#include #include "qlge.h" /* Read a NIC register from the alternate function. */ static u32 ql_read_other_func_reg(struct ql_adapter *qdev, u32 reg) { u32 register_to_read; u32 reg_val; unsigned int status = 0; register_to_read = MPI_NIC_REG_BLOCK | MPI_NIC_READ | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT) | reg; status = ql_read_mpi_reg(qdev, register_to_read, ®_val); if (status != 0) return 0xffffffff; return reg_val; } /* Write a NIC register from the alternate function. */ static int ql_write_other_func_reg(struct ql_adapter *qdev, u32 reg, u32 reg_val) { u32 register_to_read; int status = 0; register_to_read = MPI_NIC_REG_BLOCK | MPI_NIC_READ | (qdev->alt_func << MPI_NIC_FUNCTION_SHIFT) | reg; status = ql_write_mpi_reg(qdev, register_to_read, reg_val); return status; } static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit) { u32 temp; int count = 10; while (count) { temp = ql_read_other_func_reg(qdev, reg); /* check for errors */ if (temp & err_bit) return -1; else if (temp & bit) return 0; mdelay(10); count--; } return -1; } static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 *data) { int status; /* wait for reg to come ready */ status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4, XG_SERDES_ADDR_RDY, 0); if (status) goto exit; /* set up for reg read */ ql_write_other_func_reg(qdev, XG_SERDES_ADDR/4, reg | PROC_ADDR_R); /* wait for reg to come ready */ status = ql_wait_other_func_reg_rdy(qdev, XG_SERDES_ADDR / 4, XG_SERDES_ADDR_RDY, 0); if (status) goto exit; /* get the data */ *data = ql_read_other_func_reg(qdev, (XG_SERDES_DATA / 4)); exit: return status; } /* Read out the SERDES registers */ static int ql_read_serdes_reg(struct ql_adapter *qdev, u32 reg, u32 * data) { int status; /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0); if (status) goto exit; /* set up for reg read */ ql_write32(qdev, XG_SERDES_ADDR, reg | PROC_ADDR_R); /* wait for reg to come ready */ status = ql_wait_reg_rdy(qdev, XG_SERDES_ADDR, XG_SERDES_ADDR_RDY, 0); if (status) goto exit; /* get the data */ *data = ql_read32(qdev, XG_SERDES_DATA); exit: return status; } static void ql_get_both_serdes(struct ql_adapter *qdev, u32 addr, u32 *direct_ptr, u32 *indirect_ptr, unsigned int direct_valid, unsigned int indirect_valid) { unsigned int status; status = 1; if (direct_valid) status = ql_read_serdes_reg(qdev, addr, direct_ptr); /* Dead fill any failures or invalids. */ if (status) *direct_ptr = 0xDEADBEEF; status = 1; if (indirect_valid) status = ql_read_other_func_serdes_reg( qdev, addr, indirect_ptr); /* Dead fill any failures or invalids. */ if (status) *indirect_ptr = 0xDEADBEEF; } static int ql_get_serdes_regs(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump) { int status; unsigned int xfi_direct_valid, xfi_indirect_valid, xaui_direct_valid; unsigned int xaui_indirect_valid, i; u32 *direct_ptr, temp; u32 *indirect_ptr; xfi_direct_valid = xfi_indirect_valid = 0; xaui_direct_valid = xaui_indirect_valid = 1; /* The XAUI needs to be read out per port */ if (qdev->func & 1) { /* We are NIC 2 */ status = ql_read_other_func_serdes_reg(qdev, XG_SERDES_XAUI_HSS_PCS_START, &temp); if (status) temp = XG_SERDES_ADDR_XAUI_PWR_DOWN; if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) == XG_SERDES_ADDR_XAUI_PWR_DOWN) xaui_indirect_valid = 0; status = ql_read_serdes_reg(qdev, XG_SERDES_XAUI_HSS_PCS_START, &temp); if (status) temp = XG_SERDES_ADDR_XAUI_PWR_DOWN; if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) == XG_SERDES_ADDR_XAUI_PWR_DOWN) xaui_direct_valid = 0; } else { /* We are NIC 1 */ status = ql_read_other_func_serdes_reg(qdev, XG_SERDES_XAUI_HSS_PCS_START, &temp); if (status) temp = XG_SERDES_ADDR_XAUI_PWR_DOWN; if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) == XG_SERDES_ADDR_XAUI_PWR_DOWN) xaui_indirect_valid = 0; status = ql_read_serdes_reg(qdev, XG_SERDES_XAUI_HSS_PCS_START, &temp); if (status) temp = XG_SERDES_ADDR_XAUI_PWR_DOWN; if ((temp & XG_SERDES_ADDR_XAUI_PWR_DOWN) == XG_SERDES_ADDR_XAUI_PWR_DOWN) xaui_direct_valid = 0; } /* * XFI register is shared so only need to read one * functions and then check the bits. */ status = ql_read_serdes_reg(qdev, XG_SERDES_ADDR_STS, &temp); if (status) temp = 0; if ((temp & XG_SERDES_ADDR_XFI1_PWR_UP) == XG_SERDES_ADDR_XFI1_PWR_UP) { /* now see if i'm NIC 1 or NIC 2 */ if (qdev->func & 1) /* I'm NIC 2, so the indirect (NIC1) xfi is up. */ xfi_indirect_valid = 1; else xfi_direct_valid = 1; } if ((temp & XG_SERDES_ADDR_XFI2_PWR_UP) == XG_SERDES_ADDR_XFI2_PWR_UP) { /* now see if i'm NIC 1 or NIC 2 */ if (qdev->func & 1) /* I'm NIC 2, so the indirect (NIC1) xfi is up. */ xfi_direct_valid = 1; else xfi_indirect_valid = 1; } /* Get XAUI_AN register block. */ if (qdev->func & 1) { /* Function 2 is direct */ direct_ptr = mpi_coredump->serdes2_xaui_an; indirect_ptr = mpi_coredump->serdes_xaui_an; } else { /* Function 1 is direct */ direct_ptr = mpi_coredump->serdes_xaui_an; indirect_ptr = mpi_coredump->serdes2_xaui_an; } for (i = 0; i <= 0x000000034; i += 4, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xaui_direct_valid, xaui_indirect_valid); /* Get XAUI_HSS_PCS register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xaui_hss_pcs; indirect_ptr = mpi_coredump->serdes_xaui_hss_pcs; } else { direct_ptr = mpi_coredump->serdes_xaui_hss_pcs; indirect_ptr = mpi_coredump->serdes2_xaui_hss_pcs; } for (i = 0x800; i <= 0x880; i += 4, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xaui_direct_valid, xaui_indirect_valid); /* Get XAUI_XFI_AN register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_an; indirect_ptr = mpi_coredump->serdes_xfi_an; } else { direct_ptr = mpi_coredump->serdes_xfi_an; indirect_ptr = mpi_coredump->serdes2_xfi_an; } for (i = 0x1000; i <= 0x1034; i += 4, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); /* Get XAUI_XFI_TRAIN register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_train; indirect_ptr = mpi_coredump->serdes_xfi_train; } else { direct_ptr = mpi_coredump->serdes_xfi_train; indirect_ptr = mpi_coredump->serdes2_xfi_train; } for (i = 0x1050; i <= 0x107c; i += 4, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); /* Get XAUI_XFI_HSS_PCS register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_hss_pcs; indirect_ptr = mpi_coredump->serdes_xfi_hss_pcs; } else { direct_ptr = mpi_coredump->serdes_xfi_hss_pcs; indirect_ptr = mpi_coredump->serdes2_xfi_hss_pcs; } for (i = 0x1800; i <= 0x1838; i += 4, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); /* Get XAUI_XFI_HSS_TX register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_hss_tx; indirect_ptr = mpi_coredump->serdes_xfi_hss_tx; } else { direct_ptr = mpi_coredump->serdes_xfi_hss_tx; indirect_ptr = mpi_coredump->serdes2_xfi_hss_tx; } for (i = 0x1c00; i <= 0x1c1f; i++, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); /* Get XAUI_XFI_HSS_RX register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_hss_rx; indirect_ptr = mpi_coredump->serdes_xfi_hss_rx; } else { direct_ptr = mpi_coredump->serdes_xfi_hss_rx; indirect_ptr = mpi_coredump->serdes2_xfi_hss_rx; } for (i = 0x1c40; i <= 0x1c5f; i++, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); /* Get XAUI_XFI_HSS_PLL register block. */ if (qdev->func & 1) { direct_ptr = mpi_coredump->serdes2_xfi_hss_pll; indirect_ptr = mpi_coredump->serdes_xfi_hss_pll; } else { direct_ptr = mpi_coredump->serdes_xfi_hss_pll; indirect_ptr = mpi_coredump->serdes2_xfi_hss_pll; } for (i = 0x1e00; i <= 0x1e1f; i++, direct_ptr++, indirect_ptr++) ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); return 0; } static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data) { int status = 0; /* wait for reg to come ready */ status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* set up for reg read */ ql_write_other_func_reg(qdev, XGMAC_ADDR / 4, reg | XGMAC_ADDR_R); /* wait for reg to come ready */ status = ql_wait_other_func_reg_rdy(qdev, XGMAC_ADDR / 4, XGMAC_ADDR_RDY, XGMAC_ADDR_XME); if (status) goto exit; /* get the data */ *data = ql_read_other_func_reg(qdev, XGMAC_DATA / 4); exit: return status; } /* Read the 400 xgmac control/statistics registers * skipping unused locations. */ static int ql_get_xgmac_regs(struct ql_adapter *qdev, u32 * buf, unsigned int other_function) { int status = 0; int i; for (i = PAUSE_SRC_LO; i < XGMAC_REGISTER_END; i += 4, buf++) { /* We're reading 400 xgmac registers, but we filter out * serveral locations that are non-responsive to reads. */ if ((i == 0x00000114) || (i == 0x00000118) || (i == 0x0000013c) || (i == 0x00000140) || (i > 0x00000150 && i < 0x000001fc) || (i > 0x00000278 && i < 0x000002a0) || (i > 0x000002c0 && i < 0x000002cf) || (i > 0x000002dc && i < 0x000002f0) || (i > 0x000003c8 && i < 0x00000400) || (i > 0x00000400 && i < 0x00000410) || (i > 0x00000410 && i < 0x00000420) || (i > 0x00000420 && i < 0x00000430) || (i > 0x00000430 && i < 0x00000440) || (i > 0x00000440 && i < 0x00000450) || (i > 0x00000450 && i < 0x00000500) || (i > 0x0000054c && i < 0x00000568) || (i > 0x000005c8 && i < 0x00000600)) { if (other_function) status = ql_read_other_func_xgmac_reg(qdev, i, buf); else status = ql_read_xgmac_reg(qdev, i, buf); if (status) *buf = 0xdeadbeef; break; } } return status; } static int ql_get_ets_regs(struct ql_adapter *qdev, u32 * buf) { int status = 0; int i; for (i = 0; i < 8; i++, buf++) { ql_write32(qdev, NIC_ETS, i << 29 | 0x08000000); *buf = ql_read32(qdev, NIC_ETS); } for (i = 0; i < 2; i++, buf++) { ql_write32(qdev, CNA_ETS, i << 29 | 0x08000000); *buf = ql_read32(qdev, CNA_ETS); } return status; } static void ql_get_intr_states(struct ql_adapter *qdev, u32 * buf) { int i; for (i = 0; i < qdev->rx_ring_count; i++, buf++) { ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask); *buf = ql_read32(qdev, INTR_EN); } } static int ql_get_cam_entries(struct ql_adapter *qdev, u32 * buf) { int i, status; u32 value[3]; status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (status) return status; for (i = 0; i < 16; i++) { status = ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed read of mac index register.\n"); goto err; } *buf++ = value[0]; /* lower MAC address */ *buf++ = value[1]; /* upper MAC address */ *buf++ = value[2]; /* output */ } for (i = 0; i < 32; i++) { status = ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed read of mac index register.\n"); goto err; } *buf++ = value[0]; /* lower Mcast address */ *buf++ = value[1]; /* upper Mcast address */ } err: ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); return status; } static int ql_get_routing_entries(struct ql_adapter *qdev, u32 * buf) { int status; u32 value, i; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; for (i = 0; i < 16; i++) { status = ql_get_routing_reg(qdev, i, &value); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed read of routing index register.\n"); goto err; } else { *buf++ = value; } } err: ql_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } /* Read the MPI Processor shadow registers */ static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev, u32 * buf) { u32 i; int status; for (i = 0; i < MPI_CORE_SH_REGS_CNT; i++, buf++) { status = ql_write_mpi_reg(qdev, RISC_124, (SHADOW_OFFSET | i << SHADOW_REG_SHIFT)); if (status) goto end; status = ql_read_mpi_reg(qdev, RISC_127, buf); if (status) goto end; } end: return status; } /* Read the MPI Processor core registers */ static int ql_get_mpi_regs(struct ql_adapter *qdev, u32 * buf, u32 offset, u32 count) { int i, status = 0; for (i = 0; i < count; i++, buf++) { status = ql_read_mpi_reg(qdev, offset + i, buf); if (status) return status; } return status; } /* Read the ASIC probe dump */ static unsigned int *ql_get_probe(struct ql_adapter *qdev, u32 clock, u32 valid, u32 *buf) { u32 module, mux_sel, probe, lo_val, hi_val; for (module = 0; module < PRB_MX_ADDR_MAX_MODS; module++) { if (!((valid >> module) & 1)) continue; for (mux_sel = 0; mux_sel < PRB_MX_ADDR_MAX_MUX; mux_sel++) { probe = clock | PRB_MX_ADDR_ARE | mux_sel | (module << PRB_MX_ADDR_MOD_SEL_SHIFT); ql_write32(qdev, PRB_MX_ADDR, probe); lo_val = ql_read32(qdev, PRB_MX_DATA); if (mux_sel == 0) { *buf = probe; buf++; } probe |= PRB_MX_ADDR_UP; ql_write32(qdev, PRB_MX_ADDR, probe); hi_val = ql_read32(qdev, PRB_MX_DATA); *buf = lo_val; buf++; *buf = hi_val; buf++; } } return buf; } static int ql_get_probe_dump(struct ql_adapter *qdev, unsigned int *buf) { /* First we have to enable the probe mux */ ql_write_mpi_reg(qdev, MPI_TEST_FUNC_PRB_CTL, MPI_TEST_FUNC_PRB_EN); buf = ql_get_probe(qdev, PRB_MX_ADDR_SYS_CLOCK, PRB_MX_ADDR_VALID_SYS_MOD, buf); buf = ql_get_probe(qdev, PRB_MX_ADDR_PCI_CLOCK, PRB_MX_ADDR_VALID_PCI_MOD, buf); buf = ql_get_probe(qdev, PRB_MX_ADDR_XGM_CLOCK, PRB_MX_ADDR_VALID_XGM_MOD, buf); buf = ql_get_probe(qdev, PRB_MX_ADDR_FC_CLOCK, PRB_MX_ADDR_VALID_FC_MOD, buf); return 0; } /* Read out the routing index registers */ static int ql_get_routing_index_registers(struct ql_adapter *qdev, u32 *buf) { int status; u32 type, index, index_max; u32 result_index; u32 result_data; u32 val; status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (status) return status; for (type = 0; type < 4; type++) { if (type < 2) index_max = 8; else index_max = 16; for (index = 0; index < index_max; index++) { val = RT_IDX_RS | (type << RT_IDX_TYPE_SHIFT) | (index << RT_IDX_IDX_SHIFT); ql_write32(qdev, RT_IDX, val); result_index = 0; while ((result_index & RT_IDX_MR) == 0) result_index = ql_read32(qdev, RT_IDX); result_data = ql_read32(qdev, RT_DATA); *buf = type; buf++; *buf = index; buf++; *buf = result_index; buf++; *buf = result_data; buf++; } } ql_sem_unlock(qdev, SEM_RT_IDX_MASK); return status; } /* Read out the MAC protocol registers */ static void ql_get_mac_protocol_registers(struct ql_adapter *qdev, u32 *buf) { u32 result_index, result_data; u32 type; u32 index; u32 offset; u32 val; u32 initial_val = MAC_ADDR_RS; u32 max_index; u32 max_offset; for (type = 0; type < MAC_ADDR_TYPE_COUNT; type++) { switch (type) { case 0: /* CAM */ initial_val |= MAC_ADDR_ADR; max_index = MAC_ADDR_MAX_CAM_ENTRIES; max_offset = MAC_ADDR_MAX_CAM_WCOUNT; break; case 1: /* Multicast MAC Address */ max_index = MAC_ADDR_MAX_CAM_WCOUNT; max_offset = MAC_ADDR_MAX_CAM_WCOUNT; break; case 2: /* VLAN filter mask */ case 3: /* MC filter mask */ max_index = MAC_ADDR_MAX_CAM_WCOUNT; max_offset = MAC_ADDR_MAX_CAM_WCOUNT; break; case 4: /* FC MAC addresses */ max_index = MAC_ADDR_MAX_FC_MAC_ENTRIES; max_offset = MAC_ADDR_MAX_FC_MAC_WCOUNT; break; case 5: /* Mgmt MAC addresses */ max_index = MAC_ADDR_MAX_MGMT_MAC_ENTRIES; max_offset = MAC_ADDR_MAX_MGMT_MAC_WCOUNT; break; case 6: /* Mgmt VLAN addresses */ max_index = MAC_ADDR_MAX_MGMT_VLAN_ENTRIES; max_offset = MAC_ADDR_MAX_MGMT_VLAN_WCOUNT; break; case 7: /* Mgmt IPv4 address */ max_index = MAC_ADDR_MAX_MGMT_V4_ENTRIES; max_offset = MAC_ADDR_MAX_MGMT_V4_WCOUNT; break; case 8: /* Mgmt IPv6 address */ max_index = MAC_ADDR_MAX_MGMT_V6_ENTRIES; max_offset = MAC_ADDR_MAX_MGMT_V6_WCOUNT; break; case 9: /* Mgmt TCP/UDP Dest port */ max_index = MAC_ADDR_MAX_MGMT_TU_DP_ENTRIES; max_offset = MAC_ADDR_MAX_MGMT_TU_DP_WCOUNT; break; default: printk(KERN_ERR"Bad type!!! 0x%08x\n", type); max_index = 0; max_offset = 0; break; } for (index = 0; index < max_index; index++) { for (offset = 0; offset < max_offset; offset++) { val = initial_val | (type << MAC_ADDR_TYPE_SHIFT) | (index << MAC_ADDR_IDX_SHIFT) | (offset); ql_write32(qdev, MAC_ADDR_IDX, val); result_index = 0; while ((result_index & MAC_ADDR_MR) == 0) { result_index = ql_read32(qdev, MAC_ADDR_IDX); } result_data = ql_read32(qdev, MAC_ADDR_DATA); *buf = result_index; buf++; *buf = result_data; buf++; } } } } static void ql_get_sem_registers(struct ql_adapter *qdev, u32 *buf) { u32 func_num, reg, reg_val; int status; for (func_num = 0; func_num < MAX_SEMAPHORE_FUNCTIONS ; func_num++) { reg = MPI_NIC_REG_BLOCK | (func_num << MPI_NIC_FUNCTION_SHIFT) | (SEM / 4); status = ql_read_mpi_reg(qdev, reg, ®_val); *buf = reg_val; /* if the read failed then dead fill the element. */ if (!status) *buf = 0xdeadbeef; buf++; } } /* Create a coredump segment header */ static void ql_build_coredump_seg_header( struct mpi_coredump_segment_header *seg_hdr, u32 seg_number, u32 seg_size, u8 *desc) { memset(seg_hdr, 0, sizeof(struct mpi_coredump_segment_header)); seg_hdr->cookie = MPI_COREDUMP_COOKIE; seg_hdr->segNum = seg_number; seg_hdr->segSize = seg_size; memcpy(seg_hdr->description, desc, (sizeof(seg_hdr->description)) - 1); } /* * This function should be called when a coredump / probedump * is to be extracted from the HBA. It is assumed there is a * qdev structure that contains the base address of the register * space for this function as well as a coredump structure that * will contain the dump. */ int ql_core_dump(struct ql_adapter *qdev, struct ql_mpi_coredump *mpi_coredump) { int status; int i; if (!mpi_coredump) { netif_err(qdev, drv, qdev->ndev, "No memory available.\n"); return -ENOMEM; } /* Try to get the spinlock, but dont worry if * it isn't available. If the firmware died it * might be holding the sem. */ ql_sem_spinlock(qdev, SEM_PROC_REG_MASK); status = ql_pause_mpi_risc(qdev); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed RISC pause. Status = 0x%.08x\n", status); goto err; } /* Insert the global header */ memset(&(mpi_coredump->mpi_global_header), 0, sizeof(struct mpi_coredump_global_header)); mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE; mpi_coredump->mpi_global_header.headerSize = sizeof(struct mpi_coredump_global_header); mpi_coredump->mpi_global_header.imageSize = sizeof(struct ql_mpi_coredump); memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump", sizeof(mpi_coredump->mpi_global_header.idString)); /* Get generic NIC reg dump */ ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr, NIC1_CONTROL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic_regs), "NIC1 Registers"); ql_build_coredump_seg_header(&mpi_coredump->nic2_regs_seg_hdr, NIC2_CONTROL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic2_regs), "NIC2 Registers"); /* Get XGMac registers. (Segment 18, Rev C. step 21) */ ql_build_coredump_seg_header(&mpi_coredump->xgmac1_seg_hdr, NIC1_XGMAC_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->xgmac1), "NIC1 XGMac Registers"); ql_build_coredump_seg_header(&mpi_coredump->xgmac2_seg_hdr, NIC2_XGMAC_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->xgmac2), "NIC2 XGMac Registers"); if (qdev->func & 1) { /* Odd means our function is NIC 2 */ for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++) mpi_coredump->nic2_regs[i] = ql_read32(qdev, i * sizeof(u32)); for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++) mpi_coredump->nic_regs[i] = ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4); ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 0); ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 1); } else { /* Even means our function is NIC 1 */ for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++) mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32)); for (i = 0; i < NIC_REGS_DUMP_WORD_COUNT; i++) mpi_coredump->nic2_regs[i] = ql_read_other_func_reg(qdev, (i * sizeof(u32)) / 4); ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac1[0], 0); ql_get_xgmac_regs(qdev, &mpi_coredump->xgmac2[0], 1); } /* Rev C. Step 20a */ ql_build_coredump_seg_header(&mpi_coredump->xaui_an_hdr, XAUI_AN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xaui_an), "XAUI AN Registers"); /* Rev C. Step 20b */ ql_build_coredump_seg_header(&mpi_coredump->xaui_hss_pcs_hdr, XAUI_HSS_PCS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xaui_hss_pcs), "XAUI HSS PCS Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_an_hdr, XFI_AN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_an), "XFI AN Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_train_hdr, XFI_TRAIN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_train), "XFI TRAIN Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pcs_hdr, XFI_HSS_PCS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_hss_pcs), "XFI HSS PCS Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_tx_hdr, XFI_HSS_TX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_hss_tx), "XFI HSS TX Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_rx_hdr, XFI_HSS_RX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_hss_rx), "XFI HSS RX Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi_hss_pll_hdr, XFI_HSS_PLL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes_xfi_hss_pll), "XFI HSS PLL Registers"); ql_build_coredump_seg_header(&mpi_coredump->xaui2_an_hdr, XAUI2_AN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xaui_an), "XAUI2 AN Registers"); ql_build_coredump_seg_header(&mpi_coredump->xaui2_hss_pcs_hdr, XAUI2_HSS_PCS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xaui_hss_pcs), "XAUI2 HSS PCS Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_an_hdr, XFI2_AN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_an), "XFI2 AN Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_train_hdr, XFI2_TRAIN_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_train), "XFI2 TRAIN Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pcs_hdr, XFI2_HSS_PCS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_hss_pcs), "XFI2 HSS PCS Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_tx_hdr, XFI2_HSS_TX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_hss_tx), "XFI2 HSS TX Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_rx_hdr, XFI2_HSS_RX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_hss_rx), "XFI2 HSS RX Registers"); ql_build_coredump_seg_header(&mpi_coredump->xfi2_hss_pll_hdr, XFI2_HSS_PLL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->serdes2_xfi_hss_pll), "XFI2 HSS PLL Registers"); status = ql_get_serdes_regs(qdev, mpi_coredump); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed Dump of Serdes Registers. Status = 0x%.08x\n", status); goto err; } ql_build_coredump_seg_header(&mpi_coredump->core_regs_seg_hdr, CORE_SEG_NUM, sizeof(mpi_coredump->core_regs_seg_hdr) + sizeof(mpi_coredump->mpi_core_regs) + sizeof(mpi_coredump->mpi_core_sh_regs), "Core Registers"); /* Get the MPI Core Registers */ status = ql_get_mpi_regs(qdev, &mpi_coredump->mpi_core_regs[0], MPI_CORE_REGS_ADDR, MPI_CORE_REGS_CNT); if (status) goto err; /* Get the 16 MPI shadow registers */ status = ql_get_mpi_shadow_regs(qdev, &mpi_coredump->mpi_core_sh_regs[0]); if (status) goto err; /* Get the Test Logic Registers */ ql_build_coredump_seg_header(&mpi_coredump->test_logic_regs_seg_hdr, TEST_LOGIC_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->test_logic_regs), "Test Logic Regs"); status = ql_get_mpi_regs(qdev, &mpi_coredump->test_logic_regs[0], TEST_REGS_ADDR, TEST_REGS_CNT); if (status) goto err; /* Get the RMII Registers */ ql_build_coredump_seg_header(&mpi_coredump->rmii_regs_seg_hdr, RMII_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->rmii_regs), "RMII Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->rmii_regs[0], RMII_REGS_ADDR, RMII_REGS_CNT); if (status) goto err; /* Get the FCMAC1 Registers */ ql_build_coredump_seg_header(&mpi_coredump->fcmac1_regs_seg_hdr, FCMAC1_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->fcmac1_regs), "FCMAC1 Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac1_regs[0], FCMAC1_REGS_ADDR, FCMAC_REGS_CNT); if (status) goto err; /* Get the FCMAC2 Registers */ ql_build_coredump_seg_header(&mpi_coredump->fcmac2_regs_seg_hdr, FCMAC2_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->fcmac2_regs), "FCMAC2 Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->fcmac2_regs[0], FCMAC2_REGS_ADDR, FCMAC_REGS_CNT); if (status) goto err; /* Get the FC1 MBX Registers */ ql_build_coredump_seg_header(&mpi_coredump->fc1_mbx_regs_seg_hdr, FC1_MBOX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->fc1_mbx_regs), "FC1 MBox Regs"); status = ql_get_mpi_regs(qdev, &mpi_coredump->fc1_mbx_regs[0], FC1_MBX_REGS_ADDR, FC_MBX_REGS_CNT); if (status) goto err; /* Get the IDE Registers */ ql_build_coredump_seg_header(&mpi_coredump->ide_regs_seg_hdr, IDE_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->ide_regs), "IDE Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->ide_regs[0], IDE_REGS_ADDR, IDE_REGS_CNT); if (status) goto err; /* Get the NIC1 MBX Registers */ ql_build_coredump_seg_header(&mpi_coredump->nic1_mbx_regs_seg_hdr, NIC1_MBOX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic1_mbx_regs), "NIC1 MBox Regs"); status = ql_get_mpi_regs(qdev, &mpi_coredump->nic1_mbx_regs[0], NIC1_MBX_REGS_ADDR, NIC_MBX_REGS_CNT); if (status) goto err; /* Get the SMBus Registers */ ql_build_coredump_seg_header(&mpi_coredump->smbus_regs_seg_hdr, SMBUS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->smbus_regs), "SMBus Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->smbus_regs[0], SMBUS_REGS_ADDR, SMBUS_REGS_CNT); if (status) goto err; /* Get the FC2 MBX Registers */ ql_build_coredump_seg_header(&mpi_coredump->fc2_mbx_regs_seg_hdr, FC2_MBOX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->fc2_mbx_regs), "FC2 MBox Regs"); status = ql_get_mpi_regs(qdev, &mpi_coredump->fc2_mbx_regs[0], FC2_MBX_REGS_ADDR, FC_MBX_REGS_CNT); if (status) goto err; /* Get the NIC2 MBX Registers */ ql_build_coredump_seg_header(&mpi_coredump->nic2_mbx_regs_seg_hdr, NIC2_MBOX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic2_mbx_regs), "NIC2 MBox Regs"); status = ql_get_mpi_regs(qdev, &mpi_coredump->nic2_mbx_regs[0], NIC2_MBX_REGS_ADDR, NIC_MBX_REGS_CNT); if (status) goto err; /* Get the I2C Registers */ ql_build_coredump_seg_header(&mpi_coredump->i2c_regs_seg_hdr, I2C_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->i2c_regs), "I2C Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->i2c_regs[0], I2C_REGS_ADDR, I2C_REGS_CNT); if (status) goto err; /* Get the MEMC Registers */ ql_build_coredump_seg_header(&mpi_coredump->memc_regs_seg_hdr, MEMC_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->memc_regs), "MEMC Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->memc_regs[0], MEMC_REGS_ADDR, MEMC_REGS_CNT); if (status) goto err; /* Get the PBus Registers */ ql_build_coredump_seg_header(&mpi_coredump->pbus_regs_seg_hdr, PBUS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->pbus_regs), "PBUS Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->pbus_regs[0], PBUS_REGS_ADDR, PBUS_REGS_CNT); if (status) goto err; /* Get the MDE Registers */ ql_build_coredump_seg_header(&mpi_coredump->mde_regs_seg_hdr, MDE_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->mde_regs), "MDE Registers"); status = ql_get_mpi_regs(qdev, &mpi_coredump->mde_regs[0], MDE_REGS_ADDR, MDE_REGS_CNT); if (status) goto err; ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr, MISC_NIC_INFO_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->misc_nic_info), "MISC NIC INFO"); mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count; mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count; mpi_coredump->misc_nic_info.intr_count = qdev->intr_count; mpi_coredump->misc_nic_info.function = qdev->func; /* Segment 31 */ /* Get indexed register values. */ ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr, INTR_STATES_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->intr_states), "INTR States"); ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]); ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr, CAM_ENTRIES_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->cam_entries), "CAM Entries"); status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]); if (status) goto err; ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr, ROUTING_WORDS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic_routing_words), "Routing Words"); status = ql_get_routing_entries(qdev, &mpi_coredump->nic_routing_words[0]); if (status) goto err; /* Segment 34 (Rev C. step 23) */ ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr, ETS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->ets), "ETS Registers"); status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]); if (status) goto err; ql_build_coredump_seg_header(&mpi_coredump->probe_dump_seg_hdr, PROBE_DUMP_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->probe_dump), "Probe Dump"); ql_get_probe_dump(qdev, &mpi_coredump->probe_dump[0]); ql_build_coredump_seg_header(&mpi_coredump->routing_reg_seg_hdr, ROUTING_INDEX_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->routing_regs), "Routing Regs"); status = ql_get_routing_index_registers(qdev, &mpi_coredump->routing_regs[0]); if (status) goto err; ql_build_coredump_seg_header(&mpi_coredump->mac_prot_reg_seg_hdr, MAC_PROTOCOL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->mac_prot_regs), "MAC Prot Regs"); ql_get_mac_protocol_registers(qdev, &mpi_coredump->mac_prot_regs[0]); /* Get the semaphore registers for all 5 functions */ ql_build_coredump_seg_header(&mpi_coredump->sem_regs_seg_hdr, SEM_REGS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->sem_regs), "Sem Registers"); ql_get_sem_registers(qdev, &mpi_coredump->sem_regs[0]); /* Prevent the mpi restarting while we dump the memory.*/ ql_write_mpi_reg(qdev, MPI_TEST_FUNC_RST_STS, MPI_TEST_FUNC_RST_FRC); /* clear the pause */ status = ql_unpause_mpi_risc(qdev); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed RISC unpause. Status = 0x%.08x\n", status); goto err; } /* Reset the RISC so we can dump RAM */ status = ql_hard_reset_mpi_risc(qdev); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed RISC reset. Status = 0x%.08x\n", status); goto err; } ql_build_coredump_seg_header(&mpi_coredump->code_ram_seg_hdr, WCS_RAM_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->code_ram), "WCS RAM"); status = ql_dump_risc_ram_area(qdev, &mpi_coredump->code_ram[0], CODE_RAM_ADDR, CODE_RAM_CNT); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed Dump of CODE RAM. Status = 0x%.08x\n", status); goto err; } /* Insert the segment header */ ql_build_coredump_seg_header(&mpi_coredump->memc_ram_seg_hdr, MEMC_RAM_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->memc_ram), "MEMC RAM"); status = ql_dump_risc_ram_area(qdev, &mpi_coredump->memc_ram[0], MEMC_RAM_ADDR, MEMC_RAM_CNT); if (status) { netif_err(qdev, drv, qdev->ndev, "Failed Dump of MEMC RAM. Status = 0x%.08x\n", status); goto err; } err: ql_sem_unlock(qdev, SEM_PROC_REG_MASK); /* does flush too */ return status; } static void ql_get_core_dump(struct ql_adapter *qdev) { if (!ql_own_firmware(qdev)) { netif_err(qdev, drv, qdev->ndev, "Don't own firmware!\n"); return; } if (!netif_running(qdev->ndev)) { netif_err(qdev, ifup, qdev->ndev, "Force Coredump can only be done from interface that is up.\n"); return; } if (ql_mb_sys_err(qdev)) { netif_err(qdev, ifup, qdev->ndev, "Fail force coredump with ql_mb_sys_err().\n"); return; } } void ql_gen_reg_dump(struct ql_adapter *qdev, struct ql_reg_dump *mpi_coredump) { int i, status; memset(&(mpi_coredump->mpi_global_header), 0, sizeof(struct mpi_coredump_global_header)); mpi_coredump->mpi_global_header.cookie = MPI_COREDUMP_COOKIE; mpi_coredump->mpi_global_header.headerSize = sizeof(struct mpi_coredump_global_header); mpi_coredump->mpi_global_header.imageSize = sizeof(struct ql_reg_dump); memcpy(mpi_coredump->mpi_global_header.idString, "MPI Coredump", sizeof(mpi_coredump->mpi_global_header.idString)); /* segment 16 */ ql_build_coredump_seg_header(&mpi_coredump->misc_nic_seg_hdr, MISC_NIC_INFO_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->misc_nic_info), "MISC NIC INFO"); mpi_coredump->misc_nic_info.rx_ring_count = qdev->rx_ring_count; mpi_coredump->misc_nic_info.tx_ring_count = qdev->tx_ring_count; mpi_coredump->misc_nic_info.intr_count = qdev->intr_count; mpi_coredump->misc_nic_info.function = qdev->func; /* Segment 16, Rev C. Step 18 */ ql_build_coredump_seg_header(&mpi_coredump->nic_regs_seg_hdr, NIC1_CONTROL_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic_regs), "NIC Registers"); /* Get generic reg dump */ for (i = 0; i < 64; i++) mpi_coredump->nic_regs[i] = ql_read32(qdev, i * sizeof(u32)); /* Segment 31 */ /* Get indexed register values. */ ql_build_coredump_seg_header(&mpi_coredump->intr_states_seg_hdr, INTR_STATES_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->intr_states), "INTR States"); ql_get_intr_states(qdev, &mpi_coredump->intr_states[0]); ql_build_coredump_seg_header(&mpi_coredump->cam_entries_seg_hdr, CAM_ENTRIES_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->cam_entries), "CAM Entries"); status = ql_get_cam_entries(qdev, &mpi_coredump->cam_entries[0]); if (status) return; ql_build_coredump_seg_header(&mpi_coredump->nic_routing_words_seg_hdr, ROUTING_WORDS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->nic_routing_words), "Routing Words"); status = ql_get_routing_entries(qdev, &mpi_coredump->nic_routing_words[0]); if (status) return; /* Segment 34 (Rev C. step 23) */ ql_build_coredump_seg_header(&mpi_coredump->ets_seg_hdr, ETS_SEG_NUM, sizeof(struct mpi_coredump_segment_header) + sizeof(mpi_coredump->ets), "ETS Registers"); status = ql_get_ets_regs(qdev, &mpi_coredump->ets[0]); if (status) return; if (test_bit(QL_FRC_COREDUMP, &qdev->flags)) ql_get_core_dump(qdev); } /* Coredump to messages log file using separate worker thread */ void ql_mpi_core_to_log(struct work_struct *work) { struct ql_adapter *qdev = container_of(work, struct ql_adapter, mpi_core_to_log.work); u32 *tmp, count; int i; count = sizeof(struct ql_mpi_coredump) / sizeof(u32); tmp = (u32 *)qdev->mpi_coredump; netif_printk(qdev, drv, KERN_DEBUG, qdev->ndev, "Core is dumping to log file!\n"); for (i = 0; i < count; i += 8) { printk(KERN_ERR "%.08x: %.08x %.08x %.08x %.08x %.08x " "%.08x %.08x %.08x\n", i, tmp[i + 0], tmp[i + 1], tmp[i + 2], tmp[i + 3], tmp[i + 4], tmp[i + 5], tmp[i + 6], tmp[i + 7]); msleep(5); } } #ifdef QL_REG_DUMP static void ql_dump_intr_states(struct ql_adapter *qdev) { int i; u32 value; for (i = 0; i < qdev->intr_count; i++) { ql_write32(qdev, INTR_EN, qdev->intr_context[i].intr_read_mask); value = ql_read32(qdev, INTR_EN); printk(KERN_ERR PFX "%s: Interrupt %d is %s.\n", qdev->ndev->name, i, (value & INTR_EN_EN ? "enabled" : "disabled")); } } void ql_dump_xgmac_control_regs(struct ql_adapter *qdev) { u32 data; if (ql_sem_spinlock(qdev, qdev->xg_sem_mask)) { printk(KERN_ERR "%s: Couldn't get xgmac sem.\n", __func__); return; } ql_read_xgmac_reg(qdev, PAUSE_SRC_LO, &data); printk(KERN_ERR PFX "%s: PAUSE_SRC_LO = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, PAUSE_SRC_HI, &data); printk(KERN_ERR PFX "%s: PAUSE_SRC_HI = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data); printk(KERN_ERR PFX "%s: GLOBAL_CFG = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, TX_CFG, &data); printk(KERN_ERR PFX "%s: TX_CFG = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, RX_CFG, &data); printk(KERN_ERR PFX "%s: RX_CFG = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, FLOW_CTL, &data); printk(KERN_ERR PFX "%s: FLOW_CTL = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, PAUSE_OPCODE, &data); printk(KERN_ERR PFX "%s: PAUSE_OPCODE = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, PAUSE_TIMER, &data); printk(KERN_ERR PFX "%s: PAUSE_TIMER = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_LO, &data); printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_LO = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, PAUSE_FRM_DEST_HI, &data); printk(KERN_ERR PFX "%s: PAUSE_FRM_DEST_HI = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_TX_PARAMS, &data); printk(KERN_ERR PFX "%s: MAC_TX_PARAMS = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_RX_PARAMS, &data); printk(KERN_ERR PFX "%s: MAC_RX_PARAMS = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_SYS_INT, &data); printk(KERN_ERR PFX "%s: MAC_SYS_INT = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_SYS_INT_MASK, &data); printk(KERN_ERR PFX "%s: MAC_SYS_INT_MASK = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_MGMT_INT, &data); printk(KERN_ERR PFX "%s: MAC_MGMT_INT = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, MAC_MGMT_IN_MASK, &data); printk(KERN_ERR PFX "%s: MAC_MGMT_IN_MASK = 0x%.08x.\n", qdev->ndev->name, data); ql_read_xgmac_reg(qdev, EXT_ARB_MODE, &data); printk(KERN_ERR PFX "%s: EXT_ARB_MODE = 0x%.08x.\n", qdev->ndev->name, data); ql_sem_unlock(qdev, qdev->xg_sem_mask); } static void ql_dump_ets_regs(struct ql_adapter *qdev) { } static void ql_dump_cam_entries(struct ql_adapter *qdev) { int i; u32 value[3]; i = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK); if (i) return; for (i = 0; i < 4; i++) { if (ql_get_mac_addr_reg(qdev, MAC_ADDR_TYPE_CAM_MAC, i, value)) { printk(KERN_ERR PFX "%s: Failed read of mac index register.\n", __func__); return; } else { if (value[0]) printk(KERN_ERR PFX "%s: CAM index %d CAM Lookup Lower = 0x%.08x:%.08x, Output = 0x%.08x.\n", qdev->ndev->name, i, value[1], value[0], value[2]); } } for (i = 0; i < 32; i++) { if (ql_get_mac_addr_reg (qdev, MAC_ADDR_TYPE_MULTI_MAC, i, value)) { printk(KERN_ERR PFX "%s: Failed read of mac index register.\n", __func__); return; } else { if (value[0]) printk(KERN_ERR PFX "%s: MCAST index %d CAM Lookup Lower = 0x%.08x:%.08x.\n", qdev->ndev->name, i, value[1], value[0]); } } ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK); } void ql_dump_routing_entries(struct ql_adapter *qdev) { int i; u32 value; i = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK); if (i) return; for (i = 0; i < 16; i++) { value = 0; if (ql_get_routing_reg(qdev, i, &value)) { printk(KERN_ERR PFX "%s: Failed read of routing index register.\n", __func__); return; } else { if (value) printk(KERN_ERR PFX "%s: Routing Mask %d = 0x%.08x.\n", qdev->ndev->name, i, value); } } ql_sem_unlock(qdev, SEM_RT_IDX_MASK); } void ql_dump_regs(struct ql_adapter *qdev) { printk(KERN_ERR PFX "reg dump for function #%d.\n", qdev->func); printk(KERN_ERR PFX "SYS = 0x%x.\n", ql_read32(qdev, SYS)); printk(KERN_ERR PFX "RST_FO = 0x%x.\n", ql_read32(qdev, RST_FO)); printk(KERN_ERR PFX "FSC = 0x%x.\n", ql_read32(qdev, FSC)); printk(KERN_ERR PFX "CSR = 0x%x.\n", ql_read32(qdev, CSR)); printk(KERN_ERR PFX "ICB_RID = 0x%x.\n", ql_read32(qdev, ICB_RID)); printk(KERN_ERR PFX "ICB_L = 0x%x.\n", ql_read32(qdev, ICB_L)); printk(KERN_ERR PFX "ICB_H = 0x%x.\n", ql_read32(qdev, ICB_H)); printk(KERN_ERR PFX "CFG = 0x%x.\n", ql_read32(qdev, CFG)); printk(KERN_ERR PFX "BIOS_ADDR = 0x%x.\n", ql_read32(qdev, BIOS_ADDR)); printk(KERN_ERR PFX "STS = 0x%x.\n", ql_read32(qdev, STS)); printk(KERN_ERR PFX "INTR_EN = 0x%x.\n", ql_read32(qdev, INTR_EN)); printk(KERN_ERR PFX "INTR_MASK = 0x%x.\n", ql_read32(qdev, INTR_MASK)); printk(KERN_ERR PFX "ISR1 = 0x%x.\n", ql_read32(qdev, ISR1)); printk(KERN_ERR PFX "ISR2 = 0x%x.\n", ql_read32(qdev, ISR2)); printk(KERN_ERR PFX "ISR3 = 0x%x.\n", ql_read32(qdev, ISR3)); printk(KERN_ERR PFX "ISR4 = 0x%x.\n", ql_read32(qdev, ISR4)); printk(KERN_ERR PFX "REV_ID = 0x%x.\n", ql_read32(qdev, REV_ID)); printk(KERN_ERR PFX "FRC_ECC_ERR = 0x%x.\n", ql_read32(qdev, FRC_ECC_ERR)); printk(KERN_ERR PFX "ERR_STS = 0x%x.\n", ql_read32(qdev, ERR_STS)); printk(KERN_ERR PFX "RAM_DBG_ADDR = 0x%x.\n", ql_read32(qdev, RAM_DBG_ADDR)); printk(KERN_ERR PFX "RAM_DBG_DATA = 0x%x.\n", ql_read32(qdev, RAM_DBG_DATA)); printk(KERN_ERR PFX "ECC_ERR_CNT = 0x%x.\n", ql_read32(qdev, ECC_ERR_CNT)); printk(KERN_ERR PFX "SEM = 0x%x.\n", ql_read32(qdev, SEM)); printk(KERN_ERR PFX "GPIO_1 = 0x%x.\n", ql_read32(qdev, GPIO_1)); printk(KERN_ERR PFX "GPIO_2 = 0x%x.\n", ql_read32(qdev, GPIO_2)); printk(KERN_ERR PFX "GPIO_3 = 0x%x.\n", ql_read32(qdev, GPIO_3)); printk(KERN_ERR PFX "XGMAC_ADDR = 0x%x.\n", ql_read32(qdev, XGMAC_ADDR)); printk(KERN_ERR PFX "XGMAC_DATA = 0x%x.\n", ql_read32(qdev, XGMAC_DATA)); printk(KERN_ERR PFX "NIC_ETS = 0x%x.\n", ql_read32(qdev, NIC_ETS)); printk(KERN_ERR PFX "CNA_ETS = 0x%x.\n", ql_read32(qdev, CNA_ETS)); printk(KERN_ERR PFX "FLASH_ADDR = 0x%x.\n", ql_read32(qdev, FLASH_ADDR)); printk(KERN_ERR PFX "FLASH_DATA = 0x%x.\n", ql_read32(qdev, FLASH_DATA)); printk(KERN_ERR PFX "CQ_STOP = 0x%x.\n", ql_read32(qdev, CQ_STOP)); printk(KERN_ERR PFX "PAGE_TBL_RID = 0x%x.\n", ql_read32(qdev, PAGE_TBL_RID)); printk(KERN_ERR PFX "WQ_PAGE_TBL_LO = 0x%x.\n", ql_read32(qdev, WQ_PAGE_TBL_LO)); printk(KERN_ERR PFX "WQ_PAGE_TBL_HI = 0x%x.\n", ql_read32(qdev, WQ_PAGE_TBL_HI)); printk(KERN_ERR PFX "CQ_PAGE_TBL_LO = 0x%x.\n", ql_read32(qdev, CQ_PAGE_TBL_LO)); printk(KERN_ERR PFX "CQ_PAGE_TBL_HI = 0x%x.\n", ql_read32(qdev, CQ_PAGE_TBL_HI)); printk(KERN_ERR PFX "COS_DFLT_CQ1 = 0x%x.\n", ql_read32(qdev, COS_DFLT_CQ1)); printk(KERN_ERR PFX "COS_DFLT_CQ2 = 0x%x.\n", ql_read32(qdev, COS_DFLT_CQ2)); printk(KERN_ERR PFX "SPLT_HDR = 0x%x.\n", ql_read32(qdev, SPLT_HDR)); printk(KERN_ERR PFX "FC_PAUSE_THRES = 0x%x.\n", ql_read32(qdev, FC_PAUSE_THRES)); printk(KERN_ERR PFX "NIC_PAUSE_THRES = 0x%x.\n", ql_read32(qdev, NIC_PAUSE_THRES)); printk(KERN_ERR PFX "FC_ETHERTYPE = 0x%x.\n", ql_read32(qdev, FC_ETHERTYPE)); printk(KERN_ERR PFX "FC_RCV_CFG = 0x%x.\n", ql_read32(qdev, FC_RCV_CFG)); printk(KERN_ERR PFX "NIC_RCV_CFG = 0x%x.\n", ql_read32(qdev, NIC_RCV_CFG)); printk(KERN_ERR PFX "FC_COS_TAGS = 0x%x.\n", ql_read32(qdev, FC_COS_TAGS)); printk(KERN_ERR PFX "NIC_COS_TAGS = 0x%x.\n", ql_read32(qdev, NIC_COS_TAGS)); printk(KERN_ERR PFX "MGMT_RCV_CFG = 0x%x.\n", ql_read32(qdev, MGMT_RCV_CFG)); printk(KERN_ERR PFX "XG_SERDES_ADDR = 0x%x.\n", ql_read32(qdev, XG_SERDES_ADDR)); printk(KERN_ERR PFX "XG_SERDES_DATA = 0x%x.\n", ql_read32(qdev, XG_SERDES_DATA)); printk(KERN_ERR PFX "PRB_MX_ADDR = 0x%x.\n", ql_read32(qdev, PRB_MX_ADDR)); printk(KERN_ERR PFX "PRB_MX_DATA = 0x%x.\n", ql_read32(qdev, PRB_MX_DATA)); ql_dump_intr_states(qdev); ql_dump_xgmac_control_regs(qdev); ql_dump_ets_regs(qdev); ql_dump_cam_entries(qdev); ql_dump_routing_entries(qdev); } #endif #ifdef QL_STAT_DUMP void ql_dump_stat(struct ql_adapter *qdev) { printk(KERN_ERR "%s: Enter.\n", __func__); printk(KERN_ERR "tx_pkts = %ld\n", (unsigned long)qdev->nic_stats.tx_pkts); printk(KERN_ERR "tx_bytes = %ld\n", (unsigned long)qdev->nic_stats.tx_bytes); printk(KERN_ERR "tx_mcast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.tx_mcast_pkts); printk(KERN_ERR "tx_bcast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.tx_bcast_pkts); printk(KERN_ERR "tx_ucast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.tx_ucast_pkts); printk(KERN_ERR "tx_ctl_pkts = %ld.\n", (unsigned long)qdev->nic_stats.tx_ctl_pkts); printk(KERN_ERR "tx_pause_pkts = %ld.\n", (unsigned long)qdev->nic_stats.tx_pause_pkts); printk(KERN_ERR "tx_64_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_64_pkt); printk(KERN_ERR "tx_65_to_127_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_65_to_127_pkt); printk(KERN_ERR "tx_128_to_255_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_128_to_255_pkt); printk(KERN_ERR "tx_256_511_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_256_511_pkt); printk(KERN_ERR "tx_512_to_1023_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_512_to_1023_pkt); printk(KERN_ERR "tx_1024_to_1518_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_1024_to_1518_pkt); printk(KERN_ERR "tx_1519_to_max_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_1519_to_max_pkt); printk(KERN_ERR "tx_undersize_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_undersize_pkt); printk(KERN_ERR "tx_oversize_pkt = %ld.\n", (unsigned long)qdev->nic_stats.tx_oversize_pkt); printk(KERN_ERR "rx_bytes = %ld.\n", (unsigned long)qdev->nic_stats.rx_bytes); printk(KERN_ERR "rx_bytes_ok = %ld.\n", (unsigned long)qdev->nic_stats.rx_bytes_ok); printk(KERN_ERR "rx_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_pkts); printk(KERN_ERR "rx_pkts_ok = %ld.\n", (unsigned long)qdev->nic_stats.rx_pkts_ok); printk(KERN_ERR "rx_bcast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_bcast_pkts); printk(KERN_ERR "rx_mcast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_mcast_pkts); printk(KERN_ERR "rx_ucast_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_ucast_pkts); printk(KERN_ERR "rx_undersize_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_undersize_pkts); printk(KERN_ERR "rx_oversize_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_oversize_pkts); printk(KERN_ERR "rx_jabber_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_jabber_pkts); printk(KERN_ERR "rx_undersize_fcerr_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_undersize_fcerr_pkts); printk(KERN_ERR "rx_drop_events = %ld.\n", (unsigned long)qdev->nic_stats.rx_drop_events); printk(KERN_ERR "rx_fcerr_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_fcerr_pkts); printk(KERN_ERR "rx_align_err = %ld.\n", (unsigned long)qdev->nic_stats.rx_align_err); printk(KERN_ERR "rx_symbol_err = %ld.\n", (unsigned long)qdev->nic_stats.rx_symbol_err); printk(KERN_ERR "rx_mac_err = %ld.\n", (unsigned long)qdev->nic_stats.rx_mac_err); printk(KERN_ERR "rx_ctl_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_ctl_pkts); printk(KERN_ERR "rx_pause_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_pause_pkts); printk(KERN_ERR "rx_64_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_64_pkts); printk(KERN_ERR "rx_65_to_127_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_65_to_127_pkts); printk(KERN_ERR "rx_128_255_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_128_255_pkts); printk(KERN_ERR "rx_256_511_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_256_511_pkts); printk(KERN_ERR "rx_512_to_1023_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_512_to_1023_pkts); printk(KERN_ERR "rx_1024_to_1518_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_1024_to_1518_pkts); printk(KERN_ERR "rx_1519_to_max_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_1519_to_max_pkts); printk(KERN_ERR "rx_len_err_pkts = %ld.\n", (unsigned long)qdev->nic_stats.rx_len_err_pkts); }; #endif #ifdef QL_DEV_DUMP void ql_dump_qdev(struct ql_adapter *qdev) { int i; printk(KERN_ERR PFX "qdev->flags = %lx.\n", qdev->flags); printk(KERN_ERR PFX "qdev->vlgrp = %p.\n", qdev->vlgrp); printk(KERN_ERR PFX "qdev->pdev = %p.\n", qdev->pdev); printk(KERN_ERR PFX "qdev->ndev = %p.\n", qdev->ndev); printk(KERN_ERR PFX "qdev->chip_rev_id = %d.\n", qdev->chip_rev_id); printk(KERN_ERR PFX "qdev->reg_base = %p.\n", qdev->reg_base); printk(KERN_ERR PFX "qdev->doorbell_area = %p.\n", qdev->doorbell_area); printk(KERN_ERR PFX "qdev->doorbell_area_size = %d.\n", qdev->doorbell_area_size); printk(KERN_ERR PFX "msg_enable = %x.\n", qdev->msg_enable); printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_area = %p.\n", qdev->rx_ring_shadow_reg_area); printk(KERN_ERR PFX "qdev->rx_ring_shadow_reg_dma = %llx.\n", (unsigned long long) qdev->rx_ring_shadow_reg_dma); printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_area = %p.\n", qdev->tx_ring_shadow_reg_area); printk(KERN_ERR PFX "qdev->tx_ring_shadow_reg_dma = %llx.\n", (unsigned long long) qdev->tx_ring_shadow_reg_dma); printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count); if (qdev->msi_x_entry) for (i = 0; i < qdev->intr_count; i++) { printk(KERN_ERR PFX "msi_x_entry.[%d]vector = %d.\n", i, qdev->msi_x_entry[i].vector); printk(KERN_ERR PFX "msi_x_entry.[%d]entry = %d.\n", i, qdev->msi_x_entry[i].entry); } for (i = 0; i < qdev->intr_count; i++) { printk(KERN_ERR PFX "intr_context[%d].qdev = %p.\n", i, qdev->intr_context[i].qdev); printk(KERN_ERR PFX "intr_context[%d].intr = %d.\n", i, qdev->intr_context[i].intr); printk(KERN_ERR PFX "intr_context[%d].hooked = %d.\n", i, qdev->intr_context[i].hooked); printk(KERN_ERR PFX "intr_context[%d].intr_en_mask = 0x%08x.\n", i, qdev->intr_context[i].intr_en_mask); printk(KERN_ERR PFX "intr_context[%d].intr_dis_mask = 0x%08x.\n", i, qdev->intr_context[i].intr_dis_mask); printk(KERN_ERR PFX "intr_context[%d].intr_read_mask = 0x%08x.\n", i, qdev->intr_context[i].intr_read_mask); } printk(KERN_ERR PFX "qdev->tx_ring_count = %d.\n", qdev->tx_ring_count); printk(KERN_ERR PFX "qdev->rx_ring_count = %d.\n", qdev->rx_ring_count); printk(KERN_ERR PFX "qdev->ring_mem_size = %d.\n", qdev->ring_mem_size); printk(KERN_ERR PFX "qdev->ring_mem = %p.\n", qdev->ring_mem); printk(KERN_ERR PFX "qdev->intr_count = %d.\n", qdev->intr_count); printk(KERN_ERR PFX "qdev->tx_ring = %p.\n", qdev->tx_ring); printk(KERN_ERR PFX "qdev->rss_ring_count = %d.\n", qdev->rss_ring_count); printk(KERN_ERR PFX "qdev->rx_ring = %p.\n", qdev->rx_ring); printk(KERN_ERR PFX "qdev->default_rx_queue = %d.\n", qdev->default_rx_queue); printk(KERN_ERR PFX "qdev->xg_sem_mask = 0x%08x.\n", qdev->xg_sem_mask); printk(KERN_ERR PFX "qdev->port_link_up = 0x%08x.\n", qdev->port_link_up); printk(KERN_ERR PFX "qdev->port_init = 0x%08x.\n", qdev->port_init); } #endif #ifdef QL_CB_DUMP void ql_dump_wqicb(struct wqicb *wqicb) { printk(KERN_ERR PFX "Dumping wqicb stuff...\n"); printk(KERN_ERR PFX "wqicb->len = 0x%x.\n", le16_to_cpu(wqicb->len)); printk(KERN_ERR PFX "wqicb->flags = %x.\n", le16_to_cpu(wqicb->flags)); printk(KERN_ERR PFX "wqicb->cq_id_rss = %d.\n", le16_to_cpu(wqicb->cq_id_rss)); printk(KERN_ERR PFX "wqicb->rid = 0x%x.\n", le16_to_cpu(wqicb->rid)); printk(KERN_ERR PFX "wqicb->wq_addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(wqicb->addr)); printk(KERN_ERR PFX "wqicb->wq_cnsmr_idx_addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(wqicb->cnsmr_idx_addr)); } void ql_dump_tx_ring(struct tx_ring *tx_ring) { if (tx_ring == NULL) return; printk(KERN_ERR PFX "===================== Dumping tx_ring %d ===============.\n", tx_ring->wq_id); printk(KERN_ERR PFX "tx_ring->base = %p.\n", tx_ring->wq_base); printk(KERN_ERR PFX "tx_ring->base_dma = 0x%llx.\n", (unsigned long long) tx_ring->wq_base_dma); printk(KERN_ERR PFX "tx_ring->cnsmr_idx_sh_reg, addr = 0x%p, value = %d.\n", tx_ring->cnsmr_idx_sh_reg, tx_ring->cnsmr_idx_sh_reg ? ql_read_sh_reg(tx_ring->cnsmr_idx_sh_reg) : 0); printk(KERN_ERR PFX "tx_ring->size = %d.\n", tx_ring->wq_size); printk(KERN_ERR PFX "tx_ring->len = %d.\n", tx_ring->wq_len); printk(KERN_ERR PFX "tx_ring->prod_idx_db_reg = %p.\n", tx_ring->prod_idx_db_reg); printk(KERN_ERR PFX "tx_ring->valid_db_reg = %p.\n", tx_ring->valid_db_reg); printk(KERN_ERR PFX "tx_ring->prod_idx = %d.\n", tx_ring->prod_idx); printk(KERN_ERR PFX "tx_ring->cq_id = %d.\n", tx_ring->cq_id); printk(KERN_ERR PFX "tx_ring->wq_id = %d.\n", tx_ring->wq_id); printk(KERN_ERR PFX "tx_ring->q = %p.\n", tx_ring->q); printk(KERN_ERR PFX "tx_ring->tx_count = %d.\n", atomic_read(&tx_ring->tx_count)); } void ql_dump_ricb(struct ricb *ricb) { int i; printk(KERN_ERR PFX "===================== Dumping ricb ===============.\n"); printk(KERN_ERR PFX "Dumping ricb stuff...\n"); printk(KERN_ERR PFX "ricb->base_cq = %d.\n", ricb->base_cq & 0x1f); printk(KERN_ERR PFX "ricb->flags = %s%s%s%s%s%s%s%s%s.\n", ricb->base_cq & RSS_L4K ? "RSS_L4K " : "", ricb->flags & RSS_L6K ? "RSS_L6K " : "", ricb->flags & RSS_LI ? "RSS_LI " : "", ricb->flags & RSS_LB ? "RSS_LB " : "", ricb->flags & RSS_LM ? "RSS_LM " : "", ricb->flags & RSS_RI4 ? "RSS_RI4 " : "", ricb->flags & RSS_RT4 ? "RSS_RT4 " : "", ricb->flags & RSS_RI6 ? "RSS_RI6 " : "", ricb->flags & RSS_RT6 ? "RSS_RT6 " : ""); printk(KERN_ERR PFX "ricb->mask = 0x%.04x.\n", le16_to_cpu(ricb->mask)); for (i = 0; i < 16; i++) printk(KERN_ERR PFX "ricb->hash_cq_id[%d] = 0x%.08x.\n", i, le32_to_cpu(ricb->hash_cq_id[i])); for (i = 0; i < 10; i++) printk(KERN_ERR PFX "ricb->ipv6_hash_key[%d] = 0x%.08x.\n", i, le32_to_cpu(ricb->ipv6_hash_key[i])); for (i = 0; i < 4; i++) printk(KERN_ERR PFX "ricb->ipv4_hash_key[%d] = 0x%.08x.\n", i, le32_to_cpu(ricb->ipv4_hash_key[i])); } void ql_dump_cqicb(struct cqicb *cqicb) { printk(KERN_ERR PFX "Dumping cqicb stuff...\n"); printk(KERN_ERR PFX "cqicb->msix_vect = %d.\n", cqicb->msix_vect); printk(KERN_ERR PFX "cqicb->flags = %x.\n", cqicb->flags); printk(KERN_ERR PFX "cqicb->len = %d.\n", le16_to_cpu(cqicb->len)); printk(KERN_ERR PFX "cqicb->addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(cqicb->addr)); printk(KERN_ERR PFX "cqicb->prod_idx_addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(cqicb->prod_idx_addr)); printk(KERN_ERR PFX "cqicb->pkt_delay = 0x%.04x.\n", le16_to_cpu(cqicb->pkt_delay)); printk(KERN_ERR PFX "cqicb->irq_delay = 0x%.04x.\n", le16_to_cpu(cqicb->irq_delay)); printk(KERN_ERR PFX "cqicb->lbq_addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(cqicb->lbq_addr)); printk(KERN_ERR PFX "cqicb->lbq_buf_size = 0x%.04x.\n", le16_to_cpu(cqicb->lbq_buf_size)); printk(KERN_ERR PFX "cqicb->lbq_len = 0x%.04x.\n", le16_to_cpu(cqicb->lbq_len)); printk(KERN_ERR PFX "cqicb->sbq_addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(cqicb->sbq_addr)); printk(KERN_ERR PFX "cqicb->sbq_buf_size = 0x%.04x.\n", le16_to_cpu(cqicb->sbq_buf_size)); printk(KERN_ERR PFX "cqicb->sbq_len = 0x%.04x.\n", le16_to_cpu(cqicb->sbq_len)); } void ql_dump_rx_ring(struct rx_ring *rx_ring) { if (rx_ring == NULL) return; printk(KERN_ERR PFX "===================== Dumping rx_ring %d ===============.\n", rx_ring->cq_id); printk(KERN_ERR PFX "Dumping rx_ring %d, type = %s%s%s.\n", rx_ring->cq_id, rx_ring->type == DEFAULT_Q ? "DEFAULT" : "", rx_ring->type == TX_Q ? "OUTBOUND COMPLETIONS" : "", rx_ring->type == RX_Q ? "INBOUND_COMPLETIONS" : ""); printk(KERN_ERR PFX "rx_ring->cqicb = %p.\n", &rx_ring->cqicb); printk(KERN_ERR PFX "rx_ring->cq_base = %p.\n", rx_ring->cq_base); printk(KERN_ERR PFX "rx_ring->cq_base_dma = %llx.\n", (unsigned long long) rx_ring->cq_base_dma); printk(KERN_ERR PFX "rx_ring->cq_size = %d.\n", rx_ring->cq_size); printk(KERN_ERR PFX "rx_ring->cq_len = %d.\n", rx_ring->cq_len); printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg, addr = 0x%p, value = %d.\n", rx_ring->prod_idx_sh_reg, rx_ring->prod_idx_sh_reg ? ql_read_sh_reg(rx_ring->prod_idx_sh_reg) : 0); printk(KERN_ERR PFX "rx_ring->prod_idx_sh_reg_dma = %llx.\n", (unsigned long long) rx_ring->prod_idx_sh_reg_dma); printk(KERN_ERR PFX "rx_ring->cnsmr_idx_db_reg = %p.\n", rx_ring->cnsmr_idx_db_reg); printk(KERN_ERR PFX "rx_ring->cnsmr_idx = %d.\n", rx_ring->cnsmr_idx); printk(KERN_ERR PFX "rx_ring->curr_entry = %p.\n", rx_ring->curr_entry); printk(KERN_ERR PFX "rx_ring->valid_db_reg = %p.\n", rx_ring->valid_db_reg); printk(KERN_ERR PFX "rx_ring->lbq_base = %p.\n", rx_ring->lbq_base); printk(KERN_ERR PFX "rx_ring->lbq_base_dma = %llx.\n", (unsigned long long) rx_ring->lbq_base_dma); printk(KERN_ERR PFX "rx_ring->lbq_base_indirect = %p.\n", rx_ring->lbq_base_indirect); printk(KERN_ERR PFX "rx_ring->lbq_base_indirect_dma = %llx.\n", (unsigned long long) rx_ring->lbq_base_indirect_dma); printk(KERN_ERR PFX "rx_ring->lbq = %p.\n", rx_ring->lbq); printk(KERN_ERR PFX "rx_ring->lbq_len = %d.\n", rx_ring->lbq_len); printk(KERN_ERR PFX "rx_ring->lbq_size = %d.\n", rx_ring->lbq_size); printk(KERN_ERR PFX "rx_ring->lbq_prod_idx_db_reg = %p.\n", rx_ring->lbq_prod_idx_db_reg); printk(KERN_ERR PFX "rx_ring->lbq_prod_idx = %d.\n", rx_ring->lbq_prod_idx); printk(KERN_ERR PFX "rx_ring->lbq_curr_idx = %d.\n", rx_ring->lbq_curr_idx); printk(KERN_ERR PFX "rx_ring->lbq_clean_idx = %d.\n", rx_ring->lbq_clean_idx); printk(KERN_ERR PFX "rx_ring->lbq_free_cnt = %d.\n", rx_ring->lbq_free_cnt); printk(KERN_ERR PFX "rx_ring->lbq_buf_size = %d.\n", rx_ring->lbq_buf_size); printk(KERN_ERR PFX "rx_ring->sbq_base = %p.\n", rx_ring->sbq_base); printk(KERN_ERR PFX "rx_ring->sbq_base_dma = %llx.\n", (unsigned long long) rx_ring->sbq_base_dma); printk(KERN_ERR PFX "rx_ring->sbq_base_indirect = %p.\n", rx_ring->sbq_base_indirect); printk(KERN_ERR PFX "rx_ring->sbq_base_indirect_dma = %llx.\n", (unsigned long long) rx_ring->sbq_base_indirect_dma); printk(KERN_ERR PFX "rx_ring->sbq = %p.\n", rx_ring->sbq); printk(KERN_ERR PFX "rx_ring->sbq_len = %d.\n", rx_ring->sbq_len); printk(KERN_ERR PFX "rx_ring->sbq_size = %d.\n", rx_ring->sbq_size); printk(KERN_ERR PFX "rx_ring->sbq_prod_idx_db_reg addr = %p.\n", rx_ring->sbq_prod_idx_db_reg); printk(KERN_ERR PFX "rx_ring->sbq_prod_idx = %d.\n", rx_ring->sbq_prod_idx); printk(KERN_ERR PFX "rx_ring->sbq_curr_idx = %d.\n", rx_ring->sbq_curr_idx); printk(KERN_ERR PFX "rx_ring->sbq_clean_idx = %d.\n", rx_ring->sbq_clean_idx); printk(KERN_ERR PFX "rx_ring->sbq_free_cnt = %d.\n", rx_ring->sbq_free_cnt); printk(KERN_ERR PFX "rx_ring->sbq_buf_size = %d.\n", rx_ring->sbq_buf_size); printk(KERN_ERR PFX "rx_ring->cq_id = %d.\n", rx_ring->cq_id); printk(KERN_ERR PFX "rx_ring->irq = %d.\n", rx_ring->irq); printk(KERN_ERR PFX "rx_ring->cpu = %d.\n", rx_ring->cpu); printk(KERN_ERR PFX "rx_ring->qdev = %p.\n", rx_ring->qdev); } void ql_dump_hw_cb(struct ql_adapter *qdev, int size, u32 bit, u16 q_id) { void *ptr; printk(KERN_ERR PFX "%s: Enter.\n", __func__); ptr = kmalloc(size, GFP_ATOMIC); if (ptr == NULL) { printk(KERN_ERR PFX "%s: Couldn't allocate a buffer.\n", __func__); return; } if (ql_write_cfg(qdev, ptr, size, bit, q_id)) { printk(KERN_ERR "%s: Failed to upload control block!\n", __func__); goto fail_it; } switch (bit) { case CFG_DRQ: ql_dump_wqicb((struct wqicb *)ptr); break; case CFG_DCQ: ql_dump_cqicb((struct cqicb *)ptr); break; case CFG_DR: ql_dump_ricb((struct ricb *)ptr); break; default: printk(KERN_ERR PFX "%s: Invalid bit value = %x.\n", __func__, bit); break; } fail_it: kfree(ptr); } #endif #ifdef QL_OB_DUMP void ql_dump_tx_desc(struct tx_buf_desc *tbd) { printk(KERN_ERR PFX "tbd->addr = 0x%llx\n", le64_to_cpu((u64) tbd->addr)); printk(KERN_ERR PFX "tbd->len = %d\n", le32_to_cpu(tbd->len & TX_DESC_LEN_MASK)); printk(KERN_ERR PFX "tbd->flags = %s %s\n", tbd->len & TX_DESC_C ? "C" : ".", tbd->len & TX_DESC_E ? "E" : "."); tbd++; printk(KERN_ERR PFX "tbd->addr = 0x%llx\n", le64_to_cpu((u64) tbd->addr)); printk(KERN_ERR PFX "tbd->len = %d\n", le32_to_cpu(tbd->len & TX_DESC_LEN_MASK)); printk(KERN_ERR PFX "tbd->flags = %s %s\n", tbd->len & TX_DESC_C ? "C" : ".", tbd->len & TX_DESC_E ? "E" : "."); tbd++; printk(KERN_ERR PFX "tbd->addr = 0x%llx\n", le64_to_cpu((u64) tbd->addr)); printk(KERN_ERR PFX "tbd->len = %d\n", le32_to_cpu(tbd->len & TX_DESC_LEN_MASK)); printk(KERN_ERR PFX "tbd->flags = %s %s\n", tbd->len & TX_DESC_C ? "C" : ".", tbd->len & TX_DESC_E ? "E" : "."); } void ql_dump_ob_mac_iocb(struct ob_mac_iocb_req *ob_mac_iocb) { struct ob_mac_tso_iocb_req *ob_mac_tso_iocb = (struct ob_mac_tso_iocb_req *)ob_mac_iocb; struct tx_buf_desc *tbd; u16 frame_len; printk(KERN_ERR PFX "%s\n", __func__); printk(KERN_ERR PFX "opcode = %s\n", (ob_mac_iocb->opcode == OPCODE_OB_MAC_IOCB) ? "MAC" : "TSO"); printk(KERN_ERR PFX "flags1 = %s %s %s %s %s\n", ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_OI ? "OI" : "", ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_I ? "I" : "", ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_D ? "D" : "", ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP4 ? "IP4" : "", ob_mac_tso_iocb->flags1 & OB_MAC_TSO_IOCB_IP6 ? "IP6" : ""); printk(KERN_ERR PFX "flags2 = %s %s %s\n", ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_LSO ? "LSO" : "", ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_UC ? "UC" : "", ob_mac_tso_iocb->flags2 & OB_MAC_TSO_IOCB_TC ? "TC" : ""); printk(KERN_ERR PFX "flags3 = %s %s %s\n", ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_IC ? "IC" : "", ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_DFP ? "DFP" : "", ob_mac_tso_iocb->flags3 & OB_MAC_TSO_IOCB_V ? "V" : ""); printk(KERN_ERR PFX "tid = %x\n", ob_mac_iocb->tid); printk(KERN_ERR PFX "txq_idx = %d\n", ob_mac_iocb->txq_idx); printk(KERN_ERR PFX "vlan_tci = %x\n", ob_mac_tso_iocb->vlan_tci); if (ob_mac_iocb->opcode == OPCODE_OB_MAC_TSO_IOCB) { printk(KERN_ERR PFX "frame_len = %d\n", le32_to_cpu(ob_mac_tso_iocb->frame_len)); printk(KERN_ERR PFX "mss = %d\n", le16_to_cpu(ob_mac_tso_iocb->mss)); printk(KERN_ERR PFX "prot_hdr_len = %d\n", le16_to_cpu(ob_mac_tso_iocb->total_hdrs_len)); printk(KERN_ERR PFX "hdr_offset = 0x%.04x\n", le16_to_cpu(ob_mac_tso_iocb->net_trans_offset)); frame_len = le32_to_cpu(ob_mac_tso_iocb->frame_len); } else { printk(KERN_ERR PFX "frame_len = %d\n", le16_to_cpu(ob_mac_iocb->frame_len)); frame_len = le16_to_cpu(ob_mac_iocb->frame_len); } tbd = &ob_mac_iocb->tbd[0]; ql_dump_tx_desc(tbd); } void ql_dump_ob_mac_rsp(struct ob_mac_iocb_rsp *ob_mac_rsp) { printk(KERN_ERR PFX "%s\n", __func__); printk(KERN_ERR PFX "opcode = %d\n", ob_mac_rsp->opcode); printk(KERN_ERR PFX "flags = %s %s %s %s %s %s %s\n", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_OI ? "OI" : ".", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_I ? "I" : ".", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_E ? "E" : ".", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_S ? "S" : ".", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_L ? "L" : ".", ob_mac_rsp->flags1 & OB_MAC_IOCB_RSP_P ? "P" : ".", ob_mac_rsp->flags2 & OB_MAC_IOCB_RSP_B ? "B" : "."); printk(KERN_ERR PFX "tid = %x\n", ob_mac_rsp->tid); } #endif #ifdef QL_IB_DUMP void ql_dump_ib_mac_rsp(struct ib_mac_iocb_rsp *ib_mac_rsp) { printk(KERN_ERR PFX "%s\n", __func__); printk(KERN_ERR PFX "opcode = 0x%x\n", ib_mac_rsp->opcode); printk(KERN_ERR PFX "flags1 = %s%s%s%s%s%s\n", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_OI ? "OI " : "", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_I ? "I " : "", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_TE ? "TE " : "", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU ? "NU " : "", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_IE ? "IE " : "", ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_B ? "B " : ""); if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) printk(KERN_ERR PFX "%s%s%s Multicast.\n", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_REG ? "Registered" : "", (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) == IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : ""); printk(KERN_ERR PFX "flags2 = %s%s%s%s%s\n", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) ? "P " : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ? "V " : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) ? "U " : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ? "T " : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_FO) ? "FO " : ""); if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) printk(KERN_ERR PFX "%s%s%s%s%s error.\n", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) == IB_MAC_IOCB_RSP_ERR_OVERSIZE ? "oversize" : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) == IB_MAC_IOCB_RSP_ERR_UNDERSIZE ? "undersize" : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) == IB_MAC_IOCB_RSP_ERR_PREAMBLE ? "preamble" : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) == IB_MAC_IOCB_RSP_ERR_FRAME_LEN ? "frame length" : "", (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) == IB_MAC_IOCB_RSP_ERR_CRC ? "CRC" : ""); printk(KERN_ERR PFX "flags3 = %s%s.\n", ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS ? "DS " : "", ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL ? "DL " : ""); if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) printk(KERN_ERR PFX "RSS flags = %s%s%s%s.\n", ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) == IB_MAC_IOCB_RSP_M_IPV4) ? "IPv4 RSS" : "", ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) == IB_MAC_IOCB_RSP_M_IPV6) ? "IPv6 RSS " : "", ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) == IB_MAC_IOCB_RSP_M_TCP_V4) ? "TCP/IPv4 RSS" : "", ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) == IB_MAC_IOCB_RSP_M_TCP_V6) ? "TCP/IPv6 RSS" : ""); printk(KERN_ERR PFX "data_len = %d\n", le32_to_cpu(ib_mac_rsp->data_len)); printk(KERN_ERR PFX "data_addr = 0x%llx\n", (unsigned long long) le64_to_cpu(ib_mac_rsp->data_addr)); if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_RSS_MASK) printk(KERN_ERR PFX "rss = %x\n", le32_to_cpu(ib_mac_rsp->rss)); if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) printk(KERN_ERR PFX "vlan_id = %x\n", le16_to_cpu(ib_mac_rsp->vlan_id)); printk(KERN_ERR PFX "flags4 = %s%s%s.\n", ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV ? "HV " : "", ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS ? "HS " : "", ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HL ? "HL " : ""); if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) { printk(KERN_ERR PFX "hdr length = %d.\n", le32_to_cpu(ib_mac_rsp->hdr_len)); printk(KERN_ERR PFX "hdr addr = 0x%llx.\n", (unsigned long long) le64_to_cpu(ib_mac_rsp->hdr_addr)); } } #endif #ifdef QL_ALL_DUMP void ql_dump_all(struct ql_adapter *qdev) { int i; QL_DUMP_REGS(qdev); QL_DUMP_QDEV(qdev); for (i = 0; i < qdev->tx_ring_count; i++) { QL_DUMP_TX_RING(&qdev->tx_ring[i]); QL_DUMP_WQICB((struct wqicb *)&qdev->tx_ring[i]); } for (i = 0; i < qdev->rx_ring_count; i++) { QL_DUMP_RX_RING(&qdev->rx_ring[i]); QL_DUMP_CQICB((struct cqicb *)&qdev->rx_ring[i]); } } #endif