/* * Copyright (c) 2012 Neratec Solutions AG * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include "dfs_pattern_detector.h" #include "dfs_pri_detector.h" /* * tolerated deviation of radar time stamp in usecs on both sides * TODO: this might need to be HW-dependent */ #define PRI_TOLERANCE 16 /** * struct radar_types - contains array of patterns defined for one DFS domain * @domain: DFS regulatory domain * @num_radar_types: number of radar types to follow * @radar_types: radar types array */ struct radar_types { enum nl80211_dfs_regions region; u32 num_radar_types; const struct radar_detector_specs *radar_types; }; /* percentage on ppb threshold to trigger detection */ #define MIN_PPB_THRESH 50 #define PPB_THRESH(PPB) ((PPB * MIN_PPB_THRESH + 50) / 100) #define PRF2PRI(PRF) ((1000000 + PRF / 2) / PRF) #define ETSI_PATTERN(ID, WMIN, WMAX, PMIN, PMAX, PRF, PPB) \ { \ ID, WMIN, WMAX, (PRF2PRI(PMAX) - PRI_TOLERANCE), \ (PRF2PRI(PMIN) * PRF + PRI_TOLERANCE), PRF, PPB * PRF, \ PPB_THRESH(PPB), PRI_TOLERANCE, \ } /* radar types as defined by ETSI EN-301-893 v1.5.1 */ static const struct radar_detector_specs etsi_radar_ref_types_v15[] = { ETSI_PATTERN(0, 0, 1, 700, 700, 1, 18), ETSI_PATTERN(1, 0, 5, 200, 1000, 1, 10), ETSI_PATTERN(2, 0, 15, 200, 1600, 1, 15), ETSI_PATTERN(3, 0, 15, 2300, 4000, 1, 25), ETSI_PATTERN(4, 20, 30, 2000, 4000, 1, 20), ETSI_PATTERN(5, 0, 2, 300, 400, 3, 10), ETSI_PATTERN(6, 0, 2, 400, 1200, 3, 15), }; static const struct radar_types etsi_radar_types_v15 = { .region = NL80211_DFS_ETSI, .num_radar_types = ARRAY_SIZE(etsi_radar_ref_types_v15), .radar_types = etsi_radar_ref_types_v15, }; /* for now, we support ETSI radar types, FCC and JP are TODO */ static const struct radar_types *dfs_domains[] = { &etsi_radar_types_v15, }; /** * get_dfs_domain_radar_types() - get radar types for a given DFS domain * @param domain DFS domain * @return radar_types ptr on success, NULL if DFS domain is not supported */ static const struct radar_types * get_dfs_domain_radar_types(enum nl80211_dfs_regions region) { u32 i; for (i = 0; i < ARRAY_SIZE(dfs_domains); i++) { if (dfs_domains[i]->region == region) return dfs_domains[i]; } return NULL; } /** * struct channel_detector - detector elements for a DFS channel * @head: list_head * @freq: frequency for this channel detector in MHz * @detectors: array of dynamically created detector elements for this freq * * Channel detectors are required to provide multi-channel DFS detection, e.g. * to support off-channel scanning. A pattern detector has a list of channels * radar pulses have been reported for in the past. */ struct channel_detector { struct list_head head; u16 freq; struct pri_detector **detectors; }; /* channel_detector_reset() - reset detector lines for a given channel */ static void channel_detector_reset(struct dfs_pattern_detector *dpd, struct channel_detector *cd) { u32 i; if (cd == NULL) return; for (i = 0; i < dpd->num_radar_types; i++) cd->detectors[i]->reset(cd->detectors[i], dpd->last_pulse_ts); } /* channel_detector_exit() - destructor */ static void channel_detector_exit(struct dfs_pattern_detector *dpd, struct channel_detector *cd) { u32 i; if (cd == NULL) return; list_del(&cd->head); for (i = 0; i < dpd->num_radar_types; i++) { struct pri_detector *de = cd->detectors[i]; if (de != NULL) de->exit(de); } kfree(cd->detectors); kfree(cd); } static struct channel_detector * channel_detector_create(struct dfs_pattern_detector *dpd, u16 freq) { u32 sz, i; struct channel_detector *cd; cd = kmalloc(sizeof(*cd), GFP_KERNEL); if (cd == NULL) goto fail; INIT_LIST_HEAD(&cd->head); cd->freq = freq; sz = sizeof(cd->detectors) * dpd->num_radar_types; cd->detectors = kzalloc(sz, GFP_KERNEL); if (cd->detectors == NULL) goto fail; for (i = 0; i < dpd->num_radar_types; i++) { const struct radar_detector_specs *rs = &dpd->radar_spec[i]; struct pri_detector *de = pri_detector_init(rs); if (de == NULL) goto fail; cd->detectors[i] = de; } list_add(&cd->head, &dpd->channel_detectors); return cd; fail: pr_err("failed to allocate channel_detector for freq=%d\n", freq); channel_detector_exit(dpd, cd); return NULL; } /** * channel_detector_get() - get channel detector for given frequency * @param dpd instance pointer * @param freq frequency in MHz * @return pointer to channel detector on success, NULL otherwise * * Return existing channel detector for the given frequency or return a * newly create one. */ static struct channel_detector * channel_detector_get(struct dfs_pattern_detector *dpd, u16 freq) { struct channel_detector *cd; list_for_each_entry(cd, &dpd->channel_detectors, head) { if (cd->freq == freq) return cd; } return channel_detector_create(dpd, freq); } /* * DFS Pattern Detector */ /* dpd_reset(): reset all channel detectors */ static void dpd_reset(struct dfs_pattern_detector *dpd) { struct channel_detector *cd; if (!list_empty(&dpd->channel_detectors)) list_for_each_entry(cd, &dpd->channel_detectors, head) channel_detector_reset(dpd, cd); } static void dpd_exit(struct dfs_pattern_detector *dpd) { struct channel_detector *cd, *cd0; if (!list_empty(&dpd->channel_detectors)) list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) channel_detector_exit(dpd, cd); kfree(dpd); } static bool dpd_add_pulse(struct dfs_pattern_detector *dpd, struct pulse_event *event) { u32 i; bool ts_wraparound; struct channel_detector *cd; if (dpd->region == NL80211_DFS_UNSET) { /* * pulses received for a non-supported or un-initialized * domain are treated as detected radars */ return true; } cd = channel_detector_get(dpd, event->freq); if (cd == NULL) return false; ts_wraparound = (event->ts < dpd->last_pulse_ts); dpd->last_pulse_ts = event->ts; if (ts_wraparound) { /* * reset detector on time stamp wraparound * with monotonic time stamps, this should never happen */ pr_warn("DFS: time stamp wraparound detected, resetting\n"); dpd_reset(dpd); } /* do type individual pattern matching */ for (i = 0; i < dpd->num_radar_types; i++) { if (cd->detectors[i]->add_pulse(cd->detectors[i], event) != 0) { channel_detector_reset(dpd, cd); return true; } } return false; } static bool dpd_set_domain(struct dfs_pattern_detector *dpd, enum nl80211_dfs_regions region) { const struct radar_types *rt; struct channel_detector *cd, *cd0; if (dpd->region == region) return true; dpd->region = NL80211_DFS_UNSET; rt = get_dfs_domain_radar_types(region); if (rt == NULL) return false; /* delete all channel detectors for previous DFS domain */ if (!list_empty(&dpd->channel_detectors)) list_for_each_entry_safe(cd, cd0, &dpd->channel_detectors, head) channel_detector_exit(dpd, cd); dpd->radar_spec = rt->radar_types; dpd->num_radar_types = rt->num_radar_types; dpd->region = region; return true; } static struct dfs_pattern_detector default_dpd = { .exit = dpd_exit, .set_domain = dpd_set_domain, .add_pulse = dpd_add_pulse, .region = NL80211_DFS_UNSET, }; struct dfs_pattern_detector * dfs_pattern_detector_init(enum nl80211_dfs_regions region) { struct dfs_pattern_detector *dpd; dpd = kmalloc(sizeof(*dpd), GFP_KERNEL); if (dpd == NULL) { pr_err("allocation of dfs_pattern_detector failed\n"); return NULL; } *dpd = default_dpd; INIT_LIST_HEAD(&dpd->channel_detectors); if (dpd->set_domain(dpd, region)) return dpd; pr_err("Could not set DFS domain to %d. ", region); return NULL; } EXPORT_SYMBOL(dfs_pattern_detector_init);