// SPDX-License-Identifier: GPL-2.0-or-later /* Driver for TI CC2520 802.15.4 Wireless-PAN Networking controller * * Copyright (C) 2014 Varka Bhadram * Md.Jamal Mohiuddin * P Sowjanya */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_COMMAND_BUFFER 3 #define HIGH 1 #define LOW 0 #define STATE_IDLE 0 #define RSSI_VALID 0 #define RSSI_OFFSET 78 #define CC2520_RAM_SIZE 640 #define CC2520_FIFO_SIZE 128 #define CC2520RAM_TXFIFO 0x100 #define CC2520RAM_RXFIFO 0x180 #define CC2520RAM_IEEEADDR 0x3EA #define CC2520RAM_PANID 0x3F2 #define CC2520RAM_SHORTADDR 0x3F4 #define CC2520_FREG_MASK 0x3F /* status byte values */ #define CC2520_STATUS_XOSC32M_STABLE BIT(7) #define CC2520_STATUS_RSSI_VALID BIT(6) #define CC2520_STATUS_TX_UNDERFLOW BIT(3) /* IEEE-802.15.4 defined constants (2.4 GHz logical channels) */ #define CC2520_MINCHANNEL 11 #define CC2520_MAXCHANNEL 26 #define CC2520_CHANNEL_SPACING 5 /* command strobes */ #define CC2520_CMD_SNOP 0x00 #define CC2520_CMD_IBUFLD 0x02 #define CC2520_CMD_SIBUFEX 0x03 #define CC2520_CMD_SSAMPLECCA 0x04 #define CC2520_CMD_SRES 0x0f #define CC2520_CMD_MEMORY_MASK 0x0f #define CC2520_CMD_MEMORY_READ 0x10 #define CC2520_CMD_MEMORY_WRITE 0x20 #define CC2520_CMD_RXBUF 0x30 #define CC2520_CMD_RXBUFCP 0x38 #define CC2520_CMD_RXBUFMOV 0x32 #define CC2520_CMD_TXBUF 0x3A #define CC2520_CMD_TXBUFCP 0x3E #define CC2520_CMD_RANDOM 0x3C #define CC2520_CMD_SXOSCON 0x40 #define CC2520_CMD_STXCAL 0x41 #define CC2520_CMD_SRXON 0x42 #define CC2520_CMD_STXON 0x43 #define CC2520_CMD_STXONCCA 0x44 #define CC2520_CMD_SRFOFF 0x45 #define CC2520_CMD_SXOSCOFF 0x46 #define CC2520_CMD_SFLUSHRX 0x47 #define CC2520_CMD_SFLUSHTX 0x48 #define CC2520_CMD_SACK 0x49 #define CC2520_CMD_SACKPEND 0x4A #define CC2520_CMD_SNACK 0x4B #define CC2520_CMD_SRXMASKBITSET 0x4C #define CC2520_CMD_SRXMASKBITCLR 0x4D #define CC2520_CMD_RXMASKAND 0x4E #define CC2520_CMD_RXMASKOR 0x4F #define CC2520_CMD_MEMCP 0x50 #define CC2520_CMD_MEMCPR 0x52 #define CC2520_CMD_MEMXCP 0x54 #define CC2520_CMD_MEMXWR 0x56 #define CC2520_CMD_BCLR 0x58 #define CC2520_CMD_BSET 0x59 #define CC2520_CMD_CTR_UCTR 0x60 #define CC2520_CMD_CBCMAC 0x64 #define CC2520_CMD_UCBCMAC 0x66 #define CC2520_CMD_CCM 0x68 #define CC2520_CMD_UCCM 0x6A #define CC2520_CMD_ECB 0x70 #define CC2520_CMD_ECBO 0x72 #define CC2520_CMD_ECBX 0x74 #define CC2520_CMD_INC 0x78 #define CC2520_CMD_ABORT 0x7F #define CC2520_CMD_REGISTER_READ 0x80 #define CC2520_CMD_REGISTER_WRITE 0xC0 /* status registers */ #define CC2520_CHIPID 0x40 #define CC2520_VERSION 0x42 #define CC2520_EXTCLOCK 0x44 #define CC2520_MDMCTRL0 0x46 #define CC2520_MDMCTRL1 0x47 #define CC2520_FREQEST 0x48 #define CC2520_RXCTRL 0x4A #define CC2520_FSCTRL 0x4C #define CC2520_FSCAL0 0x4E #define CC2520_FSCAL1 0x4F #define CC2520_FSCAL2 0x50 #define CC2520_FSCAL3 0x51 #define CC2520_AGCCTRL0 0x52 #define CC2520_AGCCTRL1 0x53 #define CC2520_AGCCTRL2 0x54 #define CC2520_AGCCTRL3 0x55 #define CC2520_ADCTEST0 0x56 #define CC2520_ADCTEST1 0x57 #define CC2520_ADCTEST2 0x58 #define CC2520_MDMTEST0 0x5A #define CC2520_MDMTEST1 0x5B #define CC2520_DACTEST0 0x5C #define CC2520_DACTEST1 0x5D #define CC2520_ATEST 0x5E #define CC2520_DACTEST2 0x5F #define CC2520_PTEST0 0x60 #define CC2520_PTEST1 0x61 #define CC2520_RESERVED 0x62 #define CC2520_DPUBIST 0x7A #define CC2520_ACTBIST 0x7C #define CC2520_RAMBIST 0x7E /* frame registers */ #define CC2520_FRMFILT0 0x00 #define CC2520_FRMFILT1 0x01 #define CC2520_SRCMATCH 0x02 #define CC2520_SRCSHORTEN0 0x04 #define CC2520_SRCSHORTEN1 0x05 #define CC2520_SRCSHORTEN2 0x06 #define CC2520_SRCEXTEN0 0x08 #define CC2520_SRCEXTEN1 0x09 #define CC2520_SRCEXTEN2 0x0A #define CC2520_FRMCTRL0 0x0C #define CC2520_FRMCTRL1 0x0D #define CC2520_RXENABLE0 0x0E #define CC2520_RXENABLE1 0x0F #define CC2520_EXCFLAG0 0x10 #define CC2520_EXCFLAG1 0x11 #define CC2520_EXCFLAG2 0x12 #define CC2520_EXCMASKA0 0x14 #define CC2520_EXCMASKA1 0x15 #define CC2520_EXCMASKA2 0x16 #define CC2520_EXCMASKB0 0x18 #define CC2520_EXCMASKB1 0x19 #define CC2520_EXCMASKB2 0x1A #define CC2520_EXCBINDX0 0x1C #define CC2520_EXCBINDX1 0x1D #define CC2520_EXCBINDY0 0x1E #define CC2520_EXCBINDY1 0x1F #define CC2520_GPIOCTRL0 0x20 #define CC2520_GPIOCTRL1 0x21 #define CC2520_GPIOCTRL2 0x22 #define CC2520_GPIOCTRL3 0x23 #define CC2520_GPIOCTRL4 0x24 #define CC2520_GPIOCTRL5 0x25 #define CC2520_GPIOPOLARITY 0x26 #define CC2520_GPIOCTRL 0x28 #define CC2520_DPUCON 0x2A #define CC2520_DPUSTAT 0x2C #define CC2520_FREQCTRL 0x2E #define CC2520_FREQTUNE 0x2F #define CC2520_TXPOWER 0x30 #define CC2520_TXCTRL 0x31 #define CC2520_FSMSTAT0 0x32 #define CC2520_FSMSTAT1 0x33 #define CC2520_FIFOPCTRL 0x34 #define CC2520_FSMCTRL 0x35 #define CC2520_CCACTRL0 0x36 #define CC2520_CCACTRL1 0x37 #define CC2520_RSSI 0x38 #define CC2520_RSSISTAT 0x39 #define CC2520_RXFIRST 0x3C #define CC2520_RXFIFOCNT 0x3E #define CC2520_TXFIFOCNT 0x3F /* CC2520_FRMFILT0 */ #define FRMFILT0_FRAME_FILTER_EN BIT(0) #define FRMFILT0_PAN_COORDINATOR BIT(1) /* CC2520_FRMCTRL0 */ #define FRMCTRL0_AUTOACK BIT(5) #define FRMCTRL0_AUTOCRC BIT(6) /* CC2520_FRMCTRL1 */ #define FRMCTRL1_SET_RXENMASK_ON_TX BIT(0) #define FRMCTRL1_IGNORE_TX_UNDERF BIT(1) /* Driver private information */ struct cc2520_private { struct spi_device *spi; /* SPI device structure */ struct ieee802154_hw *hw; /* IEEE-802.15.4 device */ u8 *buf; /* SPI TX/Rx data buffer */ struct mutex buffer_mutex; /* SPI buffer mutex */ bool is_tx; /* Flag for sync b/w Tx and Rx */ bool amplified; /* Flag for CC2591 */ int fifo_pin; /* FIFO GPIO pin number */ struct work_struct fifop_irqwork;/* Workqueue for FIFOP */ spinlock_t lock; /* Lock for is_tx*/ struct completion tx_complete; /* Work completion for Tx */ bool promiscuous; /* Flag for promiscuous mode */ }; /* Generic Functions */ static int cc2520_cmd_strobe(struct cc2520_private *priv, u8 cmd) { int ret; u8 status = 0xff; struct spi_message msg; struct spi_transfer xfer = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); mutex_lock(&priv->buffer_mutex); priv->buf[xfer.len++] = cmd; dev_vdbg(&priv->spi->dev, "command strobe buf[0] = %02x\n", priv->buf[0]); ret = spi_sync(priv->spi, &msg); if (!ret) status = priv->buf[0]; dev_vdbg(&priv->spi->dev, "buf[0] = %02x\n", priv->buf[0]); mutex_unlock(&priv->buffer_mutex); return ret; } static int cc2520_get_status(struct cc2520_private *priv, u8 *status) { int ret; struct spi_message msg; struct spi_transfer xfer = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); mutex_lock(&priv->buffer_mutex); priv->buf[xfer.len++] = CC2520_CMD_SNOP; dev_vdbg(&priv->spi->dev, "get status command buf[0] = %02x\n", priv->buf[0]); ret = spi_sync(priv->spi, &msg); if (!ret) *status = priv->buf[0]; dev_vdbg(&priv->spi->dev, "buf[0] = %02x\n", priv->buf[0]); mutex_unlock(&priv->buffer_mutex); return ret; } static int cc2520_write_register(struct cc2520_private *priv, u8 reg, u8 value) { int status; struct spi_message msg; struct spi_transfer xfer = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); mutex_lock(&priv->buffer_mutex); if (reg <= CC2520_FREG_MASK) { priv->buf[xfer.len++] = CC2520_CMD_REGISTER_WRITE | reg; priv->buf[xfer.len++] = value; } else { priv->buf[xfer.len++] = CC2520_CMD_MEMORY_WRITE; priv->buf[xfer.len++] = reg; priv->buf[xfer.len++] = value; } status = spi_sync(priv->spi, &msg); if (msg.status) status = msg.status; mutex_unlock(&priv->buffer_mutex); return status; } static int cc2520_write_ram(struct cc2520_private *priv, u16 reg, u8 len, u8 *data) { int status; struct spi_message msg; struct spi_transfer xfer_head = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; struct spi_transfer xfer_buf = { .len = len, .tx_buf = data, }; mutex_lock(&priv->buffer_mutex); priv->buf[xfer_head.len++] = (CC2520_CMD_MEMORY_WRITE | ((reg >> 8) & 0xff)); priv->buf[xfer_head.len++] = reg & 0xff; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_buf, &msg); status = spi_sync(priv->spi, &msg); dev_dbg(&priv->spi->dev, "spi status = %d\n", status); if (msg.status) status = msg.status; mutex_unlock(&priv->buffer_mutex); return status; } static int cc2520_read_register(struct cc2520_private *priv, u8 reg, u8 *data) { int status; struct spi_message msg; struct spi_transfer xfer1 = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; struct spi_transfer xfer2 = { .len = 1, .rx_buf = data, }; spi_message_init(&msg); spi_message_add_tail(&xfer1, &msg); spi_message_add_tail(&xfer2, &msg); mutex_lock(&priv->buffer_mutex); priv->buf[xfer1.len++] = CC2520_CMD_MEMORY_READ; priv->buf[xfer1.len++] = reg; status = spi_sync(priv->spi, &msg); dev_dbg(&priv->spi->dev, "spi status = %d\n", status); if (msg.status) status = msg.status; mutex_unlock(&priv->buffer_mutex); return status; } static int cc2520_write_txfifo(struct cc2520_private *priv, u8 pkt_len, u8 *data, u8 len) { int status; /* length byte must include FCS even * if it is calculated in the hardware */ int len_byte = pkt_len; struct spi_message msg; struct spi_transfer xfer_head = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; struct spi_transfer xfer_len = { .len = 1, .tx_buf = &len_byte, }; struct spi_transfer xfer_buf = { .len = len, .tx_buf = data, }; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_len, &msg); spi_message_add_tail(&xfer_buf, &msg); mutex_lock(&priv->buffer_mutex); priv->buf[xfer_head.len++] = CC2520_CMD_TXBUF; dev_vdbg(&priv->spi->dev, "TX_FIFO cmd buf[0] = %02x\n", priv->buf[0]); status = spi_sync(priv->spi, &msg); dev_vdbg(&priv->spi->dev, "status = %d\n", status); if (msg.status) status = msg.status; dev_vdbg(&priv->spi->dev, "status = %d\n", status); dev_vdbg(&priv->spi->dev, "buf[0] = %02x\n", priv->buf[0]); mutex_unlock(&priv->buffer_mutex); return status; } static int cc2520_read_rxfifo(struct cc2520_private *priv, u8 *data, u8 len) { int status; struct spi_message msg; struct spi_transfer xfer_head = { .len = 0, .tx_buf = priv->buf, .rx_buf = priv->buf, }; struct spi_transfer xfer_buf = { .len = len, .rx_buf = data, }; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_buf, &msg); mutex_lock(&priv->buffer_mutex); priv->buf[xfer_head.len++] = CC2520_CMD_RXBUF; dev_vdbg(&priv->spi->dev, "read rxfifo buf[0] = %02x\n", priv->buf[0]); dev_vdbg(&priv->spi->dev, "buf[1] = %02x\n", priv->buf[1]); status = spi_sync(priv->spi, &msg); dev_vdbg(&priv->spi->dev, "status = %d\n", status); if (msg.status) status = msg.status; dev_vdbg(&priv->spi->dev, "status = %d\n", status); dev_vdbg(&priv->spi->dev, "return status buf[0] = %02x\n", priv->buf[0]); dev_vdbg(&priv->spi->dev, "length buf[1] = %02x\n", priv->buf[1]); mutex_unlock(&priv->buffer_mutex); return status; } static int cc2520_start(struct ieee802154_hw *hw) { return cc2520_cmd_strobe(hw->priv, CC2520_CMD_SRXON); } static void cc2520_stop(struct ieee802154_hw *hw) { cc2520_cmd_strobe(hw->priv, CC2520_CMD_SRFOFF); } static int cc2520_tx(struct ieee802154_hw *hw, struct sk_buff *skb) { struct cc2520_private *priv = hw->priv; unsigned long flags; int rc; u8 status = 0; u8 pkt_len; /* In promiscuous mode we disable AUTOCRC so we can get the raw CRC * values on RX. This means we need to manually add the CRC on TX. */ if (priv->promiscuous) { u16 crc = crc_ccitt(0, skb->data, skb->len); put_unaligned_le16(crc, skb_put(skb, 2)); pkt_len = skb->len; } else { pkt_len = skb->len + 2; } rc = cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHTX); if (rc) goto err_tx; rc = cc2520_write_txfifo(priv, pkt_len, skb->data, skb->len); if (rc) goto err_tx; rc = cc2520_get_status(priv, &status); if (rc) goto err_tx; if (status & CC2520_STATUS_TX_UNDERFLOW) { dev_err(&priv->spi->dev, "cc2520 tx underflow exception\n"); goto err_tx; } spin_lock_irqsave(&priv->lock, flags); WARN_ON(priv->is_tx); priv->is_tx = 1; spin_unlock_irqrestore(&priv->lock, flags); rc = cc2520_cmd_strobe(priv, CC2520_CMD_STXONCCA); if (rc) goto err; rc = wait_for_completion_interruptible(&priv->tx_complete); if (rc < 0) goto err; cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHTX); cc2520_cmd_strobe(priv, CC2520_CMD_SRXON); return rc; err: spin_lock_irqsave(&priv->lock, flags); priv->is_tx = 0; spin_unlock_irqrestore(&priv->lock, flags); err_tx: return rc; } static int cc2520_rx(struct cc2520_private *priv) { u8 len = 0, lqi = 0, bytes = 1; struct sk_buff *skb; /* Read single length byte from the radio. */ cc2520_read_rxfifo(priv, &len, bytes); if (!ieee802154_is_valid_psdu_len(len)) { /* Corrupted frame received, clear frame buffer by * reading entire buffer. */ dev_dbg(&priv->spi->dev, "corrupted frame received\n"); len = IEEE802154_MTU; } skb = dev_alloc_skb(len); if (!skb) return -ENOMEM; if (cc2520_read_rxfifo(priv, skb_put(skb, len), len)) { dev_dbg(&priv->spi->dev, "frame reception failed\n"); kfree_skb(skb); return -EINVAL; } /* In promiscuous mode, we configure the radio to include the * CRC (AUTOCRC==0) and we pass on the packet unconditionally. If not * in promiscuous mode, we check the CRC here, but leave the * RSSI/LQI/CRC_OK bytes as they will get removed in the mac layer. */ if (!priv->promiscuous) { bool crc_ok; /* Check if the CRC is valid. With AUTOCRC set, the most * significant bit of the last byte returned from the CC2520 * is CRC_OK flag. See section 20.3.4 of the datasheet. */ crc_ok = skb->data[len - 1] & BIT(7); /* If we failed CRC drop the packet in the driver layer. */ if (!crc_ok) { dev_dbg(&priv->spi->dev, "CRC check failed\n"); kfree_skb(skb); return -EINVAL; } /* To calculate LQI, the lower 7 bits of the last byte (the * correlation value provided by the radio) must be scaled to * the range 0-255. According to section 20.6, the correlation * value ranges from 50-110. Ideally this would be calibrated * per hardware design, but we use roughly the datasheet values * to get close enough while avoiding floating point. */ lqi = skb->data[len - 1] & 0x7f; if (lqi < 50) lqi = 50; else if (lqi > 113) lqi = 113; lqi = (lqi - 50) * 4; } ieee802154_rx_irqsafe(priv->hw, skb, lqi); dev_vdbg(&priv->spi->dev, "RXFIFO: %x %x\n", len, lqi); return 0; } static int cc2520_ed(struct ieee802154_hw *hw, u8 *level) { struct cc2520_private *priv = hw->priv; u8 status = 0xff; u8 rssi; int ret; ret = cc2520_read_register(priv, CC2520_RSSISTAT, &status); if (ret) return ret; if (status != RSSI_VALID) return -EINVAL; ret = cc2520_read_register(priv, CC2520_RSSI, &rssi); if (ret) return ret; /* level = RSSI(rssi) - OFFSET [dBm] : offset is 76dBm */ *level = rssi - RSSI_OFFSET; return 0; } static int cc2520_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct cc2520_private *priv = hw->priv; int ret; dev_dbg(&priv->spi->dev, "trying to set channel\n"); WARN_ON(page != 0); WARN_ON(channel < CC2520_MINCHANNEL); WARN_ON(channel > CC2520_MAXCHANNEL); ret = cc2520_write_register(priv, CC2520_FREQCTRL, 11 + 5 * (channel - 11)); return ret; } static int cc2520_filter(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct cc2520_private *priv = hw->priv; int ret = 0; if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 panid = le16_to_cpu(filt->pan_id); dev_vdbg(&priv->spi->dev, "%s called for pan id\n", __func__); ret = cc2520_write_ram(priv, CC2520RAM_PANID, sizeof(panid), (u8 *)&panid); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { dev_vdbg(&priv->spi->dev, "%s called for IEEE addr\n", __func__); ret = cc2520_write_ram(priv, CC2520RAM_IEEEADDR, sizeof(filt->ieee_addr), (u8 *)&filt->ieee_addr); } if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); dev_vdbg(&priv->spi->dev, "%s called for saddr\n", __func__); ret = cc2520_write_ram(priv, CC2520RAM_SHORTADDR, sizeof(addr), (u8 *)&addr); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { u8 frmfilt0; dev_vdbg(&priv->spi->dev, "%s called for panc change\n", __func__); cc2520_read_register(priv, CC2520_FRMFILT0, &frmfilt0); if (filt->pan_coord) frmfilt0 |= FRMFILT0_PAN_COORDINATOR; else frmfilt0 &= ~FRMFILT0_PAN_COORDINATOR; ret = cc2520_write_register(priv, CC2520_FRMFILT0, frmfilt0); } return ret; } static inline int cc2520_set_tx_power(struct cc2520_private *priv, s32 mbm) { u8 power; switch (mbm) { case 500: power = 0xF7; break; case 300: power = 0xF2; break; case 200: power = 0xAB; break; case 100: power = 0x13; break; case 0: power = 0x32; break; case -200: power = 0x81; break; case -400: power = 0x88; break; case -700: power = 0x2C; break; case -1800: power = 0x03; break; default: return -EINVAL; } return cc2520_write_register(priv, CC2520_TXPOWER, power); } static inline int cc2520_cc2591_set_tx_power(struct cc2520_private *priv, s32 mbm) { u8 power; switch (mbm) { case 1700: power = 0xF9; break; case 1600: power = 0xF0; break; case 1400: power = 0xA0; break; case 1100: power = 0x2C; break; case -100: power = 0x03; break; case -800: power = 0x01; break; default: return -EINVAL; } return cc2520_write_register(priv, CC2520_TXPOWER, power); } #define CC2520_MAX_TX_POWERS 0x8 static const s32 cc2520_powers[CC2520_MAX_TX_POWERS + 1] = { 500, 300, 200, 100, 0, -200, -400, -700, -1800, }; #define CC2520_CC2591_MAX_TX_POWERS 0x5 static const s32 cc2520_cc2591_powers[CC2520_CC2591_MAX_TX_POWERS + 1] = { 1700, 1600, 1400, 1100, -100, -800, }; static int cc2520_set_txpower(struct ieee802154_hw *hw, s32 mbm) { struct cc2520_private *priv = hw->priv; if (!priv->amplified) return cc2520_set_tx_power(priv, mbm); return cc2520_cc2591_set_tx_power(priv, mbm); } static int cc2520_set_promiscuous_mode(struct ieee802154_hw *hw, bool on) { struct cc2520_private *priv = hw->priv; u8 frmfilt0; dev_dbg(&priv->spi->dev, "%s : mode %d\n", __func__, on); priv->promiscuous = on; cc2520_read_register(priv, CC2520_FRMFILT0, &frmfilt0); if (on) { /* Disable automatic ACK, automatic CRC, and frame filtering. */ cc2520_write_register(priv, CC2520_FRMCTRL0, 0); frmfilt0 &= ~FRMFILT0_FRAME_FILTER_EN; } else { cc2520_write_register(priv, CC2520_FRMCTRL0, FRMCTRL0_AUTOACK | FRMCTRL0_AUTOCRC); frmfilt0 |= FRMFILT0_FRAME_FILTER_EN; } return cc2520_write_register(priv, CC2520_FRMFILT0, frmfilt0); } static const struct ieee802154_ops cc2520_ops = { .owner = THIS_MODULE, .start = cc2520_start, .stop = cc2520_stop, .xmit_sync = cc2520_tx, .ed = cc2520_ed, .set_channel = cc2520_set_channel, .set_hw_addr_filt = cc2520_filter, .set_txpower = cc2520_set_txpower, .set_promiscuous_mode = cc2520_set_promiscuous_mode, }; static int cc2520_register(struct cc2520_private *priv) { int ret = -ENOMEM; priv->hw = ieee802154_alloc_hw(sizeof(*priv), &cc2520_ops); if (!priv->hw) goto err_ret; priv->hw->priv = priv; priv->hw->parent = &priv->spi->dev; priv->hw->extra_tx_headroom = 0; ieee802154_random_extended_addr(&priv->hw->phy->perm_extended_addr); /* We do support only 2.4 Ghz */ priv->hw->phy->supported.channels[0] = 0x7FFF800; priv->hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS; priv->hw->phy->flags = WPAN_PHY_FLAG_TXPOWER; if (!priv->amplified) { priv->hw->phy->supported.tx_powers = cc2520_powers; priv->hw->phy->supported.tx_powers_size = ARRAY_SIZE(cc2520_powers); priv->hw->phy->transmit_power = priv->hw->phy->supported.tx_powers[4]; } else { priv->hw->phy->supported.tx_powers = cc2520_cc2591_powers; priv->hw->phy->supported.tx_powers_size = ARRAY_SIZE(cc2520_cc2591_powers); priv->hw->phy->transmit_power = priv->hw->phy->supported.tx_powers[0]; } priv->hw->phy->current_channel = 11; dev_vdbg(&priv->spi->dev, "registered cc2520\n"); ret = ieee802154_register_hw(priv->hw); if (ret) goto err_free_device; return 0; err_free_device: ieee802154_free_hw(priv->hw); err_ret: return ret; } static void cc2520_fifop_irqwork(struct work_struct *work) { struct cc2520_private *priv = container_of(work, struct cc2520_private, fifop_irqwork); dev_dbg(&priv->spi->dev, "fifop interrupt received\n"); if (gpio_get_value(priv->fifo_pin)) cc2520_rx(priv); else dev_dbg(&priv->spi->dev, "rxfifo overflow\n"); cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHRX); cc2520_cmd_strobe(priv, CC2520_CMD_SFLUSHRX); } static irqreturn_t cc2520_fifop_isr(int irq, void *data) { struct cc2520_private *priv = data; schedule_work(&priv->fifop_irqwork); return IRQ_HANDLED; } static irqreturn_t cc2520_sfd_isr(int irq, void *data) { struct cc2520_private *priv = data; unsigned long flags; spin_lock_irqsave(&priv->lock, flags); if (priv->is_tx) { priv->is_tx = 0; spin_unlock_irqrestore(&priv->lock, flags); dev_dbg(&priv->spi->dev, "SFD for TX\n"); complete(&priv->tx_complete); } else { spin_unlock_irqrestore(&priv->lock, flags); dev_dbg(&priv->spi->dev, "SFD for RX\n"); } return IRQ_HANDLED; } static int cc2520_get_platform_data(struct spi_device *spi, struct cc2520_platform_data *pdata) { struct device_node *np = spi->dev.of_node; struct cc2520_private *priv = spi_get_drvdata(spi); if (!np) { struct cc2520_platform_data *spi_pdata = spi->dev.platform_data; if (!spi_pdata) return -ENOENT; *pdata = *spi_pdata; priv->fifo_pin = pdata->fifo; return 0; } pdata->fifo = of_get_named_gpio(np, "fifo-gpio", 0); priv->fifo_pin = pdata->fifo; pdata->fifop = of_get_named_gpio(np, "fifop-gpio", 0); pdata->sfd = of_get_named_gpio(np, "sfd-gpio", 0); pdata->cca = of_get_named_gpio(np, "cca-gpio", 0); pdata->vreg = of_get_named_gpio(np, "vreg-gpio", 0); pdata->reset = of_get_named_gpio(np, "reset-gpio", 0); /* CC2591 front end for CC2520 */ if (of_property_read_bool(np, "amplified")) priv->amplified = true; return 0; } static int cc2520_hw_init(struct cc2520_private *priv) { u8 status = 0, state = 0xff; int ret; int timeout = 100; struct cc2520_platform_data pdata; ret = cc2520_get_platform_data(priv->spi, &pdata); if (ret) goto err_ret; ret = cc2520_read_register(priv, CC2520_FSMSTAT1, &state); if (ret) goto err_ret; if (state != STATE_IDLE) return -EINVAL; do { ret = cc2520_get_status(priv, &status); if (ret) goto err_ret; if (timeout-- <= 0) { dev_err(&priv->spi->dev, "oscillator start failed!\n"); return ret; } udelay(1); } while (!(status & CC2520_STATUS_XOSC32M_STABLE)); dev_vdbg(&priv->spi->dev, "oscillator brought up\n"); /* If the CC2520 is connected to a CC2591 amplifier, we must both * configure GPIOs on the CC2520 to correctly configure the CC2591 * and change a couple settings of the CC2520 to work with the * amplifier. See section 8 page 17 of TI application note AN065. * http://www.ti.com/lit/an/swra229a/swra229a.pdf */ if (priv->amplified) { ret = cc2520_write_register(priv, CC2520_AGCCTRL1, 0x16); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_GPIOCTRL0, 0x46); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_GPIOCTRL5, 0x47); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_GPIOPOLARITY, 0x1e); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_TXCTRL, 0xc1); if (ret) goto err_ret; } else { ret = cc2520_write_register(priv, CC2520_AGCCTRL1, 0x11); if (ret) goto err_ret; } /* Registers default value: section 28.1 in Datasheet */ /* Set the CCA threshold to -50 dBm. This seems to have been copied * from the TinyOS CC2520 driver and is much higher than the -84 dBm * threshold suggested in the datasheet. */ ret = cc2520_write_register(priv, CC2520_CCACTRL0, 0x1A); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_MDMCTRL0, 0x85); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_MDMCTRL1, 0x14); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_RXCTRL, 0x3f); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_FSCTRL, 0x5a); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_FSCAL1, 0x2b); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_ADCTEST0, 0x10); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_ADCTEST1, 0x0e); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_ADCTEST2, 0x03); if (ret) goto err_ret; /* Configure registers correctly for this driver. */ ret = cc2520_write_register(priv, CC2520_FRMCTRL1, FRMCTRL1_SET_RXENMASK_ON_TX | FRMCTRL1_IGNORE_TX_UNDERF); if (ret) goto err_ret; ret = cc2520_write_register(priv, CC2520_FIFOPCTRL, 127); if (ret) goto err_ret; return 0; err_ret: return ret; } static int cc2520_probe(struct spi_device *spi) { struct cc2520_private *priv; struct cc2520_platform_data pdata; int ret; priv = devm_kzalloc(&spi->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; spi_set_drvdata(spi, priv); ret = cc2520_get_platform_data(spi, &pdata); if (ret < 0) { dev_err(&spi->dev, "no platform data\n"); return -EINVAL; } priv->spi = spi; priv->buf = devm_kzalloc(&spi->dev, SPI_COMMAND_BUFFER, GFP_KERNEL); if (!priv->buf) return -ENOMEM; mutex_init(&priv->buffer_mutex); INIT_WORK(&priv->fifop_irqwork, cc2520_fifop_irqwork); spin_lock_init(&priv->lock); init_completion(&priv->tx_complete); /* Assumption that CC2591 is not connected */ priv->amplified = false; /* Request all the gpio's */ if (!gpio_is_valid(pdata.fifo)) { dev_err(&spi->dev, "fifo gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.fifo, GPIOF_IN, "fifo"); if (ret) goto err_hw_init; if (!gpio_is_valid(pdata.cca)) { dev_err(&spi->dev, "cca gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.cca, GPIOF_IN, "cca"); if (ret) goto err_hw_init; if (!gpio_is_valid(pdata.fifop)) { dev_err(&spi->dev, "fifop gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.fifop, GPIOF_IN, "fifop"); if (ret) goto err_hw_init; if (!gpio_is_valid(pdata.sfd)) { dev_err(&spi->dev, "sfd gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.sfd, GPIOF_IN, "sfd"); if (ret) goto err_hw_init; if (!gpio_is_valid(pdata.reset)) { dev_err(&spi->dev, "reset gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.reset, GPIOF_OUT_INIT_LOW, "reset"); if (ret) goto err_hw_init; if (!gpio_is_valid(pdata.vreg)) { dev_err(&spi->dev, "vreg gpio is not valid\n"); ret = -EINVAL; goto err_hw_init; } ret = devm_gpio_request_one(&spi->dev, pdata.vreg, GPIOF_OUT_INIT_LOW, "vreg"); if (ret) goto err_hw_init; gpio_set_value(pdata.vreg, HIGH); usleep_range(100, 150); gpio_set_value(pdata.reset, HIGH); usleep_range(200, 250); ret = cc2520_hw_init(priv); if (ret) goto err_hw_init; /* Set up fifop interrupt */ ret = devm_request_irq(&spi->dev, gpio_to_irq(pdata.fifop), cc2520_fifop_isr, IRQF_TRIGGER_RISING, dev_name(&spi->dev), priv); if (ret) { dev_err(&spi->dev, "could not get fifop irq\n"); goto err_hw_init; } /* Set up sfd interrupt */ ret = devm_request_irq(&spi->dev, gpio_to_irq(pdata.sfd), cc2520_sfd_isr, IRQF_TRIGGER_FALLING, dev_name(&spi->dev), priv); if (ret) { dev_err(&spi->dev, "could not get sfd irq\n"); goto err_hw_init; } ret = cc2520_register(priv); if (ret) goto err_hw_init; return 0; err_hw_init: mutex_destroy(&priv->buffer_mutex); flush_work(&priv->fifop_irqwork); return ret; } static int cc2520_remove(struct spi_device *spi) { struct cc2520_private *priv = spi_get_drvdata(spi); mutex_destroy(&priv->buffer_mutex); flush_work(&priv->fifop_irqwork); ieee802154_unregister_hw(priv->hw); ieee802154_free_hw(priv->hw); return 0; } static const struct spi_device_id cc2520_ids[] = { {"cc2520", }, {}, }; MODULE_DEVICE_TABLE(spi, cc2520_ids); static const struct of_device_id cc2520_of_ids[] = { {.compatible = "ti,cc2520", }, {}, }; MODULE_DEVICE_TABLE(of, cc2520_of_ids); /* SPI driver structure */ static struct spi_driver cc2520_driver = { .driver = { .name = "cc2520", .of_match_table = of_match_ptr(cc2520_of_ids), }, .id_table = cc2520_ids, .probe = cc2520_probe, .remove = cc2520_remove, }; module_spi_driver(cc2520_driver); MODULE_AUTHOR("Varka Bhadram "); MODULE_DESCRIPTION("CC2520 Transceiver Driver"); MODULE_LICENSE("GPL v2");