/* Copyright (c) 2014 Mahesh Bandewar * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * */ #include "ipvlan.h" void ipvlan_adjust_mtu(struct ipvl_dev *ipvlan, struct net_device *dev) { ipvlan->dev->mtu = dev->mtu - ipvlan->mtu_adj; } void ipvlan_set_port_mode(struct ipvl_port *port, u32 nval) { struct ipvl_dev *ipvlan; if (port->mode != nval) { list_for_each_entry(ipvlan, &port->ipvlans, pnode) { if (nval == IPVLAN_MODE_L3) ipvlan->dev->flags |= IFF_NOARP; else ipvlan->dev->flags &= ~IFF_NOARP; } port->mode = nval; } } static int ipvlan_port_create(struct net_device *dev) { struct ipvl_port *port; int err, idx; if (dev->type != ARPHRD_ETHER || dev->flags & IFF_LOOPBACK) { netdev_err(dev, "Master is either lo or non-ether device\n"); return -EINVAL; } if (netif_is_macvlan_port(dev)) { netdev_err(dev, "Master is a macvlan port.\n"); return -EBUSY; } port = kzalloc(sizeof(struct ipvl_port), GFP_KERNEL); if (!port) return -ENOMEM; port->dev = dev; port->mode = IPVLAN_MODE_L3; INIT_LIST_HEAD(&port->ipvlans); for (idx = 0; idx < IPVLAN_HASH_SIZE; idx++) INIT_HLIST_HEAD(&port->hlhead[idx]); skb_queue_head_init(&port->backlog); INIT_WORK(&port->wq, ipvlan_process_multicast); err = netdev_rx_handler_register(dev, ipvlan_handle_frame, port); if (err) goto err; dev->priv_flags |= IFF_IPVLAN_MASTER; return 0; err: kfree_rcu(port, rcu); return err; } static void ipvlan_port_destroy(struct net_device *dev) { struct ipvl_port *port = ipvlan_port_get_rtnl(dev); dev->priv_flags &= ~IFF_IPVLAN_MASTER; netdev_rx_handler_unregister(dev); cancel_work_sync(&port->wq); __skb_queue_purge(&port->backlog); kfree_rcu(port, rcu); } /* ipvlan network devices have devices nesting below it and are a special * "super class" of normal network devices; split their locks off into a * separate class since they always nest. */ static struct lock_class_key ipvlan_netdev_xmit_lock_key; static struct lock_class_key ipvlan_netdev_addr_lock_key; #define IPVLAN_FEATURES \ (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | \ NETIF_F_GSO | NETIF_F_TSO | NETIF_F_UFO | NETIF_F_GSO_ROBUST | \ NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GRO | NETIF_F_RXCSUM | \ NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER) #define IPVLAN_STATE_MASK \ ((1<<__LINK_STATE_NOCARRIER) | (1<<__LINK_STATE_DORMANT)) static void ipvlan_set_lockdep_class_one(struct net_device *dev, struct netdev_queue *txq, void *_unused) { lockdep_set_class(&txq->_xmit_lock, &ipvlan_netdev_xmit_lock_key); } static void ipvlan_set_lockdep_class(struct net_device *dev) { lockdep_set_class(&dev->addr_list_lock, &ipvlan_netdev_addr_lock_key); netdev_for_each_tx_queue(dev, ipvlan_set_lockdep_class_one, NULL); } static int ipvlan_init(struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); const struct net_device *phy_dev = ipvlan->phy_dev; dev->state = (dev->state & ~IPVLAN_STATE_MASK) | (phy_dev->state & IPVLAN_STATE_MASK); dev->features = phy_dev->features & IPVLAN_FEATURES; dev->features |= NETIF_F_LLTX; dev->gso_max_size = phy_dev->gso_max_size; dev->hard_header_len = phy_dev->hard_header_len; ipvlan_set_lockdep_class(dev); ipvlan->pcpu_stats = alloc_percpu(struct ipvl_pcpu_stats); if (!ipvlan->pcpu_stats) return -ENOMEM; return 0; } static void ipvlan_uninit(struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_port *port = ipvlan->port; free_percpu(ipvlan->pcpu_stats); port->count -= 1; if (!port->count) ipvlan_port_destroy(port->dev); } static int ipvlan_open(struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; struct ipvl_addr *addr; if (ipvlan->port->mode == IPVLAN_MODE_L3) dev->flags |= IFF_NOARP; else dev->flags &= ~IFF_NOARP; list_for_each_entry(addr, &ipvlan->addrs, anode) ipvlan_ht_addr_add(ipvlan, addr); return dev_uc_add(phy_dev, phy_dev->dev_addr); } static int ipvlan_stop(struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; struct ipvl_addr *addr; dev_uc_unsync(phy_dev, dev); dev_mc_unsync(phy_dev, dev); dev_uc_del(phy_dev, phy_dev->dev_addr); list_for_each_entry(addr, &ipvlan->addrs, anode) ipvlan_ht_addr_del(addr); return 0; } static netdev_tx_t ipvlan_start_xmit(struct sk_buff *skb, struct net_device *dev) { const struct ipvl_dev *ipvlan = netdev_priv(dev); int skblen = skb->len; int ret; ret = ipvlan_queue_xmit(skb, dev); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { struct ipvl_pcpu_stats *pcptr; pcptr = this_cpu_ptr(ipvlan->pcpu_stats); u64_stats_update_begin(&pcptr->syncp); pcptr->tx_pkts++; pcptr->tx_bytes += skblen; u64_stats_update_end(&pcptr->syncp); } else { this_cpu_inc(ipvlan->pcpu_stats->tx_drps); } return ret; } static netdev_features_t ipvlan_fix_features(struct net_device *dev, netdev_features_t features) { struct ipvl_dev *ipvlan = netdev_priv(dev); return features & (ipvlan->sfeatures | ~IPVLAN_FEATURES); } static void ipvlan_change_rx_flags(struct net_device *dev, int change) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; if (change & IFF_ALLMULTI) dev_set_allmulti(phy_dev, dev->flags & IFF_ALLMULTI? 1 : -1); } static void ipvlan_set_multicast_mac_filter(struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { bitmap_fill(ipvlan->mac_filters, IPVLAN_MAC_FILTER_SIZE); } else { struct netdev_hw_addr *ha; DECLARE_BITMAP(mc_filters, IPVLAN_MAC_FILTER_SIZE); bitmap_zero(mc_filters, IPVLAN_MAC_FILTER_SIZE); netdev_for_each_mc_addr(ha, dev) __set_bit(ipvlan_mac_hash(ha->addr), mc_filters); /* Turn-on broadcast bit irrespective of address family, * since broadcast is deferred to a work-queue, hence no * impact on fast-path processing. */ __set_bit(ipvlan_mac_hash(dev->broadcast), mc_filters); bitmap_copy(ipvlan->mac_filters, mc_filters, IPVLAN_MAC_FILTER_SIZE); } dev_uc_sync(ipvlan->phy_dev, dev); dev_mc_sync(ipvlan->phy_dev, dev); } static struct rtnl_link_stats64 *ipvlan_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *s) { struct ipvl_dev *ipvlan = netdev_priv(dev); if (ipvlan->pcpu_stats) { struct ipvl_pcpu_stats *pcptr; u64 rx_pkts, rx_bytes, rx_mcast, tx_pkts, tx_bytes; u32 rx_errs = 0, tx_drps = 0; u32 strt; int idx; for_each_possible_cpu(idx) { pcptr = per_cpu_ptr(ipvlan->pcpu_stats, idx); do { strt= u64_stats_fetch_begin_irq(&pcptr->syncp); rx_pkts = pcptr->rx_pkts; rx_bytes = pcptr->rx_bytes; rx_mcast = pcptr->rx_mcast; tx_pkts = pcptr->tx_pkts; tx_bytes = pcptr->tx_bytes; } while (u64_stats_fetch_retry_irq(&pcptr->syncp, strt)); s->rx_packets += rx_pkts; s->rx_bytes += rx_bytes; s->multicast += rx_mcast; s->tx_packets += tx_pkts; s->tx_bytes += tx_bytes; /* u32 values are updated without syncp protection. */ rx_errs += pcptr->rx_errs; tx_drps += pcptr->tx_drps; } s->rx_errors = rx_errs; s->rx_dropped = rx_errs; s->tx_dropped = tx_drps; } return s; } static int ipvlan_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; return vlan_vid_add(phy_dev, proto, vid); } static int ipvlan_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; vlan_vid_del(phy_dev, proto, vid); return 0; } static int ipvlan_get_iflink(const struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); return ipvlan->phy_dev->ifindex; } static const struct net_device_ops ipvlan_netdev_ops = { .ndo_init = ipvlan_init, .ndo_uninit = ipvlan_uninit, .ndo_open = ipvlan_open, .ndo_stop = ipvlan_stop, .ndo_start_xmit = ipvlan_start_xmit, .ndo_fix_features = ipvlan_fix_features, .ndo_change_rx_flags = ipvlan_change_rx_flags, .ndo_set_rx_mode = ipvlan_set_multicast_mac_filter, .ndo_get_stats64 = ipvlan_get_stats64, .ndo_vlan_rx_add_vid = ipvlan_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = ipvlan_vlan_rx_kill_vid, .ndo_get_iflink = ipvlan_get_iflink, }; static int ipvlan_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { const struct ipvl_dev *ipvlan = netdev_priv(dev); struct net_device *phy_dev = ipvlan->phy_dev; /* TODO Probably use a different field than dev_addr so that the * mac-address on the virtual device is portable and can be carried * while the packets use the mac-addr on the physical device. */ return dev_hard_header(skb, phy_dev, type, daddr, saddr ? : dev->dev_addr, len); } static const struct header_ops ipvlan_header_ops = { .create = ipvlan_hard_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, }; static int ipvlan_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { const struct ipvl_dev *ipvlan = netdev_priv(dev); return __ethtool_get_settings(ipvlan->phy_dev, cmd); } static void ipvlan_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strlcpy(drvinfo->driver, IPVLAN_DRV, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, IPV_DRV_VER, sizeof(drvinfo->version)); } static u32 ipvlan_ethtool_get_msglevel(struct net_device *dev) { const struct ipvl_dev *ipvlan = netdev_priv(dev); return ipvlan->msg_enable; } static void ipvlan_ethtool_set_msglevel(struct net_device *dev, u32 value) { struct ipvl_dev *ipvlan = netdev_priv(dev); ipvlan->msg_enable = value; } static const struct ethtool_ops ipvlan_ethtool_ops = { .get_link = ethtool_op_get_link, .get_settings = ipvlan_ethtool_get_settings, .get_drvinfo = ipvlan_ethtool_get_drvinfo, .get_msglevel = ipvlan_ethtool_get_msglevel, .set_msglevel = ipvlan_ethtool_set_msglevel, }; static int ipvlan_nl_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_port *port = ipvlan_port_get_rtnl(ipvlan->phy_dev); if (data && data[IFLA_IPVLAN_MODE]) { u16 nmode = nla_get_u16(data[IFLA_IPVLAN_MODE]); ipvlan_set_port_mode(port, nmode); } return 0; } static size_t ipvlan_nl_getsize(const struct net_device *dev) { return (0 + nla_total_size(2) /* IFLA_IPVLAN_MODE */ ); } static int ipvlan_nl_validate(struct nlattr *tb[], struct nlattr *data[]) { if (data && data[IFLA_IPVLAN_MODE]) { u16 mode = nla_get_u16(data[IFLA_IPVLAN_MODE]); if (mode < IPVLAN_MODE_L2 || mode >= IPVLAN_MODE_MAX) return -EINVAL; } return 0; } static int ipvlan_nl_fillinfo(struct sk_buff *skb, const struct net_device *dev) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_port *port = ipvlan_port_get_rtnl(ipvlan->phy_dev); int ret = -EINVAL; if (!port) goto err; ret = -EMSGSIZE; if (nla_put_u16(skb, IFLA_IPVLAN_MODE, port->mode)) goto err; return 0; err: return ret; } static int ipvlan_link_new(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[]) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_port *port; struct net_device *phy_dev; int err; if (!tb[IFLA_LINK]) return -EINVAL; phy_dev = __dev_get_by_index(src_net, nla_get_u32(tb[IFLA_LINK])); if (!phy_dev) return -ENODEV; if (netif_is_ipvlan(phy_dev)) { struct ipvl_dev *tmp = netdev_priv(phy_dev); phy_dev = tmp->phy_dev; } else if (!netif_is_ipvlan_port(phy_dev)) { err = ipvlan_port_create(phy_dev); if (err < 0) return err; } port = ipvlan_port_get_rtnl(phy_dev); if (data && data[IFLA_IPVLAN_MODE]) port->mode = nla_get_u16(data[IFLA_IPVLAN_MODE]); ipvlan->phy_dev = phy_dev; ipvlan->dev = dev; ipvlan->port = port; ipvlan->sfeatures = IPVLAN_FEATURES; INIT_LIST_HEAD(&ipvlan->addrs); /* TODO Probably put random address here to be presented to the * world but keep using the physical-dev address for the outgoing * packets. */ memcpy(dev->dev_addr, phy_dev->dev_addr, ETH_ALEN); dev->priv_flags |= IFF_IPVLAN_SLAVE; port->count += 1; err = register_netdevice(dev); if (err < 0) goto ipvlan_destroy_port; err = netdev_upper_dev_link(phy_dev, dev); if (err) goto ipvlan_destroy_port; list_add_tail_rcu(&ipvlan->pnode, &port->ipvlans); netif_stacked_transfer_operstate(phy_dev, dev); return 0; ipvlan_destroy_port: port->count -= 1; if (!port->count) ipvlan_port_destroy(phy_dev); return err; } static void ipvlan_link_delete(struct net_device *dev, struct list_head *head) { struct ipvl_dev *ipvlan = netdev_priv(dev); struct ipvl_addr *addr, *next; list_for_each_entry_safe(addr, next, &ipvlan->addrs, anode) { ipvlan_ht_addr_del(addr); list_del(&addr->anode); kfree_rcu(addr, rcu); } list_del_rcu(&ipvlan->pnode); unregister_netdevice_queue(dev, head); netdev_upper_dev_unlink(ipvlan->phy_dev, dev); } static void ipvlan_link_setup(struct net_device *dev) { ether_setup(dev); dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_TX_SKB_SHARING); dev->priv_flags |= IFF_UNICAST_FLT | IFF_NO_QUEUE; dev->netdev_ops = &ipvlan_netdev_ops; dev->destructor = free_netdev; dev->header_ops = &ipvlan_header_ops; dev->ethtool_ops = &ipvlan_ethtool_ops; } static const struct nla_policy ipvlan_nl_policy[IFLA_IPVLAN_MAX + 1] = { [IFLA_IPVLAN_MODE] = { .type = NLA_U16 }, }; static struct rtnl_link_ops ipvlan_link_ops = { .kind = "ipvlan", .priv_size = sizeof(struct ipvl_dev), .get_size = ipvlan_nl_getsize, .policy = ipvlan_nl_policy, .validate = ipvlan_nl_validate, .fill_info = ipvlan_nl_fillinfo, .changelink = ipvlan_nl_changelink, .maxtype = IFLA_IPVLAN_MAX, .setup = ipvlan_link_setup, .newlink = ipvlan_link_new, .dellink = ipvlan_link_delete, }; static int ipvlan_link_register(struct rtnl_link_ops *ops) { return rtnl_link_register(ops); } static int ipvlan_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct ipvl_dev *ipvlan, *next; struct ipvl_port *port; LIST_HEAD(lst_kill); if (!netif_is_ipvlan_port(dev)) return NOTIFY_DONE; port = ipvlan_port_get_rtnl(dev); switch (event) { case NETDEV_CHANGE: list_for_each_entry(ipvlan, &port->ipvlans, pnode) netif_stacked_transfer_operstate(ipvlan->phy_dev, ipvlan->dev); break; case NETDEV_UNREGISTER: if (dev->reg_state != NETREG_UNREGISTERING) break; list_for_each_entry_safe(ipvlan, next, &port->ipvlans, pnode) ipvlan->dev->rtnl_link_ops->dellink(ipvlan->dev, &lst_kill); unregister_netdevice_many(&lst_kill); break; case NETDEV_FEAT_CHANGE: list_for_each_entry(ipvlan, &port->ipvlans, pnode) { ipvlan->dev->features = dev->features & IPVLAN_FEATURES; ipvlan->dev->gso_max_size = dev->gso_max_size; netdev_features_change(ipvlan->dev); } break; case NETDEV_CHANGEMTU: list_for_each_entry(ipvlan, &port->ipvlans, pnode) ipvlan_adjust_mtu(ipvlan, dev); break; case NETDEV_PRE_TYPE_CHANGE: /* Forbid underlying device to change its type. */ return NOTIFY_BAD; } return NOTIFY_DONE; } static int ipvlan_add_addr6(struct ipvl_dev *ipvlan, struct in6_addr *ip6_addr) { struct ipvl_addr *addr; if (ipvlan_addr_busy(ipvlan->port, ip6_addr, true)) { netif_err(ipvlan, ifup, ipvlan->dev, "Failed to add IPv6=%pI6c addr for %s intf\n", ip6_addr, ipvlan->dev->name); return -EINVAL; } addr = kzalloc(sizeof(struct ipvl_addr), GFP_ATOMIC); if (!addr) return -ENOMEM; addr->master = ipvlan; memcpy(&addr->ip6addr, ip6_addr, sizeof(struct in6_addr)); addr->atype = IPVL_IPV6; list_add_tail(&addr->anode, &ipvlan->addrs); /* If the interface is not up, the address will be added to the hash * list by ipvlan_open. */ if (netif_running(ipvlan->dev)) ipvlan_ht_addr_add(ipvlan, addr); return 0; } static void ipvlan_del_addr6(struct ipvl_dev *ipvlan, struct in6_addr *ip6_addr) { struct ipvl_addr *addr; addr = ipvlan_find_addr(ipvlan, ip6_addr, true); if (!addr) return; ipvlan_ht_addr_del(addr); list_del(&addr->anode); kfree_rcu(addr, rcu); return; } static int ipvlan_addr6_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct inet6_ifaddr *if6 = (struct inet6_ifaddr *)ptr; struct net_device *dev = (struct net_device *)if6->idev->dev; struct ipvl_dev *ipvlan = netdev_priv(dev); /* FIXME IPv6 autoconf calls us from bh without RTNL */ if (in_softirq()) return NOTIFY_DONE; if (!netif_is_ipvlan(dev)) return NOTIFY_DONE; if (!ipvlan || !ipvlan->port) return NOTIFY_DONE; switch (event) { case NETDEV_UP: if (ipvlan_add_addr6(ipvlan, &if6->addr)) return NOTIFY_BAD; break; case NETDEV_DOWN: ipvlan_del_addr6(ipvlan, &if6->addr); break; } return NOTIFY_OK; } static int ipvlan_add_addr4(struct ipvl_dev *ipvlan, struct in_addr *ip4_addr) { struct ipvl_addr *addr; if (ipvlan_addr_busy(ipvlan->port, ip4_addr, false)) { netif_err(ipvlan, ifup, ipvlan->dev, "Failed to add IPv4=%pI4 on %s intf.\n", ip4_addr, ipvlan->dev->name); return -EINVAL; } addr = kzalloc(sizeof(struct ipvl_addr), GFP_KERNEL); if (!addr) return -ENOMEM; addr->master = ipvlan; memcpy(&addr->ip4addr, ip4_addr, sizeof(struct in_addr)); addr->atype = IPVL_IPV4; list_add_tail(&addr->anode, &ipvlan->addrs); /* If the interface is not up, the address will be added to the hash * list by ipvlan_open. */ if (netif_running(ipvlan->dev)) ipvlan_ht_addr_add(ipvlan, addr); return 0; } static void ipvlan_del_addr4(struct ipvl_dev *ipvlan, struct in_addr *ip4_addr) { struct ipvl_addr *addr; addr = ipvlan_find_addr(ipvlan, ip4_addr, false); if (!addr) return; ipvlan_ht_addr_del(addr); list_del(&addr->anode); kfree_rcu(addr, rcu); return; } static int ipvlan_addr4_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct in_ifaddr *if4 = (struct in_ifaddr *)ptr; struct net_device *dev = (struct net_device *)if4->ifa_dev->dev; struct ipvl_dev *ipvlan = netdev_priv(dev); struct in_addr ip4_addr; if (!netif_is_ipvlan(dev)) return NOTIFY_DONE; if (!ipvlan || !ipvlan->port) return NOTIFY_DONE; switch (event) { case NETDEV_UP: ip4_addr.s_addr = if4->ifa_address; if (ipvlan_add_addr4(ipvlan, &ip4_addr)) return NOTIFY_BAD; break; case NETDEV_DOWN: ip4_addr.s_addr = if4->ifa_address; ipvlan_del_addr4(ipvlan, &ip4_addr); break; } return NOTIFY_OK; } static struct notifier_block ipvlan_addr4_notifier_block __read_mostly = { .notifier_call = ipvlan_addr4_event, }; static struct notifier_block ipvlan_notifier_block __read_mostly = { .notifier_call = ipvlan_device_event, }; static struct notifier_block ipvlan_addr6_notifier_block __read_mostly = { .notifier_call = ipvlan_addr6_event, }; static int __init ipvlan_init_module(void) { int err; ipvlan_init_secret(); register_netdevice_notifier(&ipvlan_notifier_block); register_inet6addr_notifier(&ipvlan_addr6_notifier_block); register_inetaddr_notifier(&ipvlan_addr4_notifier_block); err = ipvlan_link_register(&ipvlan_link_ops); if (err < 0) goto error; return 0; error: unregister_inetaddr_notifier(&ipvlan_addr4_notifier_block); unregister_inet6addr_notifier(&ipvlan_addr6_notifier_block); unregister_netdevice_notifier(&ipvlan_notifier_block); return err; } static void __exit ipvlan_cleanup_module(void) { rtnl_link_unregister(&ipvlan_link_ops); unregister_netdevice_notifier(&ipvlan_notifier_block); unregister_inetaddr_notifier(&ipvlan_addr4_notifier_block); unregister_inet6addr_notifier(&ipvlan_addr6_notifier_block); } module_init(ipvlan_init_module); module_exit(ipvlan_cleanup_module); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mahesh Bandewar "); MODULE_DESCRIPTION("Driver for L3 (IPv6/IPv4) based VLANs"); MODULE_ALIAS_RTNL_LINK("ipvlan");