/* * AT86RF230/RF231 driver * * Copyright (C) 2009-2012 Siemens AG * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Written by: * Dmitry Eremin-Solenikov * Alexander Smirnov * Alexander Aring */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "at86rf230.h" struct at86rf230_local; /* at86rf2xx chip depend data. * All timings are in us. */ struct at86rf2xx_chip_data { u16 t_sleep_cycle; u16 t_channel_switch; u16 t_reset_to_off; u16 t_off_to_aack; u16 t_off_to_tx_on; u16 t_off_to_sleep; u16 t_sleep_to_off; u16 t_frame; u16 t_p_ack; int rssi_base_val; int (*set_channel)(struct at86rf230_local *, u8, u8); int (*set_txpower)(struct at86rf230_local *, s32); }; #define AT86RF2XX_MAX_BUF (127 + 3) /* tx retries to access the TX_ON state * if it's above then force change will be started. * * We assume the max_frame_retries (7) value of 802.15.4 here. */ #define AT86RF2XX_MAX_TX_RETRIES 7 /* We use the recommended 5 minutes timeout to recalibrate */ #define AT86RF2XX_CAL_LOOP_TIMEOUT (5 * 60 * HZ) struct at86rf230_state_change { struct at86rf230_local *lp; int irq; struct hrtimer timer; struct spi_message msg; struct spi_transfer trx; u8 buf[AT86RF2XX_MAX_BUF]; void (*complete)(void *context); u8 from_state; u8 to_state; bool free; }; struct at86rf230_trac { u64 success; u64 success_data_pending; u64 success_wait_for_ack; u64 channel_access_failure; u64 no_ack; u64 invalid; }; struct at86rf230_local { struct spi_device *spi; struct ieee802154_hw *hw; struct at86rf2xx_chip_data *data; struct regmap *regmap; int slp_tr; bool sleep; struct completion state_complete; struct at86rf230_state_change state; unsigned long cal_timeout; bool is_tx; bool is_tx_from_off; u8 tx_retry; struct sk_buff *tx_skb; struct at86rf230_state_change tx; struct at86rf230_trac trac; }; #define AT86RF2XX_NUMREGS 0x3F static void at86rf230_async_state_change(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, const u8 state, void (*complete)(void *context)); static inline void at86rf230_sleep(struct at86rf230_local *lp) { if (gpio_is_valid(lp->slp_tr)) { gpio_set_value(lp->slp_tr, 1); usleep_range(lp->data->t_off_to_sleep, lp->data->t_off_to_sleep + 10); lp->sleep = true; } } static inline void at86rf230_awake(struct at86rf230_local *lp) { if (gpio_is_valid(lp->slp_tr)) { gpio_set_value(lp->slp_tr, 0); usleep_range(lp->data->t_sleep_to_off, lp->data->t_sleep_to_off + 100); lp->sleep = false; } } static inline int __at86rf230_write(struct at86rf230_local *lp, unsigned int addr, unsigned int data) { bool sleep = lp->sleep; int ret; /* awake for register setting if sleep */ if (sleep) at86rf230_awake(lp); ret = regmap_write(lp->regmap, addr, data); /* sleep again if was sleeping */ if (sleep) at86rf230_sleep(lp); return ret; } static inline int __at86rf230_read(struct at86rf230_local *lp, unsigned int addr, unsigned int *data) { bool sleep = lp->sleep; int ret; /* awake for register setting if sleep */ if (sleep) at86rf230_awake(lp); ret = regmap_read(lp->regmap, addr, data); /* sleep again if was sleeping */ if (sleep) at86rf230_sleep(lp); return ret; } static inline int at86rf230_read_subreg(struct at86rf230_local *lp, unsigned int addr, unsigned int mask, unsigned int shift, unsigned int *data) { int rc; rc = __at86rf230_read(lp, addr, data); if (!rc) *data = (*data & mask) >> shift; return rc; } static inline int at86rf230_write_subreg(struct at86rf230_local *lp, unsigned int addr, unsigned int mask, unsigned int shift, unsigned int data) { bool sleep = lp->sleep; int ret; /* awake for register setting if sleep */ if (sleep) at86rf230_awake(lp); ret = regmap_update_bits(lp->regmap, addr, mask, data << shift); /* sleep again if was sleeping */ if (sleep) at86rf230_sleep(lp); return ret; } static inline void at86rf230_slp_tr_rising_edge(struct at86rf230_local *lp) { gpio_set_value(lp->slp_tr, 1); udelay(1); gpio_set_value(lp->slp_tr, 0); } static bool at86rf230_reg_writeable(struct device *dev, unsigned int reg) { switch (reg) { case RG_TRX_STATE: case RG_TRX_CTRL_0: case RG_TRX_CTRL_1: case RG_PHY_TX_PWR: case RG_PHY_ED_LEVEL: case RG_PHY_CC_CCA: case RG_CCA_THRES: case RG_RX_CTRL: case RG_SFD_VALUE: case RG_TRX_CTRL_2: case RG_ANT_DIV: case RG_IRQ_MASK: case RG_VREG_CTRL: case RG_BATMON: case RG_XOSC_CTRL: case RG_RX_SYN: case RG_XAH_CTRL_1: case RG_FTN_CTRL: case RG_PLL_CF: case RG_PLL_DCU: case RG_SHORT_ADDR_0: case RG_SHORT_ADDR_1: case RG_PAN_ID_0: case RG_PAN_ID_1: case RG_IEEE_ADDR_0: case RG_IEEE_ADDR_1: case RG_IEEE_ADDR_2: case RG_IEEE_ADDR_3: case RG_IEEE_ADDR_4: case RG_IEEE_ADDR_5: case RG_IEEE_ADDR_6: case RG_IEEE_ADDR_7: case RG_XAH_CTRL_0: case RG_CSMA_SEED_0: case RG_CSMA_SEED_1: case RG_CSMA_BE: return true; default: return false; } } static bool at86rf230_reg_readable(struct device *dev, unsigned int reg) { bool rc; /* all writeable are also readable */ rc = at86rf230_reg_writeable(dev, reg); if (rc) return rc; /* readonly regs */ switch (reg) { case RG_TRX_STATUS: case RG_PHY_RSSI: case RG_IRQ_STATUS: case RG_PART_NUM: case RG_VERSION_NUM: case RG_MAN_ID_1: case RG_MAN_ID_0: return true; default: return false; } } static bool at86rf230_reg_volatile(struct device *dev, unsigned int reg) { /* can be changed during runtime */ switch (reg) { case RG_TRX_STATUS: case RG_TRX_STATE: case RG_PHY_RSSI: case RG_PHY_ED_LEVEL: case RG_IRQ_STATUS: case RG_VREG_CTRL: case RG_PLL_CF: case RG_PLL_DCU: return true; default: return false; } } static bool at86rf230_reg_precious(struct device *dev, unsigned int reg) { /* don't clear irq line on read */ switch (reg) { case RG_IRQ_STATUS: return true; default: return false; } } static const struct regmap_config at86rf230_regmap_spi_config = { .reg_bits = 8, .val_bits = 8, .write_flag_mask = CMD_REG | CMD_WRITE, .read_flag_mask = CMD_REG, .cache_type = REGCACHE_RBTREE, .max_register = AT86RF2XX_NUMREGS, .writeable_reg = at86rf230_reg_writeable, .readable_reg = at86rf230_reg_readable, .volatile_reg = at86rf230_reg_volatile, .precious_reg = at86rf230_reg_precious, }; static void at86rf230_async_error_recover_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; if (ctx->free) kfree(ctx); ieee802154_wake_queue(lp->hw); } static void at86rf230_async_error_recover(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; lp->is_tx = 0; at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, at86rf230_async_error_recover_complete); } static inline void at86rf230_async_error(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, int rc) { dev_err(&lp->spi->dev, "spi_async error %d\n", rc); at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF, at86rf230_async_error_recover); } /* Generic function to get some register value in async mode */ static void at86rf230_async_read_reg(struct at86rf230_local *lp, u8 reg, struct at86rf230_state_change *ctx, void (*complete)(void *context)) { int rc; u8 *tx_buf = ctx->buf; tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG; ctx->msg.complete = complete; rc = spi_async(lp->spi, &ctx->msg); if (rc) at86rf230_async_error(lp, ctx, rc); } static void at86rf230_async_write_reg(struct at86rf230_local *lp, u8 reg, u8 val, struct at86rf230_state_change *ctx, void (*complete)(void *context)) { int rc; ctx->buf[0] = (reg & CMD_REG_MASK) | CMD_REG | CMD_WRITE; ctx->buf[1] = val; ctx->msg.complete = complete; rc = spi_async(lp->spi, &ctx->msg); if (rc) at86rf230_async_error(lp, ctx, rc); } static void at86rf230_async_state_assert(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = ctx->buf; const u8 trx_state = buf[1] & TRX_STATE_MASK; /* Assert state change */ if (trx_state != ctx->to_state) { /* Special handling if transceiver state is in * STATE_BUSY_RX_AACK and a SHR was detected. */ if (trx_state == STATE_BUSY_RX_AACK) { /* Undocumented race condition. If we send a state * change to STATE_RX_AACK_ON the transceiver could * change his state automatically to STATE_BUSY_RX_AACK * if a SHR was detected. This is not an error, but we * can't assert this. */ if (ctx->to_state == STATE_RX_AACK_ON) goto done; /* If we change to STATE_TX_ON without forcing and * transceiver state is STATE_BUSY_RX_AACK, we wait * 'tFrame + tPAck' receiving time. In this time the * PDU should be received. If the transceiver is still * in STATE_BUSY_RX_AACK, we run a force state change * to STATE_TX_ON. This is a timeout handling, if the * transceiver stucks in STATE_BUSY_RX_AACK. * * Additional we do several retries to try to get into * TX_ON state without forcing. If the retries are * higher or equal than AT86RF2XX_MAX_TX_RETRIES we * will do a force change. */ if (ctx->to_state == STATE_TX_ON || ctx->to_state == STATE_TRX_OFF) { u8 state = ctx->to_state; if (lp->tx_retry >= AT86RF2XX_MAX_TX_RETRIES) state = STATE_FORCE_TRX_OFF; lp->tx_retry++; at86rf230_async_state_change(lp, ctx, state, ctx->complete); return; } } dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n", ctx->from_state, ctx->to_state, trx_state); } done: if (ctx->complete) ctx->complete(context); } static enum hrtimer_restart at86rf230_async_state_timer(struct hrtimer *timer) { struct at86rf230_state_change *ctx = container_of(timer, struct at86rf230_state_change, timer); struct at86rf230_local *lp = ctx->lp; at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_assert); return HRTIMER_NORESTART; } /* Do state change timing delay. */ static void at86rf230_async_state_delay(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; struct at86rf2xx_chip_data *c = lp->data; bool force = false; ktime_t tim; /* The force state changes are will show as normal states in the * state status subregister. We change the to_state to the * corresponding one and remember if it was a force change, this * differs if we do a state change from STATE_BUSY_RX_AACK. */ switch (ctx->to_state) { case STATE_FORCE_TX_ON: ctx->to_state = STATE_TX_ON; force = true; break; case STATE_FORCE_TRX_OFF: ctx->to_state = STATE_TRX_OFF; force = true; break; default: break; } switch (ctx->from_state) { case STATE_TRX_OFF: switch (ctx->to_state) { case STATE_RX_AACK_ON: tim = c->t_off_to_aack * NSEC_PER_USEC; /* state change from TRX_OFF to RX_AACK_ON to do a * calibration, we need to reset the timeout for the * next one. */ lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; goto change; case STATE_TX_ARET_ON: case STATE_TX_ON: tim = c->t_off_to_tx_on * NSEC_PER_USEC; /* state change from TRX_OFF to TX_ON or ARET_ON to do * a calibration, we need to reset the timeout for the * next one. */ lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; goto change; default: break; } break; case STATE_BUSY_RX_AACK: switch (ctx->to_state) { case STATE_TRX_OFF: case STATE_TX_ON: /* Wait for worst case receiving time if we * didn't make a force change from BUSY_RX_AACK * to TX_ON or TRX_OFF. */ if (!force) { tim = (c->t_frame + c->t_p_ack) * NSEC_PER_USEC; goto change; } break; default: break; } break; /* Default value, means RESET state */ case STATE_P_ON: switch (ctx->to_state) { case STATE_TRX_OFF: tim = c->t_reset_to_off * NSEC_PER_USEC; goto change; default: break; } break; default: break; } /* Default delay is 1us in the most cases */ udelay(1); at86rf230_async_state_timer(&ctx->timer); return; change: hrtimer_start(&ctx->timer, tim, HRTIMER_MODE_REL); } static void at86rf230_async_state_change_start(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; u8 *buf = ctx->buf; const u8 trx_state = buf[1] & TRX_STATE_MASK; /* Check for "possible" STATE_TRANSITION_IN_PROGRESS */ if (trx_state == STATE_TRANSITION_IN_PROGRESS) { udelay(1); at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_change_start); return; } /* Check if we already are in the state which we change in */ if (trx_state == ctx->to_state) { if (ctx->complete) ctx->complete(context); return; } /* Set current state to the context of state change */ ctx->from_state = trx_state; /* Going into the next step for a state change which do a timing * relevant delay. */ at86rf230_async_write_reg(lp, RG_TRX_STATE, ctx->to_state, ctx, at86rf230_async_state_delay); } static void at86rf230_async_state_change(struct at86rf230_local *lp, struct at86rf230_state_change *ctx, const u8 state, void (*complete)(void *context)) { /* Initialization for the state change context */ ctx->to_state = state; ctx->complete = complete; at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx, at86rf230_async_state_change_start); } static void at86rf230_sync_state_change_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; complete(&lp->state_complete); } /* This function do a sync framework above the async state change. * Some callbacks of the IEEE 802.15.4 driver interface need to be * handled synchronously. */ static int at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state) { unsigned long rc; at86rf230_async_state_change(lp, &lp->state, state, at86rf230_sync_state_change_complete); rc = wait_for_completion_timeout(&lp->state_complete, msecs_to_jiffies(100)); if (!rc) { at86rf230_async_error(lp, &lp->state, -ETIMEDOUT); return -ETIMEDOUT; } return 0; } static void at86rf230_tx_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; ieee802154_xmit_complete(lp->hw, lp->tx_skb, false); kfree(ctx); } static void at86rf230_tx_on(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, at86rf230_tx_complete); } static void at86rf230_tx_trac_check(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) { u8 trac = TRAC_MASK(ctx->buf[1]); switch (trac) { case TRAC_SUCCESS: lp->trac.success++; break; case TRAC_SUCCESS_DATA_PENDING: lp->trac.success_data_pending++; break; case TRAC_CHANNEL_ACCESS_FAILURE: lp->trac.channel_access_failure++; break; case TRAC_NO_ACK: lp->trac.no_ack++; break; case TRAC_INVALID: lp->trac.invalid++; break; default: WARN_ONCE(1, "received tx trac status %d\n", trac); break; } } at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_tx_on); } static void at86rf230_rx_read_frame_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = ctx->buf; struct sk_buff *skb; u8 len, lqi; len = buf[1]; if (!ieee802154_is_valid_psdu_len(len)) { dev_vdbg(&lp->spi->dev, "corrupted frame received\n"); len = IEEE802154_MTU; } lqi = buf[2 + len]; skb = dev_alloc_skb(IEEE802154_MTU); if (!skb) { dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n"); kfree(ctx); return; } skb_put_data(skb, buf + 2, len); ieee802154_rx_irqsafe(lp->hw, skb, lqi); kfree(ctx); } static void at86rf230_rx_trac_check(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; u8 *buf = ctx->buf; int rc; if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) { u8 trac = TRAC_MASK(buf[1]); switch (trac) { case TRAC_SUCCESS: lp->trac.success++; break; case TRAC_SUCCESS_WAIT_FOR_ACK: lp->trac.success_wait_for_ack++; break; case TRAC_INVALID: lp->trac.invalid++; break; default: WARN_ONCE(1, "received rx trac status %d\n", trac); break; } } buf[0] = CMD_FB; ctx->trx.len = AT86RF2XX_MAX_BUF; ctx->msg.complete = at86rf230_rx_read_frame_complete; rc = spi_async(lp->spi, &ctx->msg); if (rc) { ctx->trx.len = 2; at86rf230_async_error(lp, ctx, rc); } } static void at86rf230_irq_trx_end(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; if (lp->is_tx) { lp->is_tx = 0; at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, at86rf230_tx_trac_check); } else { at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx, at86rf230_rx_trac_check); } } static void at86rf230_irq_status(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; const u8 *buf = ctx->buf; u8 irq = buf[1]; enable_irq(lp->spi->irq); if (irq & IRQ_TRX_END) { at86rf230_irq_trx_end(ctx); } else { dev_err(&lp->spi->dev, "not supported irq %02x received\n", irq); kfree(ctx); } } static void at86rf230_setup_spi_messages(struct at86rf230_local *lp, struct at86rf230_state_change *state) { state->lp = lp; state->irq = lp->spi->irq; spi_message_init(&state->msg); state->msg.context = state; state->trx.len = 2; state->trx.tx_buf = state->buf; state->trx.rx_buf = state->buf; spi_message_add_tail(&state->trx, &state->msg); hrtimer_init(&state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); state->timer.function = at86rf230_async_state_timer; } static irqreturn_t at86rf230_isr(int irq, void *data) { struct at86rf230_local *lp = data; struct at86rf230_state_change *ctx; int rc; disable_irq_nosync(irq); ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC); if (!ctx) { enable_irq(irq); return IRQ_NONE; } at86rf230_setup_spi_messages(lp, ctx); /* tell on error handling to free ctx */ ctx->free = true; ctx->buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG; ctx->msg.complete = at86rf230_irq_status; rc = spi_async(lp->spi, &ctx->msg); if (rc) { at86rf230_async_error(lp, ctx, rc); enable_irq(irq); return IRQ_NONE; } return IRQ_HANDLED; } static void at86rf230_write_frame_complete(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; ctx->trx.len = 2; if (gpio_is_valid(lp->slp_tr)) at86rf230_slp_tr_rising_edge(lp); else at86rf230_async_write_reg(lp, RG_TRX_STATE, STATE_BUSY_TX, ctx, NULL); } static void at86rf230_write_frame(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; struct sk_buff *skb = lp->tx_skb; u8 *buf = ctx->buf; int rc; lp->is_tx = 1; buf[0] = CMD_FB | CMD_WRITE; buf[1] = skb->len + 2; memcpy(buf + 2, skb->data, skb->len); ctx->trx.len = skb->len + 2; ctx->msg.complete = at86rf230_write_frame_complete; rc = spi_async(lp->spi, &ctx->msg); if (rc) { ctx->trx.len = 2; at86rf230_async_error(lp, ctx, rc); } } static void at86rf230_xmit_tx_on(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, at86rf230_write_frame); } static void at86rf230_xmit_start(void *context) { struct at86rf230_state_change *ctx = context; struct at86rf230_local *lp = ctx->lp; /* check if we change from off state */ if (lp->is_tx_from_off) at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON, at86rf230_write_frame); else at86rf230_async_state_change(lp, ctx, STATE_TX_ON, at86rf230_xmit_tx_on); } static int at86rf230_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct at86rf230_local *lp = hw->priv; struct at86rf230_state_change *ctx = &lp->tx; lp->tx_skb = skb; lp->tx_retry = 0; /* After 5 minutes in PLL and the same frequency we run again the * calibration loops which is recommended by at86rf2xx datasheets. * * The calibration is initiate by a state change from TRX_OFF * to TX_ON, the lp->cal_timeout should be reinit by state_delay * function then to start in the next 5 minutes. */ if (time_is_before_jiffies(lp->cal_timeout)) { lp->is_tx_from_off = true; at86rf230_async_state_change(lp, ctx, STATE_TRX_OFF, at86rf230_xmit_start); } else { lp->is_tx_from_off = false; at86rf230_xmit_start(ctx); } return 0; } static int at86rf230_ed(struct ieee802154_hw *hw, u8 *level) { WARN_ON(!level); *level = 0xbe; return 0; } static int at86rf230_start(struct ieee802154_hw *hw) { struct at86rf230_local *lp = hw->priv; /* reset trac stats on start */ if (IS_ENABLED(CONFIG_IEEE802154_AT86RF230_DEBUGFS)) memset(&lp->trac, 0, sizeof(struct at86rf230_trac)); at86rf230_awake(lp); enable_irq(lp->spi->irq); return at86rf230_sync_state_change(lp, STATE_RX_AACK_ON); } static void at86rf230_stop(struct ieee802154_hw *hw) { struct at86rf230_local *lp = hw->priv; u8 csma_seed[2]; at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); disable_irq(lp->spi->irq); /* It's recommended to set random new csma_seeds before sleep state. * Makes only sense in the stop callback, not doing this inside of * at86rf230_sleep, this is also used when we don't transmit afterwards * when calling start callback again. */ get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); at86rf230_sleep(lp); } static int at86rf23x_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) { return at86rf230_write_subreg(lp, SR_CHANNEL, channel); } #define AT86RF2XX_MAX_ED_LEVELS 0xF static const s32 at86rf233_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, -7400, -7200, -7000, -6800, -6600, -6400, }; static const s32 at86rf231_ed_levels[AT86RF2XX_MAX_ED_LEVELS + 1] = { -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, -7100, -6900, -6700, -6500, -6300, -6100, }; static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, -7400, -7200, -7000, }; static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, -7400, -7200, -7000, -6800, }; static inline int at86rf212_update_cca_ed_level(struct at86rf230_local *lp, int rssi_base_val) { unsigned int cca_ed_thres; int rc; rc = at86rf230_read_subreg(lp, SR_CCA_ED_THRES, &cca_ed_thres); if (rc < 0) return rc; switch (rssi_base_val) { case -98: lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; break; case -100: lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; break; default: WARN_ON(1); } return 0; } static int at86rf212_set_channel(struct at86rf230_local *lp, u8 page, u8 channel) { int rc; if (channel == 0) rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0); else rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1); if (rc < 0) return rc; if (page == 0) { rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0); lp->data->rssi_base_val = -100; } else { rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1); lp->data->rssi_base_val = -98; } if (rc < 0) return rc; rc = at86rf212_update_cca_ed_level(lp, lp->data->rssi_base_val); if (rc < 0) return rc; /* This sets the symbol_duration according frequency on the 212. * TODO move this handling while set channel and page in cfg802154. * We can do that, this timings are according 802.15.4 standard. * If we do that in cfg802154, this is a more generic calculation. * * This should also protected from ifs_timer. Means cancel timer and * init with a new value. For now, this is okay. */ if (channel == 0) { if (page == 0) { /* SUB:0 and BPSK:0 -> BPSK-20 */ lp->hw->phy->symbol_duration = 50; } else { /* SUB:1 and BPSK:0 -> BPSK-40 */ lp->hw->phy->symbol_duration = 25; } } else { if (page == 0) /* SUB:0 and BPSK:1 -> OQPSK-100/200/400 */ lp->hw->phy->symbol_duration = 40; else /* SUB:1 and BPSK:1 -> OQPSK-250/500/1000 */ lp->hw->phy->symbol_duration = 16; } lp->hw->phy->lifs_period = IEEE802154_LIFS_PERIOD * lp->hw->phy->symbol_duration; lp->hw->phy->sifs_period = IEEE802154_SIFS_PERIOD * lp->hw->phy->symbol_duration; return at86rf230_write_subreg(lp, SR_CHANNEL, channel); } static int at86rf230_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct at86rf230_local *lp = hw->priv; int rc; rc = lp->data->set_channel(lp, page, channel); /* Wait for PLL */ usleep_range(lp->data->t_channel_switch, lp->data->t_channel_switch + 10); lp->cal_timeout = jiffies + AT86RF2XX_CAL_LOOP_TIMEOUT; return rc; } static int at86rf230_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct at86rf230_local *lp = hw->priv; if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); dev_vdbg(&lp->spi->dev, "%s called for saddr\n", __func__); __at86rf230_write(lp, RG_SHORT_ADDR_0, addr); __at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan = le16_to_cpu(filt->pan_id); dev_vdbg(&lp->spi->dev, "%s called for pan id\n", __func__); __at86rf230_write(lp, RG_PAN_ID_0, pan); __at86rf230_write(lp, RG_PAN_ID_1, pan >> 8); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 i, addr[8]; memcpy(addr, &filt->ieee_addr, 8); dev_vdbg(&lp->spi->dev, "%s called for IEEE addr\n", __func__); for (i = 0; i < 8; i++) __at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { dev_vdbg(&lp->spi->dev, "%s called for panc change\n", __func__); if (filt->pan_coord) at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1); else at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0); } return 0; } #define AT86RF23X_MAX_TX_POWERS 0xF static const s32 at86rf233_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 400, 370, 340, 300, 250, 200, 100, 0, -100, -200, -300, -400, -600, -800, -1200, -1700, }; static const s32 at86rf231_powers[AT86RF23X_MAX_TX_POWERS + 1] = { 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, -900, -1200, -1700, }; #define AT86RF212_MAX_TX_POWERS 0x1F static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, }; static int at86rf23x_set_txpower(struct at86rf230_local *lp, s32 mbm) { u32 i; for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { if (lp->hw->phy->supported.tx_powers[i] == mbm) return at86rf230_write_subreg(lp, SR_TX_PWR_23X, i); } return -EINVAL; } static int at86rf212_set_txpower(struct at86rf230_local *lp, s32 mbm) { u32 i; for (i = 0; i < lp->hw->phy->supported.tx_powers_size; i++) { if (lp->hw->phy->supported.tx_powers[i] == mbm) return at86rf230_write_subreg(lp, SR_TX_PWR_212, i); } return -EINVAL; } static int at86rf230_set_txpower(struct ieee802154_hw *hw, s32 mbm) { struct at86rf230_local *lp = hw->priv; return lp->data->set_txpower(lp, mbm); } static int at86rf230_set_lbt(struct ieee802154_hw *hw, bool on) { struct at86rf230_local *lp = hw->priv; return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on); } static int at86rf230_set_cca_mode(struct ieee802154_hw *hw, const struct wpan_phy_cca *cca) { struct at86rf230_local *lp = hw->priv; u8 val; /* mapping 802.15.4 to driver spec */ switch (cca->mode) { case NL802154_CCA_ENERGY: val = 1; break; case NL802154_CCA_CARRIER: val = 2; break; case NL802154_CCA_ENERGY_CARRIER: switch (cca->opt) { case NL802154_CCA_OPT_ENERGY_CARRIER_AND: val = 3; break; case NL802154_CCA_OPT_ENERGY_CARRIER_OR: val = 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return at86rf230_write_subreg(lp, SR_CCA_MODE, val); } static int at86rf230_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) { struct at86rf230_local *lp = hw->priv; u32 i; for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { if (hw->phy->supported.cca_ed_levels[i] == mbm) return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, i); } return -EINVAL; } static int at86rf230_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct at86rf230_local *lp = hw->priv; int rc; rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be); if (rc) return rc; return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries); } static int at86rf230_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { struct at86rf230_local *lp = hw->priv; return at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries); } static int at86rf230_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { struct at86rf230_local *lp = hw->priv; int rc; if (on) { rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 1); if (rc < 0) return rc; rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 1); if (rc < 0) return rc; } else { rc = at86rf230_write_subreg(lp, SR_AACK_PROM_MODE, 0); if (rc < 0) return rc; rc = at86rf230_write_subreg(lp, SR_AACK_DIS_ACK, 0); if (rc < 0) return rc; } return 0; } static const struct ieee802154_ops at86rf230_ops = { .owner = THIS_MODULE, .xmit_async = at86rf230_xmit, .ed = at86rf230_ed, .set_channel = at86rf230_channel, .start = at86rf230_start, .stop = at86rf230_stop, .set_hw_addr_filt = at86rf230_set_hw_addr_filt, .set_txpower = at86rf230_set_txpower, .set_lbt = at86rf230_set_lbt, .set_cca_mode = at86rf230_set_cca_mode, .set_cca_ed_level = at86rf230_set_cca_ed_level, .set_csma_params = at86rf230_set_csma_params, .set_frame_retries = at86rf230_set_frame_retries, .set_promiscuous_mode = at86rf230_set_promiscuous_mode, }; static struct at86rf2xx_chip_data at86rf233_data = { .t_sleep_cycle = 330, .t_channel_switch = 11, .t_reset_to_off = 26, .t_off_to_aack = 80, .t_off_to_tx_on = 80, .t_off_to_sleep = 35, .t_sleep_to_off = 1000, .t_frame = 4096, .t_p_ack = 545, .rssi_base_val = -94, .set_channel = at86rf23x_set_channel, .set_txpower = at86rf23x_set_txpower, }; static struct at86rf2xx_chip_data at86rf231_data = { .t_sleep_cycle = 330, .t_channel_switch = 24, .t_reset_to_off = 37, .t_off_to_aack = 110, .t_off_to_tx_on = 110, .t_off_to_sleep = 35, .t_sleep_to_off = 1000, .t_frame = 4096, .t_p_ack = 545, .rssi_base_val = -91, .set_channel = at86rf23x_set_channel, .set_txpower = at86rf23x_set_txpower, }; static struct at86rf2xx_chip_data at86rf212_data = { .t_sleep_cycle = 330, .t_channel_switch = 11, .t_reset_to_off = 26, .t_off_to_aack = 200, .t_off_to_tx_on = 200, .t_off_to_sleep = 35, .t_sleep_to_off = 1000, .t_frame = 4096, .t_p_ack = 545, .rssi_base_val = -100, .set_channel = at86rf212_set_channel, .set_txpower = at86rf212_set_txpower, }; static int at86rf230_hw_init(struct at86rf230_local *lp, u8 xtal_trim) { int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH; unsigned int dvdd; u8 csma_seed[2]; rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF); if (rc) return rc; irq_type = irq_get_trigger_type(lp->spi->irq); if (irq_type == IRQ_TYPE_EDGE_FALLING || irq_type == IRQ_TYPE_LEVEL_LOW) irq_pol = IRQ_ACTIVE_LOW; rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END); if (rc) return rc; /* reset values differs in at86rf231 and at86rf233 */ rc = at86rf230_write_subreg(lp, SR_IRQ_MASK_MODE, 0); if (rc) return rc; get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed)); rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]); if (rc) return rc; rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]); if (rc) return rc; /* CLKM changes are applied immediately */ rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00); if (rc) return rc; /* Turn CLKM Off */ rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00); if (rc) return rc; /* Wait the next SLEEP cycle */ usleep_range(lp->data->t_sleep_cycle, lp->data->t_sleep_cycle + 100); /* xtal_trim value is calculated by: * CL = 0.5 * (CX + CTRIM + CPAR) * * whereas: * CL = capacitor of used crystal * CX = connected capacitors at xtal pins * CPAR = in all at86rf2xx datasheets this is a constant value 3 pF, * but this is different on each board setup. You need to fine * tuning this value via CTRIM. * CTRIM = variable capacitor setting. Resolution is 0.3 pF range is * 0 pF upto 4.5 pF. * * Examples: * atben transceiver: * * CL = 8 pF * CX = 12 pF * CPAR = 3 pF (We assume the magic constant from datasheet) * CTRIM = 0.9 pF * * (12+0.9+3)/2 = 7.95 which is nearly at 8 pF * * xtal_trim = 0x3 * * openlabs transceiver: * * CL = 16 pF * CX = 22 pF * CPAR = 3 pF (We assume the magic constant from datasheet) * CTRIM = 4.5 pF * * (22+4.5+3)/2 = 14.75 which is the nearest value to 16 pF * * xtal_trim = 0xf */ rc = at86rf230_write_subreg(lp, SR_XTAL_TRIM, xtal_trim); if (rc) return rc; rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd); if (rc) return rc; if (!dvdd) { dev_err(&lp->spi->dev, "DVDD error\n"); return -EINVAL; } /* Force setting slotted operation bit to 0. Sometimes the atben * sets this bit and I don't know why. We set this always force * to zero while probing. */ return at86rf230_write_subreg(lp, SR_SLOTTED_OPERATION, 0); } static int at86rf230_get_pdata(struct spi_device *spi, int *rstn, int *slp_tr, u8 *xtal_trim) { struct at86rf230_platform_data *pdata = spi->dev.platform_data; int ret; if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node) { if (!pdata) return -ENOENT; *rstn = pdata->rstn; *slp_tr = pdata->slp_tr; *xtal_trim = pdata->xtal_trim; return 0; } *rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0); *slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0); ret = of_property_read_u8(spi->dev.of_node, "xtal-trim", xtal_trim); if (ret < 0 && ret != -EINVAL) return ret; return 0; } static int at86rf230_detect_device(struct at86rf230_local *lp) { unsigned int part, version, val; u16 man_id = 0; const char *chip; int rc; rc = __at86rf230_read(lp, RG_MAN_ID_0, &val); if (rc) return rc; man_id |= val; rc = __at86rf230_read(lp, RG_MAN_ID_1, &val); if (rc) return rc; man_id |= (val << 8); rc = __at86rf230_read(lp, RG_PART_NUM, &part); if (rc) return rc; rc = __at86rf230_read(lp, RG_VERSION_NUM, &version); if (rc) return rc; if (man_id != 0x001f) { dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n", man_id >> 8, man_id & 0xFF); return -EINVAL; } lp->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_CSMA_PARAMS | IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS; lp->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; lp->hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); lp->hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); lp->hw->phy->cca.mode = NL802154_CCA_ENERGY; switch (part) { case 2: chip = "at86rf230"; rc = -ENOTSUPP; goto not_supp; case 3: chip = "at86rf231"; lp->data = &at86rf231_data; lp->hw->phy->supported.channels[0] = 0x7FFF800; lp->hw->phy->current_channel = 11; lp->hw->phy->symbol_duration = 16; lp->hw->phy->supported.tx_powers = at86rf231_powers; lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf231_powers); lp->hw->phy->supported.cca_ed_levels = at86rf231_ed_levels; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf231_ed_levels); break; case 7: chip = "at86rf212"; lp->data = &at86rf212_data; lp->hw->flags |= IEEE802154_HW_LBT; lp->hw->phy->supported.channels[0] = 0x00007FF; lp->hw->phy->supported.channels[2] = 0x00007FF; lp->hw->phy->current_channel = 5; lp->hw->phy->symbol_duration = 25; lp->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; lp->hw->phy->supported.tx_powers = at86rf212_powers; lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); break; case 11: chip = "at86rf233"; lp->data = &at86rf233_data; lp->hw->phy->supported.channels[0] = 0x7FFF800; lp->hw->phy->current_channel = 13; lp->hw->phy->symbol_duration = 16; lp->hw->phy->supported.tx_powers = at86rf233_powers; lp->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf233_powers); lp->hw->phy->supported.cca_ed_levels = at86rf233_ed_levels; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf233_ed_levels); break; default: chip = "unknown"; rc = -ENOTSUPP; goto not_supp; } lp->hw->phy->cca_ed_level = lp->hw->phy->supported.cca_ed_levels[7]; lp->hw->phy->transmit_power = lp->hw->phy->supported.tx_powers[0]; not_supp: dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version); return rc; } #ifdef CONFIG_IEEE802154_AT86RF230_DEBUGFS static struct dentry *at86rf230_debugfs_root; static int at86rf230_stats_show(struct seq_file *file, void *offset) { struct at86rf230_local *lp = file->private; seq_printf(file, "SUCCESS:\t\t%8llu\n", lp->trac.success); seq_printf(file, "SUCCESS_DATA_PENDING:\t%8llu\n", lp->trac.success_data_pending); seq_printf(file, "SUCCESS_WAIT_FOR_ACK:\t%8llu\n", lp->trac.success_wait_for_ack); seq_printf(file, "CHANNEL_ACCESS_FAILURE:\t%8llu\n", lp->trac.channel_access_failure); seq_printf(file, "NO_ACK:\t\t\t%8llu\n", lp->trac.no_ack); seq_printf(file, "INVALID:\t\t%8llu\n", lp->trac.invalid); return 0; } static int at86rf230_stats_open(struct inode *inode, struct file *file) { return single_open(file, at86rf230_stats_show, inode->i_private); } static const struct file_operations at86rf230_stats_fops = { .open = at86rf230_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int at86rf230_debugfs_init(struct at86rf230_local *lp) { char debugfs_dir_name[DNAME_INLINE_LEN + 1] = "at86rf230-"; struct dentry *stats; strncat(debugfs_dir_name, dev_name(&lp->spi->dev), DNAME_INLINE_LEN); at86rf230_debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL); if (!at86rf230_debugfs_root) return -ENOMEM; stats = debugfs_create_file("trac_stats", 0444, at86rf230_debugfs_root, lp, &at86rf230_stats_fops); if (!stats) return -ENOMEM; return 0; } static void at86rf230_debugfs_remove(void) { debugfs_remove_recursive(at86rf230_debugfs_root); } #else static int at86rf230_debugfs_init(struct at86rf230_local *lp) { return 0; } static void at86rf230_debugfs_remove(void) { } #endif static int at86rf230_probe(struct spi_device *spi) { struct ieee802154_hw *hw; struct at86rf230_local *lp; unsigned int status; int rc, irq_type, rstn, slp_tr; u8 xtal_trim = 0; if (!spi->irq) { dev_err(&spi->dev, "no IRQ specified\n"); return -EINVAL; } rc = at86rf230_get_pdata(spi, &rstn, &slp_tr, &xtal_trim); if (rc < 0) { dev_err(&spi->dev, "failed to parse platform_data: %d\n", rc); return rc; } if (gpio_is_valid(rstn)) { rc = devm_gpio_request_one(&spi->dev, rstn, GPIOF_OUT_INIT_HIGH, "rstn"); if (rc) return rc; } if (gpio_is_valid(slp_tr)) { rc = devm_gpio_request_one(&spi->dev, slp_tr, GPIOF_OUT_INIT_LOW, "slp_tr"); if (rc) return rc; } /* Reset */ if (gpio_is_valid(rstn)) { udelay(1); gpio_set_value_cansleep(rstn, 0); udelay(1); gpio_set_value_cansleep(rstn, 1); usleep_range(120, 240); } hw = ieee802154_alloc_hw(sizeof(*lp), &at86rf230_ops); if (!hw) return -ENOMEM; lp = hw->priv; lp->hw = hw; lp->spi = spi; lp->slp_tr = slp_tr; hw->parent = &spi->dev; ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config); if (IS_ERR(lp->regmap)) { rc = PTR_ERR(lp->regmap); dev_err(&spi->dev, "Failed to allocate register map: %d\n", rc); goto free_dev; } at86rf230_setup_spi_messages(lp, &lp->state); at86rf230_setup_spi_messages(lp, &lp->tx); rc = at86rf230_detect_device(lp); if (rc < 0) goto free_dev; init_completion(&lp->state_complete); spi_set_drvdata(spi, lp); rc = at86rf230_hw_init(lp, xtal_trim); if (rc) goto free_dev; /* Read irq status register to reset irq line */ rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status); if (rc) goto free_dev; irq_type = irq_get_trigger_type(spi->irq); if (!irq_type) irq_type = IRQF_TRIGGER_HIGH; rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr, IRQF_SHARED | irq_type, dev_name(&spi->dev), lp); if (rc) goto free_dev; /* disable_irq by default and wait for starting hardware */ disable_irq(spi->irq); /* going into sleep by default */ at86rf230_sleep(lp); rc = at86rf230_debugfs_init(lp); if (rc) goto free_dev; rc = ieee802154_register_hw(lp->hw); if (rc) goto free_debugfs; return rc; free_debugfs: at86rf230_debugfs_remove(); free_dev: ieee802154_free_hw(lp->hw); return rc; } static int at86rf230_remove(struct spi_device *spi) { struct at86rf230_local *lp = spi_get_drvdata(spi); /* mask all at86rf230 irq's */ at86rf230_write_subreg(lp, SR_IRQ_MASK, 0); ieee802154_unregister_hw(lp->hw); ieee802154_free_hw(lp->hw); at86rf230_debugfs_remove(); dev_dbg(&spi->dev, "unregistered at86rf230\n"); return 0; } static const struct of_device_id at86rf230_of_match[] = { { .compatible = "atmel,at86rf230", }, { .compatible = "atmel,at86rf231", }, { .compatible = "atmel,at86rf233", }, { .compatible = "atmel,at86rf212", }, { }, }; MODULE_DEVICE_TABLE(of, at86rf230_of_match); static const struct spi_device_id at86rf230_device_id[] = { { .name = "at86rf230", }, { .name = "at86rf231", }, { .name = "at86rf233", }, { .name = "at86rf212", }, { }, }; MODULE_DEVICE_TABLE(spi, at86rf230_device_id); static struct spi_driver at86rf230_driver = { .id_table = at86rf230_device_id, .driver = { .of_match_table = of_match_ptr(at86rf230_of_match), .name = "at86rf230", }, .probe = at86rf230_probe, .remove = at86rf230_remove, }; module_spi_driver(at86rf230_driver); MODULE_DESCRIPTION("AT86RF230 Transceiver Driver"); MODULE_LICENSE("GPL v2");