/* * AMD 10Gb Ethernet PHY driver * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * Copyright (c) 2014 Advanced Micro Devices, Inc. * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * * License 2: Modified BSD * * Copyright (c) 2014 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Tom Lendacky "); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION("1.0.0-a"); MODULE_DESCRIPTION("AMD 10GbE (amd-xgbe) PHY driver"); #define XGBE_PHY_ID 0x000162d0 #define XGBE_PHY_MASK 0xfffffff0 #define XGBE_PHY_SPEEDSET_PROPERTY "amd,speed-set" #define XGBE_PHY_BLWC_PROPERTY "amd,serdes-blwc" #define XGBE_PHY_CDR_RATE_PROPERTY "amd,serdes-cdr-rate" #define XGBE_PHY_PQ_SKEW_PROPERTY "amd,serdes-pq-skew" #define XGBE_PHY_TX_AMP_PROPERTY "amd,serdes-tx-amp" #define XGBE_PHY_SPEEDS 3 #define XGBE_PHY_SPEED_1000 0 #define XGBE_PHY_SPEED_2500 1 #define XGBE_PHY_SPEED_10000 2 #define XGBE_AN_INT_CMPLT 0x01 #define XGBE_AN_INC_LINK 0x02 #define XGBE_AN_PG_RCV 0x04 #define XGBE_AN_INT_MASK 0x07 #define XNP_MCF_NULL_MESSAGE 0x001 #define XNP_ACK_PROCESSED BIT(12) #define XNP_MP_FORMATTED BIT(13) #define XNP_NP_EXCHANGE BIT(15) #define XGBE_PHY_RATECHANGE_COUNT 500 #define XGBE_PHY_KR_TRAINING_START 0x01 #define XGBE_PHY_KR_TRAINING_ENABLE 0x02 #define XGBE_PHY_FEC_ENABLE 0x01 #define XGBE_PHY_FEC_FORWARD 0x02 #define XGBE_PHY_FEC_MASK 0x03 #ifndef MDIO_PMA_10GBR_PMD_CTRL #define MDIO_PMA_10GBR_PMD_CTRL 0x0096 #endif #ifndef MDIO_PMA_10GBR_FEC_ABILITY #define MDIO_PMA_10GBR_FEC_ABILITY 0x00aa #endif #ifndef MDIO_PMA_10GBR_FEC_CTRL #define MDIO_PMA_10GBR_FEC_CTRL 0x00ab #endif #ifndef MDIO_AN_XNP #define MDIO_AN_XNP 0x0016 #endif #ifndef MDIO_AN_LPX #define MDIO_AN_LPX 0x0019 #endif #ifndef MDIO_AN_INTMASK #define MDIO_AN_INTMASK 0x8001 #endif #ifndef MDIO_AN_INT #define MDIO_AN_INT 0x8002 #endif #ifndef MDIO_CTRL1_SPEED1G #define MDIO_CTRL1_SPEED1G (MDIO_CTRL1_SPEED10G & ~BMCR_SPEED100) #endif /* SerDes integration register offsets */ #define SIR0_KR_RT_1 0x002c #define SIR0_STATUS 0x0040 #define SIR1_SPEED 0x0000 /* SerDes integration register entry bit positions and sizes */ #define SIR0_KR_RT_1_RESET_INDEX 11 #define SIR0_KR_RT_1_RESET_WIDTH 1 #define SIR0_STATUS_RX_READY_INDEX 0 #define SIR0_STATUS_RX_READY_WIDTH 1 #define SIR0_STATUS_TX_READY_INDEX 8 #define SIR0_STATUS_TX_READY_WIDTH 1 #define SIR1_SPEED_CDR_RATE_INDEX 12 #define SIR1_SPEED_CDR_RATE_WIDTH 4 #define SIR1_SPEED_DATARATE_INDEX 4 #define SIR1_SPEED_DATARATE_WIDTH 2 #define SIR1_SPEED_PLLSEL_INDEX 3 #define SIR1_SPEED_PLLSEL_WIDTH 1 #define SIR1_SPEED_RATECHANGE_INDEX 6 #define SIR1_SPEED_RATECHANGE_WIDTH 1 #define SIR1_SPEED_TXAMP_INDEX 8 #define SIR1_SPEED_TXAMP_WIDTH 4 #define SIR1_SPEED_WORDMODE_INDEX 0 #define SIR1_SPEED_WORDMODE_WIDTH 3 #define SPEED_10000_BLWC 0 #define SPEED_10000_CDR 0x7 #define SPEED_10000_PLL 0x1 #define SPEED_10000_PQ 0x1e #define SPEED_10000_RATE 0x0 #define SPEED_10000_TXAMP 0xa #define SPEED_10000_WORD 0x7 #define SPEED_2500_BLWC 1 #define SPEED_2500_CDR 0x2 #define SPEED_2500_PLL 0x0 #define SPEED_2500_PQ 0xa #define SPEED_2500_RATE 0x1 #define SPEED_2500_TXAMP 0xf #define SPEED_2500_WORD 0x1 #define SPEED_1000_BLWC 1 #define SPEED_1000_CDR 0x2 #define SPEED_1000_PLL 0x0 #define SPEED_1000_PQ 0xa #define SPEED_1000_RATE 0x3 #define SPEED_1000_TXAMP 0xf #define SPEED_1000_WORD 0x1 /* SerDes RxTx register offsets */ #define RXTX_REG20 0x0050 #define RXTX_REG114 0x01c8 /* SerDes RxTx register entry bit positions and sizes */ #define RXTX_REG20_BLWC_ENA_INDEX 2 #define RXTX_REG20_BLWC_ENA_WIDTH 1 #define RXTX_REG114_PQ_REG_INDEX 9 #define RXTX_REG114_PQ_REG_WIDTH 7 /* Bit setting and getting macros * The get macro will extract the current bit field value from within * the variable * * The set macro will clear the current bit field value within the * variable and then set the bit field of the variable to the * specified value */ #define GET_BITS(_var, _index, _width) \ (((_var) >> (_index)) & ((0x1 << (_width)) - 1)) #define SET_BITS(_var, _index, _width, _val) \ do { \ (_var) &= ~(((0x1 << (_width)) - 1) << (_index)); \ (_var) |= (((_val) & ((0x1 << (_width)) - 1)) << (_index)); \ } while (0) #define XSIR_GET_BITS(_var, _prefix, _field) \ GET_BITS((_var), \ _prefix##_##_field##_INDEX, \ _prefix##_##_field##_WIDTH) #define XSIR_SET_BITS(_var, _prefix, _field, _val) \ SET_BITS((_var), \ _prefix##_##_field##_INDEX, \ _prefix##_##_field##_WIDTH, (_val)) /* Macros for reading or writing SerDes integration registers * The ioread macros will get bit fields or full values using the * register definitions formed using the input names * * The iowrite macros will set bit fields or full values using the * register definitions formed using the input names */ #define XSIR0_IOREAD(_priv, _reg) \ ioread16((_priv)->sir0_regs + _reg) #define XSIR0_IOREAD_BITS(_priv, _reg, _field) \ GET_BITS(XSIR0_IOREAD((_priv), _reg), \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH) #define XSIR0_IOWRITE(_priv, _reg, _val) \ iowrite16((_val), (_priv)->sir0_regs + _reg) #define XSIR0_IOWRITE_BITS(_priv, _reg, _field, _val) \ do { \ u16 reg_val = XSIR0_IOREAD((_priv), _reg); \ SET_BITS(reg_val, \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH, (_val)); \ XSIR0_IOWRITE((_priv), _reg, reg_val); \ } while (0) #define XSIR1_IOREAD(_priv, _reg) \ ioread16((_priv)->sir1_regs + _reg) #define XSIR1_IOREAD_BITS(_priv, _reg, _field) \ GET_BITS(XSIR1_IOREAD((_priv), _reg), \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH) #define XSIR1_IOWRITE(_priv, _reg, _val) \ iowrite16((_val), (_priv)->sir1_regs + _reg) #define XSIR1_IOWRITE_BITS(_priv, _reg, _field, _val) \ do { \ u16 reg_val = XSIR1_IOREAD((_priv), _reg); \ SET_BITS(reg_val, \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH, (_val)); \ XSIR1_IOWRITE((_priv), _reg, reg_val); \ } while (0) /* Macros for reading or writing SerDes RxTx registers * The ioread macros will get bit fields or full values using the * register definitions formed using the input names * * The iowrite macros will set bit fields or full values using the * register definitions formed using the input names */ #define XRXTX_IOREAD(_priv, _reg) \ ioread16((_priv)->rxtx_regs + _reg) #define XRXTX_IOREAD_BITS(_priv, _reg, _field) \ GET_BITS(XRXTX_IOREAD((_priv), _reg), \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH) #define XRXTX_IOWRITE(_priv, _reg, _val) \ iowrite16((_val), (_priv)->rxtx_regs + _reg) #define XRXTX_IOWRITE_BITS(_priv, _reg, _field, _val) \ do { \ u16 reg_val = XRXTX_IOREAD((_priv), _reg); \ SET_BITS(reg_val, \ _reg##_##_field##_INDEX, \ _reg##_##_field##_WIDTH, (_val)); \ XRXTX_IOWRITE((_priv), _reg, reg_val); \ } while (0) static const u32 amd_xgbe_phy_serdes_blwc[] = { SPEED_1000_BLWC, SPEED_2500_BLWC, SPEED_10000_BLWC, }; static const u32 amd_xgbe_phy_serdes_cdr_rate[] = { SPEED_1000_CDR, SPEED_2500_CDR, SPEED_10000_CDR, }; static const u32 amd_xgbe_phy_serdes_pq_skew[] = { SPEED_1000_PQ, SPEED_2500_PQ, SPEED_10000_PQ, }; static const u32 amd_xgbe_phy_serdes_tx_amp[] = { SPEED_1000_TXAMP, SPEED_2500_TXAMP, SPEED_10000_TXAMP, }; enum amd_xgbe_phy_an { AMD_XGBE_AN_READY = 0, AMD_XGBE_AN_PAGE_RECEIVED, AMD_XGBE_AN_INCOMPAT_LINK, AMD_XGBE_AN_COMPLETE, AMD_XGBE_AN_NO_LINK, AMD_XGBE_AN_ERROR, }; enum amd_xgbe_phy_rx { AMD_XGBE_RX_BPA = 0, AMD_XGBE_RX_XNP, AMD_XGBE_RX_COMPLETE, AMD_XGBE_RX_ERROR, }; enum amd_xgbe_phy_mode { AMD_XGBE_MODE_KR, AMD_XGBE_MODE_KX, }; enum amd_xgbe_phy_speedset { AMD_XGBE_PHY_SPEEDSET_1000_10000 = 0, AMD_XGBE_PHY_SPEEDSET_2500_10000, }; struct amd_xgbe_phy_priv { struct platform_device *pdev; struct acpi_device *adev; struct device *dev; struct phy_device *phydev; /* SerDes related mmio resources */ struct resource *rxtx_res; struct resource *sir0_res; struct resource *sir1_res; /* SerDes related mmio registers */ void __iomem *rxtx_regs; /* SerDes Rx/Tx CSRs */ void __iomem *sir0_regs; /* SerDes integration registers (1/2) */ void __iomem *sir1_regs; /* SerDes integration registers (2/2) */ int an_irq; char an_irq_name[IFNAMSIZ + 32]; struct work_struct an_irq_work; unsigned int an_irq_allocated; unsigned int speed_set; /* SerDes UEFI configurable settings. * Switching between modes/speeds requires new values for some * SerDes settings. The values can be supplied as device * properties in array format. The first array entry is for * 1GbE, second for 2.5GbE and third for 10GbE */ u32 serdes_blwc[XGBE_PHY_SPEEDS]; u32 serdes_cdr_rate[XGBE_PHY_SPEEDS]; u32 serdes_pq_skew[XGBE_PHY_SPEEDS]; u32 serdes_tx_amp[XGBE_PHY_SPEEDS]; /* Auto-negotiation state machine support */ struct mutex an_mutex; enum amd_xgbe_phy_an an_result; enum amd_xgbe_phy_an an_state; enum amd_xgbe_phy_rx kr_state; enum amd_xgbe_phy_rx kx_state; struct work_struct an_work; struct workqueue_struct *an_workqueue; unsigned int an_supported; unsigned int parallel_detect; unsigned int fec_ability; unsigned int lpm_ctrl; /* CTRL1 for resume */ }; static int amd_xgbe_an_enable_kr_training(struct phy_device *phydev) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL); if (ret < 0) return ret; ret |= XGBE_PHY_KR_TRAINING_ENABLE; phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret); return 0; } static int amd_xgbe_an_disable_kr_training(struct phy_device *phydev) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL); if (ret < 0) return ret; ret &= ~XGBE_PHY_KR_TRAINING_ENABLE; phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret); return 0; } static int amd_xgbe_phy_pcs_power_cycle(struct phy_device *phydev) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; ret |= MDIO_CTRL1_LPOWER; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); usleep_range(75, 100); ret &= ~MDIO_CTRL1_LPOWER; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); return 0; } static void amd_xgbe_phy_serdes_start_ratechange(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; /* Assert Rx and Tx ratechange */ XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, RATECHANGE, 1); } static void amd_xgbe_phy_serdes_complete_ratechange(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; unsigned int wait; u16 status; /* Release Rx and Tx ratechange */ XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, RATECHANGE, 0); /* Wait for Rx and Tx ready */ wait = XGBE_PHY_RATECHANGE_COUNT; while (wait--) { usleep_range(50, 75); status = XSIR0_IOREAD(priv, SIR0_STATUS); if (XSIR_GET_BITS(status, SIR0_STATUS, RX_READY) && XSIR_GET_BITS(status, SIR0_STATUS, TX_READY)) return; } netdev_dbg(phydev->attached_dev, "SerDes rx/tx not ready (%#hx)\n", status); } static int amd_xgbe_phy_xgmii_mode(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* Enable KR training */ ret = amd_xgbe_an_enable_kr_training(phydev); if (ret < 0) return ret; /* Set PCS to KR/10G speed */ ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2); if (ret < 0) return ret; ret &= ~MDIO_PCS_CTRL2_TYPE; ret |= MDIO_PCS_CTRL2_10GBR; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret); ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; ret &= ~MDIO_CTRL1_SPEEDSEL; ret |= MDIO_CTRL1_SPEED10G; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); ret = amd_xgbe_phy_pcs_power_cycle(phydev); if (ret < 0) return ret; /* Set SerDes to 10G speed */ amd_xgbe_phy_serdes_start_ratechange(phydev); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_10000_RATE); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_10000_WORD); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_10000_PLL); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, CDR_RATE, priv->serdes_cdr_rate[XGBE_PHY_SPEED_10000]); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, priv->serdes_tx_amp[XGBE_PHY_SPEED_10000]); XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, priv->serdes_blwc[XGBE_PHY_SPEED_10000]); XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, priv->serdes_pq_skew[XGBE_PHY_SPEED_10000]); amd_xgbe_phy_serdes_complete_ratechange(phydev); return 0; } static int amd_xgbe_phy_gmii_2500_mode(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* Disable KR training */ ret = amd_xgbe_an_disable_kr_training(phydev); if (ret < 0) return ret; /* Set PCS to KX/1G speed */ ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2); if (ret < 0) return ret; ret &= ~MDIO_PCS_CTRL2_TYPE; ret |= MDIO_PCS_CTRL2_10GBX; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret); ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; ret &= ~MDIO_CTRL1_SPEEDSEL; ret |= MDIO_CTRL1_SPEED1G; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); ret = amd_xgbe_phy_pcs_power_cycle(phydev); if (ret < 0) return ret; /* Set SerDes to 2.5G speed */ amd_xgbe_phy_serdes_start_ratechange(phydev); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_2500_RATE); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_2500_WORD); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_2500_PLL); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, CDR_RATE, priv->serdes_cdr_rate[XGBE_PHY_SPEED_2500]); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, priv->serdes_tx_amp[XGBE_PHY_SPEED_2500]); XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, priv->serdes_blwc[XGBE_PHY_SPEED_2500]); XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, priv->serdes_pq_skew[XGBE_PHY_SPEED_2500]); amd_xgbe_phy_serdes_complete_ratechange(phydev); return 0; } static int amd_xgbe_phy_gmii_mode(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* Disable KR training */ ret = amd_xgbe_an_disable_kr_training(phydev); if (ret < 0) return ret; /* Set PCS to KX/1G speed */ ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2); if (ret < 0) return ret; ret &= ~MDIO_PCS_CTRL2_TYPE; ret |= MDIO_PCS_CTRL2_10GBX; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2, ret); ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; ret &= ~MDIO_CTRL1_SPEEDSEL; ret |= MDIO_CTRL1_SPEED1G; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); ret = amd_xgbe_phy_pcs_power_cycle(phydev); if (ret < 0) return ret; /* Set SerDes to 1G speed */ amd_xgbe_phy_serdes_start_ratechange(phydev); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, DATARATE, SPEED_1000_RATE); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, WORDMODE, SPEED_1000_WORD); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, PLLSEL, SPEED_1000_PLL); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, CDR_RATE, priv->serdes_cdr_rate[XGBE_PHY_SPEED_1000]); XSIR1_IOWRITE_BITS(priv, SIR1_SPEED, TXAMP, priv->serdes_tx_amp[XGBE_PHY_SPEED_1000]); XRXTX_IOWRITE_BITS(priv, RXTX_REG20, BLWC_ENA, priv->serdes_blwc[XGBE_PHY_SPEED_1000]); XRXTX_IOWRITE_BITS(priv, RXTX_REG114, PQ_REG, priv->serdes_pq_skew[XGBE_PHY_SPEED_1000]); amd_xgbe_phy_serdes_complete_ratechange(phydev); return 0; } static int amd_xgbe_phy_cur_mode(struct phy_device *phydev, enum amd_xgbe_phy_mode *mode) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL2); if (ret < 0) return ret; if ((ret & MDIO_PCS_CTRL2_TYPE) == MDIO_PCS_CTRL2_10GBR) *mode = AMD_XGBE_MODE_KR; else *mode = AMD_XGBE_MODE_KX; return 0; } static bool amd_xgbe_phy_in_kr_mode(struct phy_device *phydev) { enum amd_xgbe_phy_mode mode; if (amd_xgbe_phy_cur_mode(phydev, &mode)) return false; return (mode == AMD_XGBE_MODE_KR); } static int amd_xgbe_phy_switch_mode(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* If we are in KR switch to KX, and vice-versa */ if (amd_xgbe_phy_in_kr_mode(phydev)) { if (priv->speed_set == AMD_XGBE_PHY_SPEEDSET_1000_10000) ret = amd_xgbe_phy_gmii_mode(phydev); else ret = amd_xgbe_phy_gmii_2500_mode(phydev); } else { ret = amd_xgbe_phy_xgmii_mode(phydev); } return ret; } static int amd_xgbe_phy_set_mode(struct phy_device *phydev, enum amd_xgbe_phy_mode mode) { enum amd_xgbe_phy_mode cur_mode; int ret; ret = amd_xgbe_phy_cur_mode(phydev, &cur_mode); if (ret) return ret; if (mode != cur_mode) ret = amd_xgbe_phy_switch_mode(phydev); return ret; } static int amd_xgbe_phy_set_an(struct phy_device *phydev, bool enable, bool restart) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1); if (ret < 0) return ret; ret &= ~MDIO_AN_CTRL1_ENABLE; if (enable) ret |= MDIO_AN_CTRL1_ENABLE; if (restart) ret |= MDIO_AN_CTRL1_RESTART; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1, ret); return 0; } static int amd_xgbe_phy_restart_an(struct phy_device *phydev) { return amd_xgbe_phy_set_an(phydev, true, true); } static int amd_xgbe_phy_disable_an(struct phy_device *phydev) { return amd_xgbe_phy_set_an(phydev, false, false); } static enum amd_xgbe_phy_an amd_xgbe_an_tx_training(struct phy_device *phydev, enum amd_xgbe_phy_rx *state) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ad_reg, lp_reg, ret; *state = AMD_XGBE_RX_COMPLETE; /* If we're not in KR mode then we're done */ if (!amd_xgbe_phy_in_kr_mode(phydev)) return AMD_XGBE_AN_PAGE_RECEIVED; /* Enable/Disable FEC */ ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); if (ad_reg < 0) return AMD_XGBE_AN_ERROR; lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg < 0) return AMD_XGBE_AN_ERROR; ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FEC_CTRL); if (ret < 0) return AMD_XGBE_AN_ERROR; ret &= ~XGBE_PHY_FEC_MASK; if ((ad_reg & 0xc000) && (lp_reg & 0xc000)) ret |= priv->fec_ability; phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FEC_CTRL, ret); /* Start KR training */ ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL); if (ret < 0) return AMD_XGBE_AN_ERROR; if (ret & XGBE_PHY_KR_TRAINING_ENABLE) { XSIR0_IOWRITE_BITS(priv, SIR0_KR_RT_1, RESET, 1); ret |= XGBE_PHY_KR_TRAINING_START; phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_PMD_CTRL, ret); XSIR0_IOWRITE_BITS(priv, SIR0_KR_RT_1, RESET, 0); } return AMD_XGBE_AN_PAGE_RECEIVED; } static enum amd_xgbe_phy_an amd_xgbe_an_tx_xnp(struct phy_device *phydev, enum amd_xgbe_phy_rx *state) { u16 msg; *state = AMD_XGBE_RX_XNP; msg = XNP_MCF_NULL_MESSAGE; msg |= XNP_MP_FORMATTED; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP + 2, 0); phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP + 1, 0); phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP, msg); return AMD_XGBE_AN_PAGE_RECEIVED; } static enum amd_xgbe_phy_an amd_xgbe_an_rx_bpa(struct phy_device *phydev, enum amd_xgbe_phy_rx *state) { unsigned int link_support; int ret, ad_reg, lp_reg; /* Read Base Ability register 2 first */ ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (ret < 0) return AMD_XGBE_AN_ERROR; /* Check for a supported mode, otherwise restart in a different one */ link_support = amd_xgbe_phy_in_kr_mode(phydev) ? 0x80 : 0x20; if (!(ret & link_support)) return AMD_XGBE_AN_INCOMPAT_LINK; /* Check Extended Next Page support */ ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE); if (ad_reg < 0) return AMD_XGBE_AN_ERROR; lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA); if (lp_reg < 0) return AMD_XGBE_AN_ERROR; return ((ad_reg & XNP_NP_EXCHANGE) || (lp_reg & XNP_NP_EXCHANGE)) ? amd_xgbe_an_tx_xnp(phydev, state) : amd_xgbe_an_tx_training(phydev, state); } static enum amd_xgbe_phy_an amd_xgbe_an_rx_xnp(struct phy_device *phydev, enum amd_xgbe_phy_rx *state) { int ad_reg, lp_reg; /* Check Extended Next Page support */ ad_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_XNP); if (ad_reg < 0) return AMD_XGBE_AN_ERROR; lp_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPX); if (lp_reg < 0) return AMD_XGBE_AN_ERROR; return ((ad_reg & XNP_NP_EXCHANGE) || (lp_reg & XNP_NP_EXCHANGE)) ? amd_xgbe_an_tx_xnp(phydev, state) : amd_xgbe_an_tx_training(phydev, state); } static enum amd_xgbe_phy_an amd_xgbe_an_page_received(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; enum amd_xgbe_phy_rx *state; int ret; state = amd_xgbe_phy_in_kr_mode(phydev) ? &priv->kr_state : &priv->kx_state; switch (*state) { case AMD_XGBE_RX_BPA: ret = amd_xgbe_an_rx_bpa(phydev, state); break; case AMD_XGBE_RX_XNP: ret = amd_xgbe_an_rx_xnp(phydev, state); break; default: ret = AMD_XGBE_AN_ERROR; } return ret; } static enum amd_xgbe_phy_an amd_xgbe_an_incompat_link(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* Be sure we aren't looping trying to negotiate */ if (amd_xgbe_phy_in_kr_mode(phydev)) { priv->kr_state = AMD_XGBE_RX_ERROR; if (!(phydev->supported & SUPPORTED_1000baseKX_Full) && !(phydev->supported & SUPPORTED_2500baseX_Full)) return AMD_XGBE_AN_NO_LINK; if (priv->kx_state != AMD_XGBE_RX_BPA) return AMD_XGBE_AN_NO_LINK; } else { priv->kx_state = AMD_XGBE_RX_ERROR; if (!(phydev->supported & SUPPORTED_10000baseKR_Full)) return AMD_XGBE_AN_NO_LINK; if (priv->kr_state != AMD_XGBE_RX_BPA) return AMD_XGBE_AN_NO_LINK; } ret = amd_xgbe_phy_disable_an(phydev); if (ret) return AMD_XGBE_AN_ERROR; ret = amd_xgbe_phy_switch_mode(phydev); if (ret) return AMD_XGBE_AN_ERROR; ret = amd_xgbe_phy_restart_an(phydev); if (ret) return AMD_XGBE_AN_ERROR; return AMD_XGBE_AN_INCOMPAT_LINK; } static irqreturn_t amd_xgbe_an_isr(int irq, void *data) { struct amd_xgbe_phy_priv *priv = (struct amd_xgbe_phy_priv *)data; /* Interrupt reason must be read and cleared outside of IRQ context */ disable_irq_nosync(priv->an_irq); queue_work(priv->an_workqueue, &priv->an_irq_work); return IRQ_HANDLED; } static void amd_xgbe_an_irq_work(struct work_struct *work) { struct amd_xgbe_phy_priv *priv = container_of(work, struct amd_xgbe_phy_priv, an_irq_work); /* Avoid a race between enabling the IRQ and exiting the work by * waiting for the work to finish and then queueing it */ flush_work(&priv->an_work); queue_work(priv->an_workqueue, &priv->an_work); } static void amd_xgbe_an_state_machine(struct work_struct *work) { struct amd_xgbe_phy_priv *priv = container_of(work, struct amd_xgbe_phy_priv, an_work); struct phy_device *phydev = priv->phydev; enum amd_xgbe_phy_an cur_state = priv->an_state; int int_reg, int_mask; mutex_lock(&priv->an_mutex); /* Read the interrupt */ int_reg = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT); if (!int_reg) goto out; next_int: if (int_reg < 0) { priv->an_state = AMD_XGBE_AN_ERROR; int_mask = XGBE_AN_INT_MASK; } else if (int_reg & XGBE_AN_PG_RCV) { priv->an_state = AMD_XGBE_AN_PAGE_RECEIVED; int_mask = XGBE_AN_PG_RCV; } else if (int_reg & XGBE_AN_INC_LINK) { priv->an_state = AMD_XGBE_AN_INCOMPAT_LINK; int_mask = XGBE_AN_INC_LINK; } else if (int_reg & XGBE_AN_INT_CMPLT) { priv->an_state = AMD_XGBE_AN_COMPLETE; int_mask = XGBE_AN_INT_CMPLT; } else { priv->an_state = AMD_XGBE_AN_ERROR; int_mask = 0; } /* Clear the interrupt to be processed */ int_reg &= ~int_mask; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, int_reg); priv->an_result = priv->an_state; again: cur_state = priv->an_state; switch (priv->an_state) { case AMD_XGBE_AN_READY: priv->an_supported = 0; break; case AMD_XGBE_AN_PAGE_RECEIVED: priv->an_state = amd_xgbe_an_page_received(phydev); priv->an_supported++; break; case AMD_XGBE_AN_INCOMPAT_LINK: priv->an_supported = 0; priv->parallel_detect = 0; priv->an_state = amd_xgbe_an_incompat_link(phydev); break; case AMD_XGBE_AN_COMPLETE: priv->parallel_detect = priv->an_supported ? 0 : 1; netdev_dbg(phydev->attached_dev, "%s successful\n", priv->an_supported ? "Auto negotiation" : "Parallel detection"); break; case AMD_XGBE_AN_NO_LINK: break; default: priv->an_state = AMD_XGBE_AN_ERROR; } if (priv->an_state == AMD_XGBE_AN_NO_LINK) { int_reg = 0; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0); } else if (priv->an_state == AMD_XGBE_AN_ERROR) { netdev_err(phydev->attached_dev, "error during auto-negotiation, state=%u\n", cur_state); int_reg = 0; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0); } if (priv->an_state >= AMD_XGBE_AN_COMPLETE) { priv->an_result = priv->an_state; priv->an_state = AMD_XGBE_AN_READY; priv->kr_state = AMD_XGBE_RX_BPA; priv->kx_state = AMD_XGBE_RX_BPA; } if (cur_state != priv->an_state) goto again; if (int_reg) goto next_int; out: enable_irq(priv->an_irq); mutex_unlock(&priv->an_mutex); } static int amd_xgbe_an_init(struct phy_device *phydev) { int ret; /* Set up Advertisement register 3 first */ ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); if (ret < 0) return ret; if (phydev->supported & SUPPORTED_10000baseR_FEC) ret |= 0xc000; else ret &= ~0xc000; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2, ret); /* Set up Advertisement register 2 next */ ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); if (ret < 0) return ret; if (phydev->supported & SUPPORTED_10000baseKR_Full) ret |= 0x80; else ret &= ~0x80; if ((phydev->supported & SUPPORTED_1000baseKX_Full) || (phydev->supported & SUPPORTED_2500baseX_Full)) ret |= 0x20; else ret &= ~0x20; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1, ret); /* Set up Advertisement register 1 last */ ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE); if (ret < 0) return ret; if (phydev->supported & SUPPORTED_Pause) ret |= 0x400; else ret &= ~0x400; if (phydev->supported & SUPPORTED_Asym_Pause) ret |= 0x800; else ret &= ~0x800; /* We don't intend to perform XNP */ ret &= ~XNP_NP_EXCHANGE; phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE, ret); return 0; } static int amd_xgbe_phy_soft_reset(struct phy_device *phydev) { int count, ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; ret |= MDIO_CTRL1_RESET; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); count = 50; do { msleep(20); ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) return ret; } while ((ret & MDIO_CTRL1_RESET) && --count); if (ret & MDIO_CTRL1_RESET) return -ETIMEDOUT; /* Disable auto-negotiation for now */ ret = amd_xgbe_phy_disable_an(phydev); if (ret < 0) return ret; /* Clear auto-negotiation interrupts */ phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0); return 0; } static int amd_xgbe_phy_config_init(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; struct net_device *netdev = phydev->attached_dev; int ret; if (!priv->an_irq_allocated) { /* Allocate the auto-negotiation workqueue and interrupt */ snprintf(priv->an_irq_name, sizeof(priv->an_irq_name) - 1, "%s-pcs", netdev_name(netdev)); priv->an_workqueue = create_singlethread_workqueue(priv->an_irq_name); if (!priv->an_workqueue) { netdev_err(netdev, "phy workqueue creation failed\n"); return -ENOMEM; } ret = devm_request_irq(priv->dev, priv->an_irq, amd_xgbe_an_isr, 0, priv->an_irq_name, priv); if (ret) { netdev_err(netdev, "phy irq request failed\n"); destroy_workqueue(priv->an_workqueue); return ret; } priv->an_irq_allocated = 1; } ret = phy_read_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_PMA_10GBR_FEC_ABILITY); if (ret < 0) return ret; priv->fec_ability = ret & XGBE_PHY_FEC_MASK; /* Initialize supported features */ phydev->supported = SUPPORTED_Autoneg; phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; phydev->supported |= SUPPORTED_Backplane; phydev->supported |= SUPPORTED_10000baseKR_Full; switch (priv->speed_set) { case AMD_XGBE_PHY_SPEEDSET_1000_10000: phydev->supported |= SUPPORTED_1000baseKX_Full; break; case AMD_XGBE_PHY_SPEEDSET_2500_10000: phydev->supported |= SUPPORTED_2500baseX_Full; break; } if (priv->fec_ability & XGBE_PHY_FEC_ENABLE) phydev->supported |= SUPPORTED_10000baseR_FEC; phydev->advertising = phydev->supported; /* Set initial mode - call the mode setting routines * directly to insure we are properly configured */ if (phydev->supported & SUPPORTED_10000baseKR_Full) ret = amd_xgbe_phy_xgmii_mode(phydev); else if (phydev->supported & SUPPORTED_1000baseKX_Full) ret = amd_xgbe_phy_gmii_mode(phydev); else if (phydev->supported & SUPPORTED_2500baseX_Full) ret = amd_xgbe_phy_gmii_2500_mode(phydev); else ret = -EINVAL; if (ret < 0) return ret; /* Set up advertisement registers based on current settings */ ret = amd_xgbe_an_init(phydev); if (ret) return ret; /* Enable auto-negotiation interrupts */ phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INTMASK, 0x07); return 0; } static int amd_xgbe_phy_setup_forced(struct phy_device *phydev) { int ret; /* Disable auto-negotiation */ ret = amd_xgbe_phy_disable_an(phydev); if (ret < 0) return ret; /* Validate/Set specified speed */ switch (phydev->speed) { case SPEED_10000: ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KR); break; case SPEED_2500: case SPEED_1000: ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KX); break; default: ret = -EINVAL; } if (ret < 0) return ret; /* Validate duplex mode */ if (phydev->duplex != DUPLEX_FULL) return -EINVAL; phydev->pause = 0; phydev->asym_pause = 0; return 0; } static int __amd_xgbe_phy_config_aneg(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; u32 mmd_mask = phydev->c45_ids.devices_in_package; int ret; if (phydev->autoneg != AUTONEG_ENABLE) return amd_xgbe_phy_setup_forced(phydev); /* Make sure we have the AN MMD present */ if (!(mmd_mask & MDIO_DEVS_AN)) return -EINVAL; /* Disable auto-negotiation interrupt */ disable_irq(priv->an_irq); /* Start auto-negotiation in a supported mode */ if (phydev->supported & SUPPORTED_10000baseKR_Full) ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KR); else if ((phydev->supported & SUPPORTED_1000baseKX_Full) || (phydev->supported & SUPPORTED_2500baseX_Full)) ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KX); else ret = -EINVAL; if (ret < 0) { enable_irq(priv->an_irq); return ret; } /* Disable and stop any in progress auto-negotiation */ ret = amd_xgbe_phy_disable_an(phydev); if (ret < 0) return ret; /* Clear any auto-negotitation interrupts */ phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_INT, 0); priv->an_result = AMD_XGBE_AN_READY; priv->an_state = AMD_XGBE_AN_READY; priv->kr_state = AMD_XGBE_RX_BPA; priv->kx_state = AMD_XGBE_RX_BPA; /* Re-enable auto-negotiation interrupt */ enable_irq(priv->an_irq); /* Set up advertisement registers based on current settings */ ret = amd_xgbe_an_init(phydev); if (ret) return ret; /* Enable and start auto-negotiation */ return amd_xgbe_phy_restart_an(phydev); } static int amd_xgbe_phy_config_aneg(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; mutex_lock(&priv->an_mutex); ret = __amd_xgbe_phy_config_aneg(phydev); mutex_unlock(&priv->an_mutex); return ret; } static int amd_xgbe_phy_aneg_done(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; return (priv->an_result == AMD_XGBE_AN_COMPLETE); } static int amd_xgbe_phy_update_link(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; /* If we're doing auto-negotiation don't report link down */ if (priv->an_state != AMD_XGBE_AN_READY) { phydev->link = 1; return 0; } /* Link status is latched low, so read once to clear * and then read again to get current state */ ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_STAT1); if (ret < 0) return ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_STAT1); if (ret < 0) return ret; phydev->link = (ret & MDIO_STAT1_LSTATUS) ? 1 : 0; return 0; } static int amd_xgbe_phy_read_status(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; u32 mmd_mask = phydev->c45_ids.devices_in_package; int ret, ad_ret, lp_ret; ret = amd_xgbe_phy_update_link(phydev); if (ret) return ret; if ((phydev->autoneg == AUTONEG_ENABLE) && !priv->parallel_detect) { if (!(mmd_mask & MDIO_DEVS_AN)) return -EINVAL; if (!amd_xgbe_phy_aneg_done(phydev)) return 0; /* Compare Advertisement and Link Partner register 1 */ ad_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE); if (ad_ret < 0) return ad_ret; lp_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA); if (lp_ret < 0) return lp_ret; ad_ret &= lp_ret; phydev->pause = (ad_ret & 0x400) ? 1 : 0; phydev->asym_pause = (ad_ret & 0x800) ? 1 : 0; /* Compare Advertisement and Link Partner register 2 */ ad_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); if (ad_ret < 0) return ad_ret; lp_ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_ret < 0) return lp_ret; ad_ret &= lp_ret; if (ad_ret & 0x80) { phydev->speed = SPEED_10000; ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KR); if (ret) return ret; } else { switch (priv->speed_set) { case AMD_XGBE_PHY_SPEEDSET_1000_10000: phydev->speed = SPEED_1000; break; case AMD_XGBE_PHY_SPEEDSET_2500_10000: phydev->speed = SPEED_2500; break; } ret = amd_xgbe_phy_set_mode(phydev, AMD_XGBE_MODE_KX); if (ret) return ret; } phydev->duplex = DUPLEX_FULL; } else { if (amd_xgbe_phy_in_kr_mode(phydev)) { phydev->speed = SPEED_10000; } else { switch (priv->speed_set) { case AMD_XGBE_PHY_SPEEDSET_1000_10000: phydev->speed = SPEED_1000; break; case AMD_XGBE_PHY_SPEEDSET_2500_10000: phydev->speed = SPEED_2500; break; } } phydev->duplex = DUPLEX_FULL; phydev->pause = 0; phydev->asym_pause = 0; } return 0; } static int amd_xgbe_phy_suspend(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; int ret; mutex_lock(&phydev->lock); ret = phy_read_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1); if (ret < 0) goto unlock; priv->lpm_ctrl = ret; ret |= MDIO_CTRL1_LPOWER; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, ret); ret = 0; unlock: mutex_unlock(&phydev->lock); return ret; } static int amd_xgbe_phy_resume(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; mutex_lock(&phydev->lock); priv->lpm_ctrl &= ~MDIO_CTRL1_LPOWER; phy_write_mmd(phydev, MDIO_MMD_PCS, MDIO_CTRL1, priv->lpm_ctrl); mutex_unlock(&phydev->lock); return 0; } static unsigned int amd_xgbe_phy_resource_count(struct platform_device *pdev, unsigned int type) { unsigned int count; int i; for (i = 0, count = 0; i < pdev->num_resources; i++) { struct resource *r = &pdev->resource[i]; if (type == resource_type(r)) count++; } return count; } static int amd_xgbe_phy_probe(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv; struct platform_device *phy_pdev; struct device *dev, *phy_dev; unsigned int phy_resnum, phy_irqnum; int ret; if (!phydev->bus || !phydev->bus->parent) return -EINVAL; dev = phydev->bus->parent; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->pdev = to_platform_device(dev); priv->adev = ACPI_COMPANION(dev); priv->dev = dev; priv->phydev = phydev; mutex_init(&priv->an_mutex); INIT_WORK(&priv->an_irq_work, amd_xgbe_an_irq_work); INIT_WORK(&priv->an_work, amd_xgbe_an_state_machine); if (!priv->adev || acpi_disabled) { struct device_node *bus_node; struct device_node *phy_node; bus_node = priv->dev->of_node; phy_node = of_parse_phandle(bus_node, "phy-handle", 0); if (!phy_node) { dev_err(dev, "unable to parse phy-handle\n"); ret = -EINVAL; goto err_priv; } phy_pdev = of_find_device_by_node(phy_node); of_node_put(phy_node); if (!phy_pdev) { dev_err(dev, "unable to obtain phy device\n"); ret = -EINVAL; goto err_priv; } phy_resnum = 0; phy_irqnum = 0; } else { /* In ACPI, the XGBE and PHY resources are the grouped * together with the PHY resources at the end */ phy_pdev = priv->pdev; phy_resnum = amd_xgbe_phy_resource_count(phy_pdev, IORESOURCE_MEM) - 3; phy_irqnum = amd_xgbe_phy_resource_count(phy_pdev, IORESOURCE_IRQ) - 1; } phy_dev = &phy_pdev->dev; /* Get the device mmio areas */ priv->rxtx_res = platform_get_resource(phy_pdev, IORESOURCE_MEM, phy_resnum++); priv->rxtx_regs = devm_ioremap_resource(dev, priv->rxtx_res); if (IS_ERR(priv->rxtx_regs)) { dev_err(dev, "rxtx ioremap failed\n"); ret = PTR_ERR(priv->rxtx_regs); goto err_put; } priv->sir0_res = platform_get_resource(phy_pdev, IORESOURCE_MEM, phy_resnum++); priv->sir0_regs = devm_ioremap_resource(dev, priv->sir0_res); if (IS_ERR(priv->sir0_regs)) { dev_err(dev, "sir0 ioremap failed\n"); ret = PTR_ERR(priv->sir0_regs); goto err_rxtx; } priv->sir1_res = platform_get_resource(phy_pdev, IORESOURCE_MEM, phy_resnum++); priv->sir1_regs = devm_ioremap_resource(dev, priv->sir1_res); if (IS_ERR(priv->sir1_regs)) { dev_err(dev, "sir1 ioremap failed\n"); ret = PTR_ERR(priv->sir1_regs); goto err_sir0; } /* Get the auto-negotiation interrupt */ ret = platform_get_irq(phy_pdev, phy_irqnum); if (ret < 0) { dev_err(dev, "platform_get_irq failed\n"); goto err_sir1; } priv->an_irq = ret; /* Get the device speed set property */ ret = device_property_read_u32(phy_dev, XGBE_PHY_SPEEDSET_PROPERTY, &priv->speed_set); if (ret) { dev_err(dev, "invalid %s property\n", XGBE_PHY_SPEEDSET_PROPERTY); goto err_sir1; } switch (priv->speed_set) { case AMD_XGBE_PHY_SPEEDSET_1000_10000: case AMD_XGBE_PHY_SPEEDSET_2500_10000: break; default: dev_err(dev, "invalid %s property\n", XGBE_PHY_SPEEDSET_PROPERTY); ret = -EINVAL; goto err_sir1; } if (device_property_present(phy_dev, XGBE_PHY_BLWC_PROPERTY)) { ret = device_property_read_u32_array(phy_dev, XGBE_PHY_BLWC_PROPERTY, priv->serdes_blwc, XGBE_PHY_SPEEDS); if (ret) { dev_err(dev, "invalid %s property\n", XGBE_PHY_BLWC_PROPERTY); goto err_sir1; } } else { memcpy(priv->serdes_blwc, amd_xgbe_phy_serdes_blwc, sizeof(priv->serdes_blwc)); } if (device_property_present(phy_dev, XGBE_PHY_CDR_RATE_PROPERTY)) { ret = device_property_read_u32_array(phy_dev, XGBE_PHY_CDR_RATE_PROPERTY, priv->serdes_cdr_rate, XGBE_PHY_SPEEDS); if (ret) { dev_err(dev, "invalid %s property\n", XGBE_PHY_CDR_RATE_PROPERTY); goto err_sir1; } } else { memcpy(priv->serdes_cdr_rate, amd_xgbe_phy_serdes_cdr_rate, sizeof(priv->serdes_cdr_rate)); } if (device_property_present(phy_dev, XGBE_PHY_PQ_SKEW_PROPERTY)) { ret = device_property_read_u32_array(phy_dev, XGBE_PHY_PQ_SKEW_PROPERTY, priv->serdes_pq_skew, XGBE_PHY_SPEEDS); if (ret) { dev_err(dev, "invalid %s property\n", XGBE_PHY_PQ_SKEW_PROPERTY); goto err_sir1; } } else { memcpy(priv->serdes_pq_skew, amd_xgbe_phy_serdes_pq_skew, sizeof(priv->serdes_pq_skew)); } if (device_property_present(phy_dev, XGBE_PHY_TX_AMP_PROPERTY)) { ret = device_property_read_u32_array(phy_dev, XGBE_PHY_TX_AMP_PROPERTY, priv->serdes_tx_amp, XGBE_PHY_SPEEDS); if (ret) { dev_err(dev, "invalid %s property\n", XGBE_PHY_TX_AMP_PROPERTY); goto err_sir1; } } else { memcpy(priv->serdes_tx_amp, amd_xgbe_phy_serdes_tx_amp, sizeof(priv->serdes_tx_amp)); } phydev->priv = priv; if (!priv->adev || acpi_disabled) platform_device_put(phy_pdev); return 0; err_sir1: devm_iounmap(dev, priv->sir1_regs); devm_release_mem_region(dev, priv->sir1_res->start, resource_size(priv->sir1_res)); err_sir0: devm_iounmap(dev, priv->sir0_regs); devm_release_mem_region(dev, priv->sir0_res->start, resource_size(priv->sir0_res)); err_rxtx: devm_iounmap(dev, priv->rxtx_regs); devm_release_mem_region(dev, priv->rxtx_res->start, resource_size(priv->rxtx_res)); err_put: if (!priv->adev || acpi_disabled) platform_device_put(phy_pdev); err_priv: devm_kfree(dev, priv); return ret; } static void amd_xgbe_phy_remove(struct phy_device *phydev) { struct amd_xgbe_phy_priv *priv = phydev->priv; struct device *dev = priv->dev; if (priv->an_irq_allocated) { devm_free_irq(dev, priv->an_irq, priv); flush_workqueue(priv->an_workqueue); destroy_workqueue(priv->an_workqueue); } /* Release resources */ devm_iounmap(dev, priv->sir1_regs); devm_release_mem_region(dev, priv->sir1_res->start, resource_size(priv->sir1_res)); devm_iounmap(dev, priv->sir0_regs); devm_release_mem_region(dev, priv->sir0_res->start, resource_size(priv->sir0_res)); devm_iounmap(dev, priv->rxtx_regs); devm_release_mem_region(dev, priv->rxtx_res->start, resource_size(priv->rxtx_res)); devm_kfree(dev, priv); } static int amd_xgbe_match_phy_device(struct phy_device *phydev) { return phydev->c45_ids.device_ids[MDIO_MMD_PCS] == XGBE_PHY_ID; } static struct phy_driver amd_xgbe_phy_driver[] = { { .phy_id = XGBE_PHY_ID, .phy_id_mask = XGBE_PHY_MASK, .name = "AMD XGBE PHY", .features = 0, .probe = amd_xgbe_phy_probe, .remove = amd_xgbe_phy_remove, .soft_reset = amd_xgbe_phy_soft_reset, .config_init = amd_xgbe_phy_config_init, .suspend = amd_xgbe_phy_suspend, .resume = amd_xgbe_phy_resume, .config_aneg = amd_xgbe_phy_config_aneg, .aneg_done = amd_xgbe_phy_aneg_done, .read_status = amd_xgbe_phy_read_status, .match_phy_device = amd_xgbe_match_phy_device, .driver = { .owner = THIS_MODULE, }, }, }; module_phy_driver(amd_xgbe_phy_driver); static struct mdio_device_id __maybe_unused amd_xgbe_phy_ids[] = { { XGBE_PHY_ID, XGBE_PHY_MASK }, { } }; MODULE_DEVICE_TABLE(mdio, amd_xgbe_phy_ids);