// SPDX-License-Identifier: GPL-2.0 /* * Texas Instruments CPDMA Driver * * Copyright (C) 2010 Texas Instruments * */ #include #include #include #include #include #include #include #include #include #include #include "davinci_cpdma.h" /* DMA Registers */ #define CPDMA_TXIDVER 0x00 #define CPDMA_TXCONTROL 0x04 #define CPDMA_TXTEARDOWN 0x08 #define CPDMA_RXIDVER 0x10 #define CPDMA_RXCONTROL 0x14 #define CPDMA_SOFTRESET 0x1c #define CPDMA_RXTEARDOWN 0x18 #define CPDMA_TX_PRI0_RATE 0x30 #define CPDMA_TXINTSTATRAW 0x80 #define CPDMA_TXINTSTATMASKED 0x84 #define CPDMA_TXINTMASKSET 0x88 #define CPDMA_TXINTMASKCLEAR 0x8c #define CPDMA_MACINVECTOR 0x90 #define CPDMA_MACEOIVECTOR 0x94 #define CPDMA_RXINTSTATRAW 0xa0 #define CPDMA_RXINTSTATMASKED 0xa4 #define CPDMA_RXINTMASKSET 0xa8 #define CPDMA_RXINTMASKCLEAR 0xac #define CPDMA_DMAINTSTATRAW 0xb0 #define CPDMA_DMAINTSTATMASKED 0xb4 #define CPDMA_DMAINTMASKSET 0xb8 #define CPDMA_DMAINTMASKCLEAR 0xbc #define CPDMA_DMAINT_HOSTERR BIT(1) /* the following exist only if has_ext_regs is set */ #define CPDMA_DMACONTROL 0x20 #define CPDMA_DMASTATUS 0x24 #define CPDMA_RXBUFFOFS 0x28 #define CPDMA_EM_CONTROL 0x2c /* Descriptor mode bits */ #define CPDMA_DESC_SOP BIT(31) #define CPDMA_DESC_EOP BIT(30) #define CPDMA_DESC_OWNER BIT(29) #define CPDMA_DESC_EOQ BIT(28) #define CPDMA_DESC_TD_COMPLETE BIT(27) #define CPDMA_DESC_PASS_CRC BIT(26) #define CPDMA_DESC_TO_PORT_EN BIT(20) #define CPDMA_TO_PORT_SHIFT 16 #define CPDMA_DESC_PORT_MASK (BIT(18) | BIT(17) | BIT(16)) #define CPDMA_DESC_CRC_LEN 4 #define CPDMA_TEARDOWN_VALUE 0xfffffffc #define CPDMA_MAX_RLIM_CNT 16384 struct cpdma_desc { /* hardware fields */ u32 hw_next; u32 hw_buffer; u32 hw_len; u32 hw_mode; /* software fields */ void *sw_token; u32 sw_buffer; u32 sw_len; }; struct cpdma_desc_pool { phys_addr_t phys; dma_addr_t hw_addr; void __iomem *iomap; /* ioremap map */ void *cpumap; /* dma_alloc map */ int desc_size, mem_size; int num_desc; struct device *dev; struct gen_pool *gen_pool; }; enum cpdma_state { CPDMA_STATE_IDLE, CPDMA_STATE_ACTIVE, CPDMA_STATE_TEARDOWN, }; struct cpdma_ctlr { enum cpdma_state state; struct cpdma_params params; struct device *dev; struct cpdma_desc_pool *pool; spinlock_t lock; struct cpdma_chan *channels[2 * CPDMA_MAX_CHANNELS]; int chan_num; int num_rx_desc; /* RX descriptors number */ int num_tx_desc; /* TX descriptors number */ }; struct cpdma_chan { struct cpdma_desc __iomem *head, *tail; void __iomem *hdp, *cp, *rxfree; enum cpdma_state state; struct cpdma_ctlr *ctlr; int chan_num; spinlock_t lock; int count; u32 desc_num; u32 mask; cpdma_handler_fn handler; enum dma_data_direction dir; struct cpdma_chan_stats stats; /* offsets into dmaregs */ int int_set, int_clear, td; int weight; u32 rate_factor; u32 rate; }; struct cpdma_control_info { u32 reg; u32 shift, mask; int access; #define ACCESS_RO BIT(0) #define ACCESS_WO BIT(1) #define ACCESS_RW (ACCESS_RO | ACCESS_WO) }; static struct cpdma_control_info controls[] = { [CPDMA_TX_RLIM] = {CPDMA_DMACONTROL, 8, 0xffff, ACCESS_RW}, [CPDMA_CMD_IDLE] = {CPDMA_DMACONTROL, 3, 1, ACCESS_WO}, [CPDMA_COPY_ERROR_FRAMES] = {CPDMA_DMACONTROL, 4, 1, ACCESS_RW}, [CPDMA_RX_OFF_LEN_UPDATE] = {CPDMA_DMACONTROL, 2, 1, ACCESS_RW}, [CPDMA_RX_OWNERSHIP_FLIP] = {CPDMA_DMACONTROL, 1, 1, ACCESS_RW}, [CPDMA_TX_PRIO_FIXED] = {CPDMA_DMACONTROL, 0, 1, ACCESS_RW}, [CPDMA_STAT_IDLE] = {CPDMA_DMASTATUS, 31, 1, ACCESS_RO}, [CPDMA_STAT_TX_ERR_CODE] = {CPDMA_DMASTATUS, 20, 0xf, ACCESS_RW}, [CPDMA_STAT_TX_ERR_CHAN] = {CPDMA_DMASTATUS, 16, 0x7, ACCESS_RW}, [CPDMA_STAT_RX_ERR_CODE] = {CPDMA_DMASTATUS, 12, 0xf, ACCESS_RW}, [CPDMA_STAT_RX_ERR_CHAN] = {CPDMA_DMASTATUS, 8, 0x7, ACCESS_RW}, [CPDMA_RX_BUFFER_OFFSET] = {CPDMA_RXBUFFOFS, 0, 0xffff, ACCESS_RW}, }; #define tx_chan_num(chan) (chan) #define rx_chan_num(chan) ((chan) + CPDMA_MAX_CHANNELS) #define is_rx_chan(chan) ((chan)->chan_num >= CPDMA_MAX_CHANNELS) #define is_tx_chan(chan) (!is_rx_chan(chan)) #define __chan_linear(chan_num) ((chan_num) & (CPDMA_MAX_CHANNELS - 1)) #define chan_linear(chan) __chan_linear((chan)->chan_num) /* The following make access to common cpdma_ctlr params more readable */ #define dmaregs params.dmaregs #define num_chan params.num_chan /* various accessors */ #define dma_reg_read(ctlr, ofs) readl((ctlr)->dmaregs + (ofs)) #define chan_read(chan, fld) readl((chan)->fld) #define desc_read(desc, fld) readl(&(desc)->fld) #define dma_reg_write(ctlr, ofs, v) writel(v, (ctlr)->dmaregs + (ofs)) #define chan_write(chan, fld, v) writel(v, (chan)->fld) #define desc_write(desc, fld, v) writel((u32)(v), &(desc)->fld) #define cpdma_desc_to_port(chan, mode, directed) \ do { \ if (!is_rx_chan(chan) && ((directed == 1) || \ (directed == 2))) \ mode |= (CPDMA_DESC_TO_PORT_EN | \ (directed << CPDMA_TO_PORT_SHIFT)); \ } while (0) static void cpdma_desc_pool_destroy(struct cpdma_ctlr *ctlr) { struct cpdma_desc_pool *pool = ctlr->pool; if (!pool) return; WARN(gen_pool_size(pool->gen_pool) != gen_pool_avail(pool->gen_pool), "cpdma_desc_pool size %zd != avail %zd", gen_pool_size(pool->gen_pool), gen_pool_avail(pool->gen_pool)); if (pool->cpumap) dma_free_coherent(ctlr->dev, pool->mem_size, pool->cpumap, pool->phys); } /* * Utility constructs for a cpdma descriptor pool. Some devices (e.g. davinci * emac) have dedicated on-chip memory for these descriptors. Some other * devices (e.g. cpsw switches) use plain old memory. Descriptor pools * abstract out these details */ static int cpdma_desc_pool_create(struct cpdma_ctlr *ctlr) { struct cpdma_params *cpdma_params = &ctlr->params; struct cpdma_desc_pool *pool; int ret = -ENOMEM; pool = devm_kzalloc(ctlr->dev, sizeof(*pool), GFP_KERNEL); if (!pool) goto gen_pool_create_fail; ctlr->pool = pool; pool->mem_size = cpdma_params->desc_mem_size; pool->desc_size = ALIGN(sizeof(struct cpdma_desc), cpdma_params->desc_align); pool->num_desc = pool->mem_size / pool->desc_size; if (cpdma_params->descs_pool_size) { /* recalculate memory size required cpdma descriptor pool * basing on number of descriptors specified by user and * if memory size > CPPI internal RAM size (desc_mem_size) * then switch to use DDR */ pool->num_desc = cpdma_params->descs_pool_size; pool->mem_size = pool->desc_size * pool->num_desc; if (pool->mem_size > cpdma_params->desc_mem_size) cpdma_params->desc_mem_phys = 0; } pool->gen_pool = devm_gen_pool_create(ctlr->dev, ilog2(pool->desc_size), -1, "cpdma"); if (IS_ERR(pool->gen_pool)) { ret = PTR_ERR(pool->gen_pool); dev_err(ctlr->dev, "pool create failed %d\n", ret); goto gen_pool_create_fail; } if (cpdma_params->desc_mem_phys) { pool->phys = cpdma_params->desc_mem_phys; pool->iomap = devm_ioremap(ctlr->dev, pool->phys, pool->mem_size); pool->hw_addr = cpdma_params->desc_hw_addr; } else { pool->cpumap = dma_alloc_coherent(ctlr->dev, pool->mem_size, &pool->hw_addr, GFP_KERNEL); pool->iomap = (void __iomem __force *)pool->cpumap; pool->phys = pool->hw_addr; /* assumes no IOMMU, don't use this value */ } if (!pool->iomap) goto gen_pool_create_fail; ret = gen_pool_add_virt(pool->gen_pool, (unsigned long)pool->iomap, pool->phys, pool->mem_size, -1); if (ret < 0) { dev_err(ctlr->dev, "pool add failed %d\n", ret); goto gen_pool_add_virt_fail; } return 0; gen_pool_add_virt_fail: cpdma_desc_pool_destroy(ctlr); gen_pool_create_fail: ctlr->pool = NULL; return ret; } static inline dma_addr_t desc_phys(struct cpdma_desc_pool *pool, struct cpdma_desc __iomem *desc) { if (!desc) return 0; return pool->hw_addr + (__force long)desc - (__force long)pool->iomap; } static inline struct cpdma_desc __iomem * desc_from_phys(struct cpdma_desc_pool *pool, dma_addr_t dma) { return dma ? pool->iomap + dma - pool->hw_addr : NULL; } static struct cpdma_desc __iomem * cpdma_desc_alloc(struct cpdma_desc_pool *pool) { return (struct cpdma_desc __iomem *) gen_pool_alloc(pool->gen_pool, pool->desc_size); } static void cpdma_desc_free(struct cpdma_desc_pool *pool, struct cpdma_desc __iomem *desc, int num_desc) { gen_pool_free(pool->gen_pool, (unsigned long)desc, pool->desc_size); } static int _cpdma_control_set(struct cpdma_ctlr *ctlr, int control, int value) { struct cpdma_control_info *info = &controls[control]; u32 val; if (!ctlr->params.has_ext_regs) return -ENOTSUPP; if (ctlr->state != CPDMA_STATE_ACTIVE) return -EINVAL; if (control < 0 || control >= ARRAY_SIZE(controls)) return -ENOENT; if ((info->access & ACCESS_WO) != ACCESS_WO) return -EPERM; val = dma_reg_read(ctlr, info->reg); val &= ~(info->mask << info->shift); val |= (value & info->mask) << info->shift; dma_reg_write(ctlr, info->reg, val); return 0; } static int _cpdma_control_get(struct cpdma_ctlr *ctlr, int control) { struct cpdma_control_info *info = &controls[control]; int ret; if (!ctlr->params.has_ext_regs) return -ENOTSUPP; if (ctlr->state != CPDMA_STATE_ACTIVE) return -EINVAL; if (control < 0 || control >= ARRAY_SIZE(controls)) return -ENOENT; if ((info->access & ACCESS_RO) != ACCESS_RO) return -EPERM; ret = (dma_reg_read(ctlr, info->reg) >> info->shift) & info->mask; return ret; } /* cpdma_chan_set_chan_shaper - set shaper for a channel * Has to be called under ctlr lock */ static int cpdma_chan_set_chan_shaper(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; u32 rate_reg; u32 rmask; int ret; if (!chan->rate) return 0; rate_reg = CPDMA_TX_PRI0_RATE + 4 * chan->chan_num; dma_reg_write(ctlr, rate_reg, chan->rate_factor); rmask = _cpdma_control_get(ctlr, CPDMA_TX_RLIM); rmask |= chan->mask; ret = _cpdma_control_set(ctlr, CPDMA_TX_RLIM, rmask); return ret; } static int cpdma_chan_on(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc_pool *pool = ctlr->pool; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); if (chan->state != CPDMA_STATE_IDLE) { spin_unlock_irqrestore(&chan->lock, flags); return -EBUSY; } if (ctlr->state != CPDMA_STATE_ACTIVE) { spin_unlock_irqrestore(&chan->lock, flags); return -EINVAL; } dma_reg_write(ctlr, chan->int_set, chan->mask); chan->state = CPDMA_STATE_ACTIVE; if (chan->head) { chan_write(chan, hdp, desc_phys(pool, chan->head)); if (chan->rxfree) chan_write(chan, rxfree, chan->count); } spin_unlock_irqrestore(&chan->lock, flags); return 0; } /* cpdma_chan_fit_rate - set rate for a channel and check if it's possible. * rmask - mask of rate limited channels * Returns min rate in Kb/s */ static int cpdma_chan_fit_rate(struct cpdma_chan *ch, u32 rate, u32 *rmask, int *prio_mode) { struct cpdma_ctlr *ctlr = ch->ctlr; struct cpdma_chan *chan; u32 old_rate = ch->rate; u32 new_rmask = 0; int rlim = 0; int i; for (i = tx_chan_num(0); i < tx_chan_num(CPDMA_MAX_CHANNELS); i++) { chan = ctlr->channels[i]; if (!chan) continue; if (chan == ch) chan->rate = rate; if (chan->rate) { rlim = 1; new_rmask |= chan->mask; continue; } if (rlim) goto err; } *rmask = new_rmask; *prio_mode = rlim; return 0; err: ch->rate = old_rate; dev_err(ctlr->dev, "Upper cpdma ch%d is not rate limited\n", chan->chan_num); return -EINVAL; } static u32 cpdma_chan_set_factors(struct cpdma_ctlr *ctlr, struct cpdma_chan *ch) { u32 delta = UINT_MAX, prev_delta = UINT_MAX, best_delta = UINT_MAX; u32 best_send_cnt = 0, best_idle_cnt = 0; u32 new_rate, best_rate = 0, rate_reg; u64 send_cnt, idle_cnt; u32 min_send_cnt, freq; u64 divident, divisor; if (!ch->rate) { ch->rate_factor = 0; goto set_factor; } freq = ctlr->params.bus_freq_mhz * 1000 * 32; if (!freq) { dev_err(ctlr->dev, "The bus frequency is not set\n"); return -EINVAL; } min_send_cnt = freq - ch->rate; send_cnt = DIV_ROUND_UP(min_send_cnt, ch->rate); while (send_cnt <= CPDMA_MAX_RLIM_CNT) { divident = ch->rate * send_cnt; divisor = min_send_cnt; idle_cnt = DIV_ROUND_CLOSEST_ULL(divident, divisor); divident = freq * idle_cnt; divisor = idle_cnt + send_cnt; new_rate = DIV_ROUND_CLOSEST_ULL(divident, divisor); delta = new_rate >= ch->rate ? new_rate - ch->rate : delta; if (delta < best_delta) { best_delta = delta; best_send_cnt = send_cnt; best_idle_cnt = idle_cnt; best_rate = new_rate; if (!delta) break; } if (prev_delta >= delta) { prev_delta = delta; send_cnt++; continue; } idle_cnt++; divident = freq * idle_cnt; send_cnt = DIV_ROUND_CLOSEST_ULL(divident, ch->rate); send_cnt -= idle_cnt; prev_delta = UINT_MAX; } ch->rate = best_rate; ch->rate_factor = best_send_cnt | (best_idle_cnt << 16); set_factor: rate_reg = CPDMA_TX_PRI0_RATE + 4 * ch->chan_num; dma_reg_write(ctlr, rate_reg, ch->rate_factor); return 0; } struct cpdma_ctlr *cpdma_ctlr_create(struct cpdma_params *params) { struct cpdma_ctlr *ctlr; ctlr = devm_kzalloc(params->dev, sizeof(*ctlr), GFP_KERNEL); if (!ctlr) return NULL; ctlr->state = CPDMA_STATE_IDLE; ctlr->params = *params; ctlr->dev = params->dev; ctlr->chan_num = 0; spin_lock_init(&ctlr->lock); if (cpdma_desc_pool_create(ctlr)) return NULL; /* split pool equally between RX/TX by default */ ctlr->num_tx_desc = ctlr->pool->num_desc / 2; ctlr->num_rx_desc = ctlr->pool->num_desc - ctlr->num_tx_desc; if (WARN_ON(ctlr->num_chan > CPDMA_MAX_CHANNELS)) ctlr->num_chan = CPDMA_MAX_CHANNELS; return ctlr; } int cpdma_ctlr_start(struct cpdma_ctlr *ctlr) { struct cpdma_chan *chan; unsigned long flags; int i, prio_mode; spin_lock_irqsave(&ctlr->lock, flags); if (ctlr->state != CPDMA_STATE_IDLE) { spin_unlock_irqrestore(&ctlr->lock, flags); return -EBUSY; } if (ctlr->params.has_soft_reset) { unsigned timeout = 10 * 100; dma_reg_write(ctlr, CPDMA_SOFTRESET, 1); while (timeout) { if (dma_reg_read(ctlr, CPDMA_SOFTRESET) == 0) break; udelay(10); timeout--; } WARN_ON(!timeout); } for (i = 0; i < ctlr->num_chan; i++) { writel(0, ctlr->params.txhdp + 4 * i); writel(0, ctlr->params.rxhdp + 4 * i); writel(0, ctlr->params.txcp + 4 * i); writel(0, ctlr->params.rxcp + 4 * i); } dma_reg_write(ctlr, CPDMA_RXINTMASKCLEAR, 0xffffffff); dma_reg_write(ctlr, CPDMA_TXINTMASKCLEAR, 0xffffffff); dma_reg_write(ctlr, CPDMA_TXCONTROL, 1); dma_reg_write(ctlr, CPDMA_RXCONTROL, 1); ctlr->state = CPDMA_STATE_ACTIVE; prio_mode = 0; for (i = 0; i < ARRAY_SIZE(ctlr->channels); i++) { chan = ctlr->channels[i]; if (chan) { cpdma_chan_set_chan_shaper(chan); cpdma_chan_on(chan); /* off prio mode if all tx channels are rate limited */ if (is_tx_chan(chan) && !chan->rate) prio_mode = 1; } } _cpdma_control_set(ctlr, CPDMA_TX_PRIO_FIXED, prio_mode); _cpdma_control_set(ctlr, CPDMA_RX_BUFFER_OFFSET, 0); spin_unlock_irqrestore(&ctlr->lock, flags); return 0; } int cpdma_ctlr_stop(struct cpdma_ctlr *ctlr) { unsigned long flags; int i; spin_lock_irqsave(&ctlr->lock, flags); if (ctlr->state != CPDMA_STATE_ACTIVE) { spin_unlock_irqrestore(&ctlr->lock, flags); return -EINVAL; } ctlr->state = CPDMA_STATE_TEARDOWN; spin_unlock_irqrestore(&ctlr->lock, flags); for (i = 0; i < ARRAY_SIZE(ctlr->channels); i++) { if (ctlr->channels[i]) cpdma_chan_stop(ctlr->channels[i]); } spin_lock_irqsave(&ctlr->lock, flags); dma_reg_write(ctlr, CPDMA_RXINTMASKCLEAR, 0xffffffff); dma_reg_write(ctlr, CPDMA_TXINTMASKCLEAR, 0xffffffff); dma_reg_write(ctlr, CPDMA_TXCONTROL, 0); dma_reg_write(ctlr, CPDMA_RXCONTROL, 0); ctlr->state = CPDMA_STATE_IDLE; spin_unlock_irqrestore(&ctlr->lock, flags); return 0; } int cpdma_ctlr_destroy(struct cpdma_ctlr *ctlr) { int ret = 0, i; if (!ctlr) return -EINVAL; if (ctlr->state != CPDMA_STATE_IDLE) cpdma_ctlr_stop(ctlr); for (i = 0; i < ARRAY_SIZE(ctlr->channels); i++) cpdma_chan_destroy(ctlr->channels[i]); cpdma_desc_pool_destroy(ctlr); return ret; } int cpdma_ctlr_int_ctrl(struct cpdma_ctlr *ctlr, bool enable) { unsigned long flags; int i; spin_lock_irqsave(&ctlr->lock, flags); if (ctlr->state != CPDMA_STATE_ACTIVE) { spin_unlock_irqrestore(&ctlr->lock, flags); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(ctlr->channels); i++) { if (ctlr->channels[i]) cpdma_chan_int_ctrl(ctlr->channels[i], enable); } spin_unlock_irqrestore(&ctlr->lock, flags); return 0; } void cpdma_ctlr_eoi(struct cpdma_ctlr *ctlr, u32 value) { dma_reg_write(ctlr, CPDMA_MACEOIVECTOR, value); } u32 cpdma_ctrl_rxchs_state(struct cpdma_ctlr *ctlr) { return dma_reg_read(ctlr, CPDMA_RXINTSTATMASKED); } u32 cpdma_ctrl_txchs_state(struct cpdma_ctlr *ctlr) { return dma_reg_read(ctlr, CPDMA_TXINTSTATMASKED); } static void cpdma_chan_set_descs(struct cpdma_ctlr *ctlr, int rx, int desc_num, int per_ch_desc) { struct cpdma_chan *chan, *most_chan = NULL; int desc_cnt = desc_num; int most_dnum = 0; int min, max, i; if (!desc_num) return; if (rx) { min = rx_chan_num(0); max = rx_chan_num(CPDMA_MAX_CHANNELS); } else { min = tx_chan_num(0); max = tx_chan_num(CPDMA_MAX_CHANNELS); } for (i = min; i < max; i++) { chan = ctlr->channels[i]; if (!chan) continue; if (chan->weight) chan->desc_num = (chan->weight * desc_num) / 100; else chan->desc_num = per_ch_desc; desc_cnt -= chan->desc_num; if (most_dnum < chan->desc_num) { most_dnum = chan->desc_num; most_chan = chan; } } /* use remains */ if (most_chan) most_chan->desc_num += desc_cnt; } /** * cpdma_chan_split_pool - Splits ctrl pool between all channels. * Has to be called under ctlr lock */ int cpdma_chan_split_pool(struct cpdma_ctlr *ctlr) { int tx_per_ch_desc = 0, rx_per_ch_desc = 0; int free_rx_num = 0, free_tx_num = 0; int rx_weight = 0, tx_weight = 0; int tx_desc_num, rx_desc_num; struct cpdma_chan *chan; int i; if (!ctlr->chan_num) return 0; for (i = 0; i < ARRAY_SIZE(ctlr->channels); i++) { chan = ctlr->channels[i]; if (!chan) continue; if (is_rx_chan(chan)) { if (!chan->weight) free_rx_num++; rx_weight += chan->weight; } else { if (!chan->weight) free_tx_num++; tx_weight += chan->weight; } } if (rx_weight > 100 || tx_weight > 100) return -EINVAL; tx_desc_num = ctlr->num_tx_desc; rx_desc_num = ctlr->num_rx_desc; if (free_tx_num) { tx_per_ch_desc = tx_desc_num - (tx_weight * tx_desc_num) / 100; tx_per_ch_desc /= free_tx_num; } if (free_rx_num) { rx_per_ch_desc = rx_desc_num - (rx_weight * rx_desc_num) / 100; rx_per_ch_desc /= free_rx_num; } cpdma_chan_set_descs(ctlr, 0, tx_desc_num, tx_per_ch_desc); cpdma_chan_set_descs(ctlr, 1, rx_desc_num, rx_per_ch_desc); return 0; } /* cpdma_chan_set_weight - set weight of a channel in percentage. * Tx and Rx channels have separate weights. That is 100% for RX * and 100% for Tx. The weight is used to split cpdma resources * in correct proportion required by the channels, including number * of descriptors. The channel rate is not enough to know the * weight of a channel as the maximum rate of an interface is needed. * If weight = 0, then channel uses rest of descriptors leaved by * weighted channels. */ int cpdma_chan_set_weight(struct cpdma_chan *ch, int weight) { struct cpdma_ctlr *ctlr = ch->ctlr; unsigned long flags, ch_flags; int ret; spin_lock_irqsave(&ctlr->lock, flags); spin_lock_irqsave(&ch->lock, ch_flags); if (ch->weight == weight) { spin_unlock_irqrestore(&ch->lock, ch_flags); spin_unlock_irqrestore(&ctlr->lock, flags); return 0; } ch->weight = weight; spin_unlock_irqrestore(&ch->lock, ch_flags); /* re-split pool using new channel weight */ ret = cpdma_chan_split_pool(ctlr); spin_unlock_irqrestore(&ctlr->lock, flags); return ret; } /* cpdma_chan_get_min_rate - get minimum allowed rate for channel * Should be called before cpdma_chan_set_rate. * Returns min rate in Kb/s */ u32 cpdma_chan_get_min_rate(struct cpdma_ctlr *ctlr) { unsigned int divident, divisor; divident = ctlr->params.bus_freq_mhz * 32 * 1000; divisor = 1 + CPDMA_MAX_RLIM_CNT; return DIV_ROUND_UP(divident, divisor); } /* cpdma_chan_set_rate - limits bandwidth for transmit channel. * The bandwidth * limited channels have to be in order beginning from lowest. * ch - transmit channel the bandwidth is configured for * rate - bandwidth in Kb/s, if 0 - then off shaper */ int cpdma_chan_set_rate(struct cpdma_chan *ch, u32 rate) { unsigned long flags, ch_flags; struct cpdma_ctlr *ctlr; int ret, prio_mode; u32 rmask; if (!ch || !is_tx_chan(ch)) return -EINVAL; if (ch->rate == rate) return rate; ctlr = ch->ctlr; spin_lock_irqsave(&ctlr->lock, flags); spin_lock_irqsave(&ch->lock, ch_flags); ret = cpdma_chan_fit_rate(ch, rate, &rmask, &prio_mode); if (ret) goto err; ret = cpdma_chan_set_factors(ctlr, ch); if (ret) goto err; spin_unlock_irqrestore(&ch->lock, ch_flags); /* on shapers */ _cpdma_control_set(ctlr, CPDMA_TX_RLIM, rmask); _cpdma_control_set(ctlr, CPDMA_TX_PRIO_FIXED, prio_mode); spin_unlock_irqrestore(&ctlr->lock, flags); return ret; err: spin_unlock_irqrestore(&ch->lock, ch_flags); spin_unlock_irqrestore(&ctlr->lock, flags); return ret; } u32 cpdma_chan_get_rate(struct cpdma_chan *ch) { unsigned long flags; u32 rate; spin_lock_irqsave(&ch->lock, flags); rate = ch->rate; spin_unlock_irqrestore(&ch->lock, flags); return rate; } struct cpdma_chan *cpdma_chan_create(struct cpdma_ctlr *ctlr, int chan_num, cpdma_handler_fn handler, int rx_type) { int offset = chan_num * 4; struct cpdma_chan *chan; unsigned long flags; chan_num = rx_type ? rx_chan_num(chan_num) : tx_chan_num(chan_num); if (__chan_linear(chan_num) >= ctlr->num_chan) return ERR_PTR(-EINVAL); chan = devm_kzalloc(ctlr->dev, sizeof(*chan), GFP_KERNEL); if (!chan) return ERR_PTR(-ENOMEM); spin_lock_irqsave(&ctlr->lock, flags); if (ctlr->channels[chan_num]) { spin_unlock_irqrestore(&ctlr->lock, flags); devm_kfree(ctlr->dev, chan); return ERR_PTR(-EBUSY); } chan->ctlr = ctlr; chan->state = CPDMA_STATE_IDLE; chan->chan_num = chan_num; chan->handler = handler; chan->rate = 0; chan->weight = 0; if (is_rx_chan(chan)) { chan->hdp = ctlr->params.rxhdp + offset; chan->cp = ctlr->params.rxcp + offset; chan->rxfree = ctlr->params.rxfree + offset; chan->int_set = CPDMA_RXINTMASKSET; chan->int_clear = CPDMA_RXINTMASKCLEAR; chan->td = CPDMA_RXTEARDOWN; chan->dir = DMA_FROM_DEVICE; } else { chan->hdp = ctlr->params.txhdp + offset; chan->cp = ctlr->params.txcp + offset; chan->int_set = CPDMA_TXINTMASKSET; chan->int_clear = CPDMA_TXINTMASKCLEAR; chan->td = CPDMA_TXTEARDOWN; chan->dir = DMA_TO_DEVICE; } chan->mask = BIT(chan_linear(chan)); spin_lock_init(&chan->lock); ctlr->channels[chan_num] = chan; ctlr->chan_num++; cpdma_chan_split_pool(ctlr); spin_unlock_irqrestore(&ctlr->lock, flags); return chan; } int cpdma_chan_get_rx_buf_num(struct cpdma_chan *chan) { unsigned long flags; int desc_num; spin_lock_irqsave(&chan->lock, flags); desc_num = chan->desc_num; spin_unlock_irqrestore(&chan->lock, flags); return desc_num; } int cpdma_chan_destroy(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr; unsigned long flags; if (!chan) return -EINVAL; ctlr = chan->ctlr; spin_lock_irqsave(&ctlr->lock, flags); if (chan->state != CPDMA_STATE_IDLE) cpdma_chan_stop(chan); ctlr->channels[chan->chan_num] = NULL; ctlr->chan_num--; devm_kfree(ctlr->dev, chan); cpdma_chan_split_pool(ctlr); spin_unlock_irqrestore(&ctlr->lock, flags); return 0; } int cpdma_chan_get_stats(struct cpdma_chan *chan, struct cpdma_chan_stats *stats) { unsigned long flags; if (!chan) return -EINVAL; spin_lock_irqsave(&chan->lock, flags); memcpy(stats, &chan->stats, sizeof(*stats)); spin_unlock_irqrestore(&chan->lock, flags); return 0; } static void __cpdma_chan_submit(struct cpdma_chan *chan, struct cpdma_desc __iomem *desc) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc __iomem *prev = chan->tail; struct cpdma_desc_pool *pool = ctlr->pool; dma_addr_t desc_dma; u32 mode; desc_dma = desc_phys(pool, desc); /* simple case - idle channel */ if (!chan->head) { chan->stats.head_enqueue++; chan->head = desc; chan->tail = desc; if (chan->state == CPDMA_STATE_ACTIVE) chan_write(chan, hdp, desc_dma); return; } /* first chain the descriptor at the tail of the list */ desc_write(prev, hw_next, desc_dma); chan->tail = desc; chan->stats.tail_enqueue++; /* next check if EOQ has been triggered already */ mode = desc_read(prev, hw_mode); if (((mode & (CPDMA_DESC_EOQ | CPDMA_DESC_OWNER)) == CPDMA_DESC_EOQ) && (chan->state == CPDMA_STATE_ACTIVE)) { desc_write(prev, hw_mode, mode & ~CPDMA_DESC_EOQ); chan_write(chan, hdp, desc_dma); chan->stats.misqueued++; } } int cpdma_chan_submit(struct cpdma_chan *chan, void *token, void *data, int len, int directed) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc __iomem *desc; dma_addr_t buffer; unsigned long flags; u32 mode; int ret = 0; spin_lock_irqsave(&chan->lock, flags); if (chan->state == CPDMA_STATE_TEARDOWN) { ret = -EINVAL; goto unlock_ret; } if (chan->count >= chan->desc_num) { chan->stats.desc_alloc_fail++; ret = -ENOMEM; goto unlock_ret; } desc = cpdma_desc_alloc(ctlr->pool); if (!desc) { chan->stats.desc_alloc_fail++; ret = -ENOMEM; goto unlock_ret; } if (len < ctlr->params.min_packet_size) { len = ctlr->params.min_packet_size; chan->stats.runt_transmit_buff++; } buffer = dma_map_single(ctlr->dev, data, len, chan->dir); ret = dma_mapping_error(ctlr->dev, buffer); if (ret) { cpdma_desc_free(ctlr->pool, desc, 1); ret = -EINVAL; goto unlock_ret; } mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP; cpdma_desc_to_port(chan, mode, directed); /* Relaxed IO accessors can be used here as there is read barrier * at the end of write sequence. */ writel_relaxed(0, &desc->hw_next); writel_relaxed(buffer, &desc->hw_buffer); writel_relaxed(len, &desc->hw_len); writel_relaxed(mode | len, &desc->hw_mode); writel_relaxed((uintptr_t)token, &desc->sw_token); writel_relaxed(buffer, &desc->sw_buffer); writel_relaxed(len, &desc->sw_len); desc_read(desc, sw_len); __cpdma_chan_submit(chan, desc); if (chan->state == CPDMA_STATE_ACTIVE && chan->rxfree) chan_write(chan, rxfree, 1); chan->count++; unlock_ret: spin_unlock_irqrestore(&chan->lock, flags); return ret; } bool cpdma_check_free_tx_desc(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc_pool *pool = ctlr->pool; bool free_tx_desc; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); free_tx_desc = (chan->count < chan->desc_num) && gen_pool_avail(pool->gen_pool); spin_unlock_irqrestore(&chan->lock, flags); return free_tx_desc; } static void __cpdma_chan_free(struct cpdma_chan *chan, struct cpdma_desc __iomem *desc, int outlen, int status) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc_pool *pool = ctlr->pool; dma_addr_t buff_dma; int origlen; uintptr_t token; token = desc_read(desc, sw_token); buff_dma = desc_read(desc, sw_buffer); origlen = desc_read(desc, sw_len); dma_unmap_single(ctlr->dev, buff_dma, origlen, chan->dir); cpdma_desc_free(pool, desc, 1); (*chan->handler)((void *)token, outlen, status); } static int __cpdma_chan_process(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc __iomem *desc; int status, outlen; int cb_status = 0; struct cpdma_desc_pool *pool = ctlr->pool; dma_addr_t desc_dma; unsigned long flags; spin_lock_irqsave(&chan->lock, flags); desc = chan->head; if (!desc) { chan->stats.empty_dequeue++; status = -ENOENT; goto unlock_ret; } desc_dma = desc_phys(pool, desc); status = desc_read(desc, hw_mode); outlen = status & 0x7ff; if (status & CPDMA_DESC_OWNER) { chan->stats.busy_dequeue++; status = -EBUSY; goto unlock_ret; } if (status & CPDMA_DESC_PASS_CRC) outlen -= CPDMA_DESC_CRC_LEN; status = status & (CPDMA_DESC_EOQ | CPDMA_DESC_TD_COMPLETE | CPDMA_DESC_PORT_MASK | CPDMA_RX_VLAN_ENCAP); chan->head = desc_from_phys(pool, desc_read(desc, hw_next)); chan_write(chan, cp, desc_dma); chan->count--; chan->stats.good_dequeue++; if ((status & CPDMA_DESC_EOQ) && chan->head) { chan->stats.requeue++; chan_write(chan, hdp, desc_phys(pool, chan->head)); } spin_unlock_irqrestore(&chan->lock, flags); if (unlikely(status & CPDMA_DESC_TD_COMPLETE)) cb_status = -ENOSYS; else cb_status = status; __cpdma_chan_free(chan, desc, outlen, cb_status); return status; unlock_ret: spin_unlock_irqrestore(&chan->lock, flags); return status; } int cpdma_chan_process(struct cpdma_chan *chan, int quota) { int used = 0, ret = 0; if (chan->state != CPDMA_STATE_ACTIVE) return -EINVAL; while (used < quota) { ret = __cpdma_chan_process(chan); if (ret < 0) break; used++; } return used; } int cpdma_chan_start(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; unsigned long flags; int ret; spin_lock_irqsave(&ctlr->lock, flags); ret = cpdma_chan_set_chan_shaper(chan); spin_unlock_irqrestore(&ctlr->lock, flags); if (ret) return ret; ret = cpdma_chan_on(chan); if (ret) return ret; return 0; } int cpdma_chan_stop(struct cpdma_chan *chan) { struct cpdma_ctlr *ctlr = chan->ctlr; struct cpdma_desc_pool *pool = ctlr->pool; unsigned long flags; int ret; unsigned timeout; spin_lock_irqsave(&chan->lock, flags); if (chan->state == CPDMA_STATE_TEARDOWN) { spin_unlock_irqrestore(&chan->lock, flags); return -EINVAL; } chan->state = CPDMA_STATE_TEARDOWN; dma_reg_write(ctlr, chan->int_clear, chan->mask); /* trigger teardown */ dma_reg_write(ctlr, chan->td, chan_linear(chan)); /* wait for teardown complete */ timeout = 100 * 100; /* 100 ms */ while (timeout) { u32 cp = chan_read(chan, cp); if ((cp & CPDMA_TEARDOWN_VALUE) == CPDMA_TEARDOWN_VALUE) break; udelay(10); timeout--; } WARN_ON(!timeout); chan_write(chan, cp, CPDMA_TEARDOWN_VALUE); /* handle completed packets */ spin_unlock_irqrestore(&chan->lock, flags); do { ret = __cpdma_chan_process(chan); if (ret < 0) break; } while ((ret & CPDMA_DESC_TD_COMPLETE) == 0); spin_lock_irqsave(&chan->lock, flags); /* remaining packets haven't been tx/rx'ed, clean them up */ while (chan->head) { struct cpdma_desc __iomem *desc = chan->head; dma_addr_t next_dma; next_dma = desc_read(desc, hw_next); chan->head = desc_from_phys(pool, next_dma); chan->count--; chan->stats.teardown_dequeue++; /* issue callback without locks held */ spin_unlock_irqrestore(&chan->lock, flags); __cpdma_chan_free(chan, desc, 0, -ENOSYS); spin_lock_irqsave(&chan->lock, flags); } chan->state = CPDMA_STATE_IDLE; spin_unlock_irqrestore(&chan->lock, flags); return 0; } int cpdma_chan_int_ctrl(struct cpdma_chan *chan, bool enable) { unsigned long flags; spin_lock_irqsave(&chan->lock, flags); if (chan->state != CPDMA_STATE_ACTIVE) { spin_unlock_irqrestore(&chan->lock, flags); return -EINVAL; } dma_reg_write(chan->ctlr, enable ? chan->int_set : chan->int_clear, chan->mask); spin_unlock_irqrestore(&chan->lock, flags); return 0; } int cpdma_control_get(struct cpdma_ctlr *ctlr, int control) { unsigned long flags; int ret; spin_lock_irqsave(&ctlr->lock, flags); ret = _cpdma_control_get(ctlr, control); spin_unlock_irqrestore(&ctlr->lock, flags); return ret; } int cpdma_control_set(struct cpdma_ctlr *ctlr, int control, int value) { unsigned long flags; int ret; spin_lock_irqsave(&ctlr->lock, flags); ret = _cpdma_control_set(ctlr, control, value); spin_unlock_irqrestore(&ctlr->lock, flags); return ret; } int cpdma_get_num_rx_descs(struct cpdma_ctlr *ctlr) { return ctlr->num_rx_desc; } int cpdma_get_num_tx_descs(struct cpdma_ctlr *ctlr) { return ctlr->num_tx_desc; } void cpdma_set_num_rx_descs(struct cpdma_ctlr *ctlr, int num_rx_desc) { ctlr->num_rx_desc = num_rx_desc; ctlr->num_tx_desc = ctlr->pool->num_desc - ctlr->num_rx_desc; }