/* * Generic HDLC support routines for Linux * Cisco HDLC support * * Copyright (C) 2000 - 2003 Krzysztof Halasa * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG_HARD_HEADER #define CISCO_MULTICAST 0x8F /* Cisco multicast address */ #define CISCO_UNICAST 0x0F /* Cisco unicast address */ #define CISCO_KEEPALIVE 0x8035 /* Cisco keepalive protocol */ #define CISCO_SYS_INFO 0x2000 /* Cisco interface/system info */ #define CISCO_ADDR_REQ 0 /* Cisco address request */ #define CISCO_ADDR_REPLY 1 /* Cisco address reply */ #define CISCO_KEEPALIVE_REQ 2 /* Cisco keepalive request */ static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev, u16 type, void *daddr, void *saddr, unsigned int len) { hdlc_header *data; #ifdef DEBUG_HARD_HEADER printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name); #endif skb_push(skb, sizeof(hdlc_header)); data = (hdlc_header*)skb->data; if (type == CISCO_KEEPALIVE) data->address = CISCO_MULTICAST; else data->address = CISCO_UNICAST; data->control = 0; data->protocol = htons(type); return sizeof(hdlc_header); } static void cisco_keepalive_send(struct net_device *dev, u32 type, u32 par1, u32 par2) { struct sk_buff *skb; cisco_packet *data; skb = dev_alloc_skb(sizeof(hdlc_header) + sizeof(cisco_packet)); if (!skb) { printk(KERN_WARNING "%s: Memory squeeze on cisco_keepalive_send()\n", dev->name); return; } skb_reserve(skb, 4); cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0); data = (cisco_packet*)(skb->data + 4); data->type = htonl(type); data->par1 = htonl(par1); data->par2 = htonl(par2); data->rel = 0xFFFF; /* we will need do_div here if 1000 % HZ != 0 */ data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ)); skb_put(skb, sizeof(cisco_packet)); skb->priority = TC_PRIO_CONTROL; skb->dev = dev; skb->nh.raw = skb->data; dev_queue_xmit(skb); } static __be16 cisco_type_trans(struct sk_buff *skb, struct net_device *dev) { hdlc_header *data = (hdlc_header*)skb->data; if (skb->len < sizeof(hdlc_header)) return __constant_htons(ETH_P_HDLC); if (data->address != CISCO_MULTICAST && data->address != CISCO_UNICAST) return __constant_htons(ETH_P_HDLC); switch(data->protocol) { case __constant_htons(ETH_P_IP): case __constant_htons(ETH_P_IPX): case __constant_htons(ETH_P_IPV6): skb_pull(skb, sizeof(hdlc_header)); return data->protocol; default: return __constant_htons(ETH_P_HDLC); } } static int cisco_rx(struct sk_buff *skb) { struct net_device *dev = skb->dev; hdlc_device *hdlc = dev_to_hdlc(dev); hdlc_header *data = (hdlc_header*)skb->data; cisco_packet *cisco_data; struct in_device *in_dev; u32 addr, mask; if (skb->len < sizeof(hdlc_header)) goto rx_error; if (data->address != CISCO_MULTICAST && data->address != CISCO_UNICAST) goto rx_error; switch(ntohs(data->protocol)) { case CISCO_SYS_INFO: /* Packet is not needed, drop it. */ dev_kfree_skb_any(skb); return NET_RX_SUCCESS; case CISCO_KEEPALIVE: if (skb->len != sizeof(hdlc_header) + CISCO_PACKET_LEN && skb->len != sizeof(hdlc_header) + CISCO_BIG_PACKET_LEN) { printk(KERN_INFO "%s: Invalid length of Cisco " "control packet (%d bytes)\n", dev->name, skb->len); goto rx_error; } cisco_data = (cisco_packet*)(skb->data + sizeof(hdlc_header)); switch(ntohl (cisco_data->type)) { case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */ in_dev = dev->ip_ptr; addr = 0; mask = ~0; /* is the mask correct? */ if (in_dev != NULL) { struct in_ifaddr **ifap = &in_dev->ifa_list; while (*ifap != NULL) { if (strcmp(dev->name, (*ifap)->ifa_label) == 0) { addr = (*ifap)->ifa_local; mask = (*ifap)->ifa_mask; break; } ifap = &(*ifap)->ifa_next; } cisco_keepalive_send(dev, CISCO_ADDR_REPLY, addr, mask); } dev_kfree_skb_any(skb); return NET_RX_SUCCESS; case CISCO_ADDR_REPLY: printk(KERN_INFO "%s: Unexpected Cisco IP address " "reply\n", dev->name); goto rx_error; case CISCO_KEEPALIVE_REQ: hdlc->state.cisco.rxseq = ntohl(cisco_data->par1); if (hdlc->state.cisco.request_sent && ntohl(cisco_data->par2)==hdlc->state.cisco.txseq) { hdlc->state.cisco.last_poll = jiffies; if (!hdlc->state.cisco.up) { u32 sec, min, hrs, days; sec = ntohl(cisco_data->time) / 1000; min = sec / 60; sec -= min * 60; hrs = min / 60; min -= hrs * 60; days = hrs / 24; hrs -= days * 24; printk(KERN_INFO "%s: Link up (peer " "uptime %ud%uh%um%us)\n", dev->name, days, hrs, min, sec); #if 0 netif_carrier_on(dev); #endif hdlc->state.cisco.up = 1; } } dev_kfree_skb_any(skb); return NET_RX_SUCCESS; } /* switch(keepalive type) */ } /* switch(protocol) */ printk(KERN_INFO "%s: Unsupported protocol %x\n", dev->name, data->protocol); dev_kfree_skb_any(skb); return NET_RX_DROP; rx_error: hdlc->stats.rx_errors++; /* Mark error */ dev_kfree_skb_any(skb); return NET_RX_DROP; } static void cisco_timer(unsigned long arg) { struct net_device *dev = (struct net_device *)arg; hdlc_device *hdlc = dev_to_hdlc(dev); if (hdlc->state.cisco.up && time_after(jiffies, hdlc->state.cisco.last_poll + hdlc->state.cisco.settings.timeout * HZ)) { hdlc->state.cisco.up = 0; printk(KERN_INFO "%s: Link down\n", dev->name); #if 0 netif_carrier_off(dev); #endif } cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ, ++hdlc->state.cisco.txseq, hdlc->state.cisco.rxseq); hdlc->state.cisco.request_sent = 1; hdlc->state.cisco.timer.expires = jiffies + hdlc->state.cisco.settings.interval * HZ; hdlc->state.cisco.timer.function = cisco_timer; hdlc->state.cisco.timer.data = arg; add_timer(&hdlc->state.cisco.timer); } static void cisco_start(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); hdlc->state.cisco.up = 0; hdlc->state.cisco.request_sent = 0; hdlc->state.cisco.txseq = hdlc->state.cisco.rxseq = 0; init_timer(&hdlc->state.cisco.timer); hdlc->state.cisco.timer.expires = jiffies + HZ; /*First poll after 1s*/ hdlc->state.cisco.timer.function = cisco_timer; hdlc->state.cisco.timer.data = (unsigned long)dev; add_timer(&hdlc->state.cisco.timer); } static void cisco_stop(struct net_device *dev) { hdlc_device *hdlc = dev_to_hdlc(dev); del_timer_sync(&hdlc->state.cisco.timer); #if 0 if (netif_carrier_ok(dev)) netif_carrier_off(dev); #endif hdlc->state.cisco.up = 0; hdlc->state.cisco.request_sent = 0; } int hdlc_cisco_ioctl(struct net_device *dev, struct ifreq *ifr) { cisco_proto __user *cisco_s = ifr->ifr_settings.ifs_ifsu.cisco; const size_t size = sizeof(cisco_proto); cisco_proto new_settings; hdlc_device *hdlc = dev_to_hdlc(dev); int result; switch (ifr->ifr_settings.type) { case IF_GET_PROTO: ifr->ifr_settings.type = IF_PROTO_CISCO; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } if (copy_to_user(cisco_s, &hdlc->state.cisco.settings, size)) return -EFAULT; return 0; case IF_PROTO_CISCO: if(!capable(CAP_NET_ADMIN)) return -EPERM; if(dev->flags & IFF_UP) return -EBUSY; if (copy_from_user(&new_settings, cisco_s, size)) return -EFAULT; if (new_settings.interval < 1 || new_settings.timeout < 2) return -EINVAL; result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT); if (result) return result; hdlc_proto_detach(hdlc); memcpy(&hdlc->state.cisco.settings, &new_settings, size); memset(&hdlc->proto, 0, sizeof(hdlc->proto)); hdlc->proto.start = cisco_start; hdlc->proto.stop = cisco_stop; hdlc->proto.netif_rx = cisco_rx; hdlc->proto.type_trans = cisco_type_trans; hdlc->proto.id = IF_PROTO_CISCO; dev->hard_start_xmit = hdlc->xmit; dev->hard_header = cisco_hard_header; dev->hard_header_cache = NULL; dev->type = ARPHRD_CISCO; dev->flags = IFF_POINTOPOINT | IFF_NOARP; dev->addr_len = 0; return 0; } return -EINVAL; }