/* * CoreChip-sz SR9700 one chip USB 1.1 Ethernet Devices * * Author : Liu Junliang * * Based on dm9601.c * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include "sr9700.h" static int sr_read(struct usbnet *dev, u8 reg, u16 length, void *data) { int err; err = usbnet_read_cmd(dev, SR_RD_REGS, SR_REQ_RD_REG, 0, reg, data, length); if ((err != length) && (err >= 0)) err = -EINVAL; return err; } static int sr_write(struct usbnet *dev, u8 reg, u16 length, void *data) { int err; err = usbnet_write_cmd(dev, SR_WR_REGS, SR_REQ_WR_REG, 0, reg, data, length); if ((err >= 0) && (err < length)) err = -EINVAL; return err; } static int sr_read_reg(struct usbnet *dev, u8 reg, u8 *value) { return sr_read(dev, reg, 1, value); } static int sr_write_reg(struct usbnet *dev, u8 reg, u8 value) { return usbnet_write_cmd(dev, SR_WR_REGS, SR_REQ_WR_REG, value, reg, NULL, 0); } static void sr_write_async(struct usbnet *dev, u8 reg, u16 length, void *data) { usbnet_write_cmd_async(dev, SR_WR_REGS, SR_REQ_WR_REG, 0, reg, data, length); } static void sr_write_reg_async(struct usbnet *dev, u8 reg, u8 value) { usbnet_write_cmd_async(dev, SR_WR_REGS, SR_REQ_WR_REG, value, reg, NULL, 0); } static int wait_phy_eeprom_ready(struct usbnet *dev, int phy) { int i; for (i = 0; i < SR_SHARE_TIMEOUT; i++) { u8 tmp = 0; int ret; udelay(1); ret = sr_read_reg(dev, SR_EPCR, &tmp); if (ret < 0) return ret; /* ready */ if (!(tmp & EPCR_ERRE)) return 0; } netdev_err(dev->net, "%s write timed out!\n", phy ? "phy" : "eeprom"); return -EIO; } static int sr_share_read_word(struct usbnet *dev, int phy, u8 reg, __le16 *value) { int ret; mutex_lock(&dev->phy_mutex); sr_write_reg(dev, SR_EPAR, phy ? (reg | EPAR_PHY_ADR) : reg); sr_write_reg(dev, SR_EPCR, phy ? (EPCR_EPOS | EPCR_ERPRR) : EPCR_ERPRR); ret = wait_phy_eeprom_ready(dev, phy); if (ret < 0) goto out_unlock; sr_write_reg(dev, SR_EPCR, 0x0); ret = sr_read(dev, SR_EPDR, 2, value); netdev_dbg(dev->net, "read shared %d 0x%02x returned 0x%04x, %d\n", phy, reg, *value, ret); out_unlock: mutex_unlock(&dev->phy_mutex); return ret; } static int sr_share_write_word(struct usbnet *dev, int phy, u8 reg, __le16 value) { int ret; mutex_lock(&dev->phy_mutex); ret = sr_write(dev, SR_EPDR, 2, &value); if (ret < 0) goto out_unlock; sr_write_reg(dev, SR_EPAR, phy ? (reg | EPAR_PHY_ADR) : reg); sr_write_reg(dev, SR_EPCR, phy ? (EPCR_WEP | EPCR_EPOS | EPCR_ERPRW) : (EPCR_WEP | EPCR_ERPRW)); ret = wait_phy_eeprom_ready(dev, phy); if (ret < 0) goto out_unlock; sr_write_reg(dev, SR_EPCR, 0x0); out_unlock: mutex_unlock(&dev->phy_mutex); return ret; } static int sr_read_eeprom_word(struct usbnet *dev, u8 offset, void *value) { return sr_share_read_word(dev, 0, offset, value); } static int sr9700_get_eeprom_len(struct net_device *netdev) { return SR_EEPROM_LEN; } static int sr9700_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *data) { struct usbnet *dev = netdev_priv(netdev); __le16 *buf = (__le16 *)data; int ret = 0; int i; /* access is 16bit */ if ((eeprom->offset & 0x01) || (eeprom->len & 0x01)) return -EINVAL; for (i = 0; i < eeprom->len / 2; i++) { ret = sr_read_eeprom_word(dev, eeprom->offset / 2 + i, buf + i); if (ret < 0) break; } return ret; } static int sr_mdio_read(struct net_device *netdev, int phy_id, int loc) { struct usbnet *dev = netdev_priv(netdev); __le16 res; int rc = 0; if (phy_id) { netdev_dbg(netdev, "Only internal phy supported\n"); return 0; } /* Access NSR_LINKST bit for link status instead of MII_BMSR */ if (loc == MII_BMSR) { u8 value; sr_read_reg(dev, SR_NSR, &value); if (value & NSR_LINKST) rc = 1; } sr_share_read_word(dev, 1, loc, &res); if (rc == 1) res = le16_to_cpu(res) | BMSR_LSTATUS; else res = le16_to_cpu(res) & ~BMSR_LSTATUS; netdev_dbg(netdev, "sr_mdio_read() phy_id=0x%02x, loc=0x%02x, returns=0x%04x\n", phy_id, loc, res); return res; } static void sr_mdio_write(struct net_device *netdev, int phy_id, int loc, int val) { struct usbnet *dev = netdev_priv(netdev); __le16 res = cpu_to_le16(val); if (phy_id) { netdev_dbg(netdev, "Only internal phy supported\n"); return; } netdev_dbg(netdev, "sr_mdio_write() phy_id=0x%02x, loc=0x%02x, val=0x%04x\n", phy_id, loc, val); sr_share_write_word(dev, 1, loc, res); } static u32 sr9700_get_link(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); u8 value = 0; int rc = 0; /* Get the Link Status directly */ sr_read_reg(dev, SR_NSR, &value); if (value & NSR_LINKST) rc = 1; return rc; } static int sr9700_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct usbnet *dev = netdev_priv(netdev); return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL); } static const struct ethtool_ops sr9700_ethtool_ops = { .get_drvinfo = usbnet_get_drvinfo, .get_link = sr9700_get_link, .get_msglevel = usbnet_get_msglevel, .set_msglevel = usbnet_set_msglevel, .get_eeprom_len = sr9700_get_eeprom_len, .get_eeprom = sr9700_get_eeprom, .nway_reset = usbnet_nway_reset, .get_link_ksettings = usbnet_get_link_ksettings, .set_link_ksettings = usbnet_set_link_ksettings, }; static void sr9700_set_multicast(struct net_device *netdev) { struct usbnet *dev = netdev_priv(netdev); /* We use the 20 byte dev->data for our 8 byte filter buffer * to avoid allocating memory that is tricky to free later */ u8 *hashes = (u8 *)&dev->data; /* rx_ctl setting : enable, disable_long, disable_crc */ u8 rx_ctl = RCR_RXEN | RCR_DIS_CRC | RCR_DIS_LONG; memset(hashes, 0x00, SR_MCAST_SIZE); /* broadcast address */ hashes[SR_MCAST_SIZE - 1] |= SR_MCAST_ADDR_FLAG; if (netdev->flags & IFF_PROMISC) { rx_ctl |= RCR_PRMSC; } else if (netdev->flags & IFF_ALLMULTI || netdev_mc_count(netdev) > SR_MCAST_MAX) { rx_ctl |= RCR_RUNT; } else if (!netdev_mc_empty(netdev)) { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, netdev) { u32 crc = ether_crc(ETH_ALEN, ha->addr) >> 26; hashes[crc >> 3] |= 1 << (crc & 0x7); } } sr_write_async(dev, SR_MAR, SR_MCAST_SIZE, hashes); sr_write_reg_async(dev, SR_RCR, rx_ctl); } static int sr9700_set_mac_address(struct net_device *netdev, void *p) { struct usbnet *dev = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) { netdev_err(netdev, "not setting invalid mac address %pM\n", addr->sa_data); return -EINVAL; } memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); sr_write_async(dev, SR_PAR, 6, netdev->dev_addr); return 0; } static const struct net_device_ops sr9700_netdev_ops = { .ndo_open = usbnet_open, .ndo_stop = usbnet_stop, .ndo_start_xmit = usbnet_start_xmit, .ndo_tx_timeout = usbnet_tx_timeout, .ndo_change_mtu = usbnet_change_mtu, .ndo_get_stats64 = usbnet_get_stats64, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = sr9700_ioctl, .ndo_set_rx_mode = sr9700_set_multicast, .ndo_set_mac_address = sr9700_set_mac_address, }; static int sr9700_bind(struct usbnet *dev, struct usb_interface *intf) { struct net_device *netdev; struct mii_if_info *mii; int ret; ret = usbnet_get_endpoints(dev, intf); if (ret) goto out; netdev = dev->net; netdev->netdev_ops = &sr9700_netdev_ops; netdev->ethtool_ops = &sr9700_ethtool_ops; netdev->hard_header_len += SR_TX_OVERHEAD; dev->hard_mtu = netdev->mtu + netdev->hard_header_len; /* bulkin buffer is preferably not less than 3K */ dev->rx_urb_size = 3072; mii = &dev->mii; mii->dev = netdev; mii->mdio_read = sr_mdio_read; mii->mdio_write = sr_mdio_write; mii->phy_id_mask = 0x1f; mii->reg_num_mask = 0x1f; sr_write_reg(dev, SR_NCR, NCR_RST); udelay(20); /* read MAC * After Chip Power on, the Chip will reload the MAC from * EEPROM automatically to PAR. In case there is no EEPROM externally, * a default MAC address is stored in PAR for making chip work properly. */ if (sr_read(dev, SR_PAR, ETH_ALEN, netdev->dev_addr) < 0) { netdev_err(netdev, "Error reading MAC address\n"); ret = -ENODEV; goto out; } /* power up and reset phy */ sr_write_reg(dev, SR_PRR, PRR_PHY_RST); /* at least 10ms, here 20ms for safe */ msleep(20); sr_write_reg(dev, SR_PRR, 0); /* at least 1ms, here 2ms for reading right register */ udelay(2 * 1000); /* receive broadcast packets */ sr9700_set_multicast(netdev); sr_mdio_write(netdev, mii->phy_id, MII_BMCR, BMCR_RESET); sr_mdio_write(netdev, mii->phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP); mii_nway_restart(mii); out: return ret; } static int sr9700_rx_fixup(struct usbnet *dev, struct sk_buff *skb) { struct sk_buff *sr_skb; int len; /* skb content (packets) format : * p0 p1 p2 ...... pm * / \ * / \ * / \ * / \ * p0b0 p0b1 p0b2 p0b3 ...... p0b(n-4) p0b(n-3)...p0bn * * p0 : packet 0 * p0b0 : packet 0 byte 0 * * b0: rx status * b1: packet length (incl crc) low * b2: packet length (incl crc) high * b3..n-4: packet data * bn-3..bn: ethernet packet crc */ if (unlikely(skb->len < SR_RX_OVERHEAD)) { netdev_err(dev->net, "unexpected tiny rx frame\n"); return 0; } /* one skb may contains multiple packets */ while (skb->len > SR_RX_OVERHEAD) { if (skb->data[0] != 0x40) return 0; /* ignore the CRC length */ len = (skb->data[1] | (skb->data[2] << 8)) - 4; if (len > ETH_FRAME_LEN) return 0; /* the last packet of current skb */ if (skb->len == (len + SR_RX_OVERHEAD)) { skb_pull(skb, 3); skb->len = len; skb_set_tail_pointer(skb, len); skb->truesize = len + sizeof(struct sk_buff); return 2; } /* skb_clone is used for address align */ sr_skb = skb_clone(skb, GFP_ATOMIC); if (!sr_skb) return 0; sr_skb->len = len; sr_skb->data = skb->data + 3; skb_set_tail_pointer(sr_skb, len); sr_skb->truesize = len + sizeof(struct sk_buff); usbnet_skb_return(dev, sr_skb); skb_pull(skb, len + SR_RX_OVERHEAD); } return 0; } static struct sk_buff *sr9700_tx_fixup(struct usbnet *dev, struct sk_buff *skb, gfp_t flags) { int len; /* SR9700 can only send out one ethernet packet at once. * * b0 b1 b2 b3 ...... b(n-4) b(n-3)...bn * * b0: rx status * b1: packet length (incl crc) low * b2: packet length (incl crc) high * b3..n-4: packet data * bn-3..bn: ethernet packet crc */ len = skb->len; if (skb_cow_head(skb, SR_TX_OVERHEAD)) { dev_kfree_skb_any(skb); return NULL; } __skb_push(skb, SR_TX_OVERHEAD); /* usbnet adds padding if length is a multiple of packet size * if so, adjust length value in header */ if ((skb->len % dev->maxpacket) == 0) len++; skb->data[0] = len; skb->data[1] = len >> 8; return skb; } static void sr9700_status(struct usbnet *dev, struct urb *urb) { int link; u8 *buf; /* format: b0: net status b1: tx status 1 b2: tx status 2 b3: rx status b4: rx overflow b5: rx count b6: tx count b7: gpr */ if (urb->actual_length < 8) return; buf = urb->transfer_buffer; link = !!(buf[0] & 0x40); if (netif_carrier_ok(dev->net) != link) { usbnet_link_change(dev, link, 1); netdev_dbg(dev->net, "Link Status is: %d\n", link); } } static int sr9700_link_reset(struct usbnet *dev) { struct ethtool_cmd ecmd; mii_check_media(&dev->mii, 1, 1); mii_ethtool_gset(&dev->mii, &ecmd); netdev_dbg(dev->net, "link_reset() speed: %d duplex: %d\n", ecmd.speed, ecmd.duplex); return 0; } static const struct driver_info sr9700_driver_info = { .description = "CoreChip SR9700 USB Ethernet", .flags = FLAG_ETHER, .bind = sr9700_bind, .rx_fixup = sr9700_rx_fixup, .tx_fixup = sr9700_tx_fixup, .status = sr9700_status, .link_reset = sr9700_link_reset, .reset = sr9700_link_reset, }; static const struct usb_device_id products[] = { { USB_DEVICE(0x0fe6, 0x9700), /* SR9700 device */ .driver_info = (unsigned long)&sr9700_driver_info, }, {}, /* END */ }; MODULE_DEVICE_TABLE(usb, products); static struct usb_driver sr9700_usb_driver = { .name = "sr9700", .id_table = products, .probe = usbnet_probe, .disconnect = usbnet_disconnect, .suspend = usbnet_suspend, .resume = usbnet_resume, .disable_hub_initiated_lpm = 1, }; module_usb_driver(sr9700_usb_driver); MODULE_AUTHOR("liujl "); MODULE_DESCRIPTION("SR9700 one chip USB 1.1 USB to Ethernet device from http://www.corechip-sz.com/"); MODULE_LICENSE("GPL");