * ---------------------------------------------------------- * 0 0 0 | IEEE 802.3 Type frame (length < 1536 octects) * 1 0 0 | IPv4/6 No CSUM errorS. * 1 0 1 | IPv4/6 CSUM PAYLOAD error * 1 1 0 | IPv4/6 CSUM IP HR error * 1 1 1 | IPv4/6 IP PAYLOAD AND HEADER errorS * 0 0 1 | IPv4/6 unsupported IP PAYLOAD * 0 1 1 | COE bypassed.. no IPv4/6 frame * 0 1 0 | Reserved. */ if (status == 0x0) ret = llc_snap; else if (status == 0x4) ret = good_frame; else if (status == 0x5) ret = csum_none; else if (status == 0x6) ret = csum_none; else if (status == 0x7) ret = csum_none; else if (status == 0x1) ret = discard_frame; else if (status == 0x3) ret = discard_frame; return ret; } static void enh_desc_get_ext_status(void *data, struct stmmac_extra_stats *x, struct dma_extended_desc *p) { unsigned int rdes0 = le32_to_cpu(p->basic.des0); unsigned int rdes4 = le32_to_cpu(p->des4); if (unlikely(rdes0 & ERDES0_RX_MAC_ADDR)) { int message_type = (rdes4 & ERDES4_MSG_TYPE_MASK) >> 8; if (rdes4 & ERDES4_IP_HDR_ERR) x->ip_hdr_err++; if (rdes4 & ERDES4_IP_PAYLOAD_ERR) x->ip_payload_err++; if (rdes4 & ERDES4_IP_CSUM_BYPASSED) x->ip_csum_bypassed++; if (rdes4 & ERDES4_IPV4_PKT_RCVD) x->ipv4_pkt_rcvd++; if (rdes4 & ERDES4_IPV6_PKT_RCVD) x->ipv6_pkt_rcvd++; if (message_type == RDES_EXT_NO_PTP) x->no_ptp_rx_msg_type_ext++; else if (message_type == RDES_EXT_SYNC) x->ptp_rx_msg_type_sync++; else if (message_type == RDES_EXT_FOLLOW_UP) x->ptp_rx_msg_type_follow_up++; else if (message_type == RDES_EXT_DELAY_REQ) x->ptp_rx_msg_type_delay_req++; else if (message_type == RDES_EXT_DELAY_RESP) x->ptp_rx_msg_type_delay_resp++; else if (message_type == RDES_EXT_PDELAY_REQ) x->ptp_rx_msg_type_pdelay_req++; else if (message_type == RDES_EXT_PDELAY_RESP) x->ptp_rx_msg_type_pdelay_resp++; else if (message_type == RDES_EXT_PDELAY_FOLLOW_UP) x->ptp_rx_msg_type_pdelay_follow_up++; else if (message_type == RDES_PTP_ANNOUNCE) x->ptp_rx_msg_type_announce++; else if (message_type == RDES_PTP_MANAGEMENT) x->ptp_rx_msg_type_management++; else if (message_type == RDES_PTP_PKT_RESERVED_TYPE) x->ptp_rx_msg_pkt_reserved_type++; if (rdes4 & ERDES4_PTP_FRAME_TYPE) x->ptp_frame_type++; if (rdes4 & ERDES4_PTP_VER) x->ptp_ver++; if (rdes4 & ERDES4_TIMESTAMP_DROPPED) x->timestamp_dropped++; if (rdes4 & ERDES4_AV_PKT_RCVD) x->av_pkt_rcvd++; if (rdes4 & ERDES4_AV_TAGGED_PKT_RCVD) x->av_tagged_pkt_rcvd++; if ((rdes4 & ERDES4_VLAN_TAG_PRI_VAL_MASK) >> 18) x->vlan_tag_priority_val++; if (rdes4 & ERDES4_L3_FILTER_MATCH) x->l3_filter_match++; if (rdes4 & ERDES4_L4_FILTER_MATCH) x->l4_filter_match++; if ((rdes4 & ERDES4_L3_L4_FILT_NO_MATCH_MASK) >> 26) x->l3_l4_filter_no_match++; } } static int enh_desc_get_rx_status(void *data, struct stmmac_extra_stats *x, struct dma_desc *p) { struct net_device_stats *stats = (struct net_device_stats *)data; unsigned int rdes0 = le32_to_cpu(p->des0); int ret = good_frame; if (unlikely(rdes0 & RDES0_OWN)) return dma_own; if (unlikely(!(rdes0 & RDES0_LAST_DESCRIPTOR))) { stats->rx_length_errors++; return discard_frame; } if (unlikely(rdes0 & RDES0_ERROR_SUMMARY)) { if (unlikely(rdes0 & RDES0_DESCRIPTOR_ERROR)) { x->rx_desc++; stats->rx_length_errors++; } if (unlikely(rdes0 & RDES0_OVERFLOW_ERROR)) x->rx_gmac_overflow++; if (unlikely(rdes0 & RDES0_IPC_CSUM_ERROR)) pr_err("\tIPC Csum Error/Giant frame\n"); if (unlikely(rdes0 & RDES0_COLLISION)) stats->collisions++; if (unlikely(rdes0 & RDES0_RECEIVE_WATCHDOG)) x->rx_watchdog++; if (unlikely(rdes0 & RDES0_MII_ERROR)) /* GMII */ x->rx_mii++; if (unlikely(rdes0 & RDES0_CRC_ERROR)) { x->rx_crc_errors++; stats->rx_crc_errors++; } ret = discard_frame; } /* After a payload csum error, the ES bit is set. * It doesn't match with the information reported into the databook. * At any rate, we need to understand if the CSUM hw computation is ok * and report this info to the upper layers. */ if (likely(ret == good_frame)) ret = enh_desc_coe_rdes0(!!(rdes0 & RDES0_IPC_CSUM_ERROR), !!(rdes0 & RDES0_FRAME_TYPE), !!(rdes0 & ERDES0_RX_MAC_ADDR)); if (unlikely(rdes0 & RDES0_DRIBBLING)) x->dribbling_bit++; if (unlikely(rdes0 & RDES0_SA_FILTER_FAIL)) { x->sa_rx_filter_fail++; ret = discard_frame; } if (unlikely(rdes0 & RDES0_DA_FILTER_FAIL)) { x->da_rx_filter_fail++; ret = discard_frame; } if (unlikely(rdes0 & RDES0_LENGTH_ERROR)) { x->rx_length++; ret = discard_frame; } #ifdef STMMAC_VLAN_TAG_USED if (rdes0 & RDES0_VLAN_TAG) x->rx_vlan++; #endif return ret; } static void enh_desc_init_rx_desc(struct dma_desc *p, int disable_rx_ic, int mode, int end, int bfsize) { int bfsize1; p->des0 |= cpu_to_le32(RDES0_OWN); bfsize1 = min(bfsize, BUF_SIZE_8KiB); p->des1 |= cpu_to_le32(bfsize1 & ERDES1_BUFFER1_SIZE_MASK); if (mode == STMMAC_CHAIN_MODE) ehn_desc_rx_set_on_chain(p); else ehn_desc_rx_set_on_ring(p, end, bfsize); if (disable_rx_ic) p->des1 |= cpu_to_le32(ERDES1_DISABLE_IC); } static void enh_desc_init_tx_desc(struct dma_desc *p, int mode, int end) { p->des0 &= cpu_to_le32(~ETDES0_OWN); if (mode == STMMAC_CHAIN_MODE) enh_desc_end_tx_desc_on_chain(p); else enh_desc_end_tx_desc_on_ring(p, end); } static int enh_desc_get_tx_owner(struct dma_desc *p) { return (le32_to_cpu(p->des0) & ETDES0_OWN) >> 31; } static void enh_desc_set_tx_owner(struct dma_desc *p) { p->des0 |= cpu_to_le32(ETDES0_OWN); } static void enh_desc_set_rx_owner(struct dma_desc *p, int disable_rx_ic) { p->des0 |= cpu_to_le32(RDES0_OWN); } static int enh_desc_get_tx_ls(struct dma_desc *p) { return (le32_to_cpu(p->des0) & ETDES0_LAST_SEGMENT) >> 29; } static void enh_desc_release_tx_desc(struct dma_desc *p, int mode) { int ter = (le32_to_cpu(p->des0) & ETDES0_END_RING) >> 21; memset(p, 0, offsetof(struct dma_desc, des2)); if (mode == STMMAC_CHAIN_MODE) enh_desc_end_tx_desc_on_chain(p); else enh_desc_end_tx_desc_on_ring(p, ter); } static void enh_desc_prepare_tx_desc(struct dma_desc *p, int is_fs, int len, bool csum_flag, int mode, bool tx_own, bool ls, unsigned int tot_pkt_len) { unsigned int tdes0 = le32_to_cpu(p->des0); if (mode == STMMAC_CHAIN_MODE) enh_set_tx_desc_len_on_chain(p, len); else enh_set_tx_desc_len_on_ring(p, len); if (is_fs) tdes0 |= ETDES0_FIRST_SEGMENT; else tdes0 &= ~ETDES0_FIRST_SEGMENT; if (likely(csum_flag)) tdes0 |= (TX_CIC_FULL << ETDES0_CHECKSUM_INSERTION_SHIFT); else tdes0 &= ~(TX_CIC_FULL << ETDES0_CHECKSUM_INSERTION_SHIFT); if (ls) tdes0 |= ETDES0_LAST_SEGMENT; /* Finally set the OWN bit. Later the DMA will start! */ if (tx_own) tdes0 |= ETDES0_OWN; if (is_fs && tx_own) /* When the own bit, for the first frame, has to be set, all * descriptors for the same frame has to be set before, to * avoid race condition. */ dma_wmb(); p->des0 = cpu_to_le32(tdes0); } static void enh_desc_set_tx_ic(struct dma_desc *p) { p->des0 |= cpu_to_le32(ETDES0_INTERRUPT); } static int enh_desc_get_rx_frame_len(struct dma_desc *p, int rx_coe_type) { unsigned int csum = 0; /* The type-1 checksum offload engines append the checksum at * the end of frame and the two bytes of checksum are added in * the length. * Adjust for that in the framelen for type-1 checksum offload * engines. */ if (rx_coe_type == STMMAC_RX_COE_TYPE1) csum = 2; return (((le32_to_cpu(p->des0) & RDES0_FRAME_LEN_MASK) >> RDES0_FRAME_LEN_SHIFT) - csum); } static void enh_desc_enable_tx_timestamp(struct dma_desc *p) { p->des0 |= cpu_to_le32(ETDES0_TIME_STAMP_ENABLE); } static int enh_desc_get_tx_timestamp_status(struct dma_desc *p) { return (le32_to_cpu(p->des0) & ETDES0_TIME_STAMP_STATUS) >> 17; } static void enh_desc_get_timestamp(void *desc, u32 ats, u64 *ts) { u64 ns; if (ats) { struct dma_extended_desc *p = (struct dma_extended_desc *)desc; ns = le32_to_cpu(p->des6); /* convert high/sec time stamp value to nanosecond */ ns += le32_to_cpu(p->des7) * 1000000000ULL; } else { struct dma_desc *p = (struct dma_desc *)desc; ns = le32_to_cpu(p->des2); ns += le32_to_cpu(p->des3) * 1000000000ULL; } *ts = ns; } static int enh_desc_get_rx_timestamp_status(void *desc, void *next_desc, u32 ats) { if (ats) { struct dma_extended_desc *p = (struct dma_extended_desc *)desc; return (le32_to_cpu(p->basic.des0) & RDES0_IPC_CSUM_ERROR) >> 7; } else { struct dma_desc *p = (struct dma_desc *)desc; if ((le32_to_cpu(p->des2) == 0xffffffff) && (le32_to_cpu(p->des3) == 0xffffffff)) /* timestamp is corrupted, hence don't store it */ return 0; else return 1; } } static void enh_desc_display_ring(void *head, unsigned int size, bool rx) { struct dma_extended_desc *ep = (struct dma_extended_desc *)head; int i; pr_info("Extended %s descriptor ring:\n", rx ? "RX" : "TX"); for (i = 0; i < size; i++) { u64 x; x = *(u64 *)ep; pr_info("%03d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", i, (unsigned int)virt_to_phys(ep), (unsigned int)x, (unsigned int)(x >> 32), ep->basic.des2, ep->basic.des3); ep++; } pr_info("\n"); } static void enh_desc_get_addr(struct dma_desc *p, unsigned int *addr) { *addr = le32_to_cpu(p->des2); } static void enh_desc_set_addr(struct dma_desc *p, dma_addr_t addr) { p->des2 = cpu_to_le32(addr); } static void enh_desc_clear(struct dma_desc *p) { p->des2 = 0; } const struct stmmac_desc_ops enh_desc_ops = { .tx_status = enh_desc_get_tx_status, .rx_status = enh_desc_get_rx_status, .get_tx_len = enh_desc_get_tx_len, .init_rx_desc = enh_desc_init_rx_desc, .init_tx_desc = enh_desc_init_tx_desc, .get_tx_owner = enh_desc_get_tx_owner, .release_tx_desc = enh_desc_release_tx_desc, .prepare_tx_desc = enh_desc_prepare_tx_desc, .set_tx_ic = enh_desc_set_tx_ic, .get_tx_ls = enh_desc_get_tx_ls, .set_tx_owner = enh_desc_set_tx_owner, .set_rx_owner = enh_desc_set_rx_owner, .get_rx_frame_len = enh_desc_get_rx_frame_len, .rx_extended_status = enh_desc_get_ext_status, .enable_tx_timestamp = enh_desc_enable_tx_timestamp, .get_tx_timestamp_status = enh_desc_get_tx_timestamp_status, .get_timestamp = enh_desc_get_timestamp, .get_rx_timestamp_status = enh_desc_get_rx_timestamp_status, .display_ring = enh_desc_display_ring, .get_addr = enh_desc_get_addr, .set_addr = enh_desc_set_addr, .clear = enh_desc_clear, };