/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "ar9002_phy.h" #define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16)) static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah) { return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF; } static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah) { return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF; } static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah) { struct ar9287_eeprom *eep = &ah->eeprom.map9287; struct ath_common *common = ath9k_hw_common(ah); u16 *eep_data; int addr, eep_start_loc; eep_data = (u16 *)eep; if (common->bus_ops->ath_bus_type == ATH_USB) eep_start_loc = AR9287_HTC_EEP_START_LOC; else eep_start_loc = AR9287_EEP_START_LOC; if (!ath9k_hw_use_flash(ah)) { ath_dbg(common, ATH_DBG_EEPROM, "Reading from EEPROM, not flash\n"); } for (addr = 0; addr < NUM_EEP_WORDS; addr++) { if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) { ath_dbg(common, ATH_DBG_EEPROM, "Unable to read eeprom region\n"); return false; } eep_data++; } return true; } static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah) { u32 sum = 0, el, integer; u16 temp, word, magic, magic2, *eepdata; int i, addr; bool need_swap = false; struct ar9287_eeprom *eep = &ah->eeprom.map9287; struct ath_common *common = ath9k_hw_common(ah); if (!ath9k_hw_use_flash(ah)) { if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) { ath_err(common, "Reading Magic # failed\n"); return false; } ath_dbg(common, ATH_DBG_EEPROM, "Read Magic = 0x%04X\n", magic); if (magic != AR5416_EEPROM_MAGIC) { magic2 = swab16(magic); if (magic2 == AR5416_EEPROM_MAGIC) { need_swap = true; eepdata = (u16 *)(&ah->eeprom); for (addr = 0; addr < NUM_EEP_WORDS; addr++) { temp = swab16(*eepdata); *eepdata = temp; eepdata++; } } else { ath_err(common, "Invalid EEPROM Magic. Endianness mismatch.\n"); return -EINVAL; } } } ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n", need_swap ? "True" : "False"); if (need_swap) el = swab16(ah->eeprom.map9287.baseEepHeader.length); else el = ah->eeprom.map9287.baseEepHeader.length; if (el > sizeof(struct ar9287_eeprom)) el = sizeof(struct ar9287_eeprom) / sizeof(u16); else el = el / sizeof(u16); eepdata = (u16 *)(&ah->eeprom); for (i = 0; i < el; i++) sum ^= *eepdata++; if (need_swap) { word = swab16(eep->baseEepHeader.length); eep->baseEepHeader.length = word; word = swab16(eep->baseEepHeader.checksum); eep->baseEepHeader.checksum = word; word = swab16(eep->baseEepHeader.version); eep->baseEepHeader.version = word; word = swab16(eep->baseEepHeader.regDmn[0]); eep->baseEepHeader.regDmn[0] = word; word = swab16(eep->baseEepHeader.regDmn[1]); eep->baseEepHeader.regDmn[1] = word; word = swab16(eep->baseEepHeader.rfSilent); eep->baseEepHeader.rfSilent = word; word = swab16(eep->baseEepHeader.blueToothOptions); eep->baseEepHeader.blueToothOptions = word; word = swab16(eep->baseEepHeader.deviceCap); eep->baseEepHeader.deviceCap = word; integer = swab32(eep->modalHeader.antCtrlCommon); eep->modalHeader.antCtrlCommon = integer; for (i = 0; i < AR9287_MAX_CHAINS; i++) { integer = swab32(eep->modalHeader.antCtrlChain[i]); eep->modalHeader.antCtrlChain[i] = integer; } for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { word = swab16(eep->modalHeader.spurChans[i].spurChan); eep->modalHeader.spurChans[i].spurChan = word; } } if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) { ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, ah->eep_ops->get_eeprom_ver(ah)); return -EINVAL; } return 0; } static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah, enum eeprom_param param) { struct ar9287_eeprom *eep = &ah->eeprom.map9287; struct modal_eep_ar9287_header *pModal = &eep->modalHeader; struct base_eep_ar9287_header *pBase = &eep->baseEepHeader; u16 ver_minor; ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK; switch (param) { case EEP_NFTHRESH_2: return pModal->noiseFloorThreshCh[0]; case EEP_MAC_LSW: return pBase->macAddr[0] << 8 | pBase->macAddr[1]; case EEP_MAC_MID: return pBase->macAddr[2] << 8 | pBase->macAddr[3]; case EEP_MAC_MSW: return pBase->macAddr[4] << 8 | pBase->macAddr[5]; case EEP_REG_0: return pBase->regDmn[0]; case EEP_REG_1: return pBase->regDmn[1]; case EEP_OP_CAP: return pBase->deviceCap; case EEP_OP_MODE: return pBase->opCapFlags; case EEP_RF_SILENT: return pBase->rfSilent; case EEP_MINOR_REV: return ver_minor; case EEP_TX_MASK: return pBase->txMask; case EEP_RX_MASK: return pBase->rxMask; case EEP_DEV_TYPE: return pBase->deviceType; case EEP_OL_PWRCTRL: return pBase->openLoopPwrCntl; case EEP_TEMPSENSE_SLOPE: if (ver_minor >= AR9287_EEP_MINOR_VER_2) return pBase->tempSensSlope; else return 0; case EEP_TEMPSENSE_SLOPE_PAL_ON: if (ver_minor >= AR9287_EEP_MINOR_VER_3) return pBase->tempSensSlopePalOn; else return 0; default: return 0; } } static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah, struct ath9k_channel *chan, struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop, u8 *pCalChans, u16 availPiers, int8_t *pPwr) { u16 idxL = 0, idxR = 0, numPiers; bool match; struct chan_centers centers; ath9k_hw_get_channel_centers(ah, chan, ¢ers); for (numPiers = 0; numPiers < availPiers; numPiers++) { if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED) break; } match = ath9k_hw_get_lower_upper_index( (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)), pCalChans, numPiers, &idxL, &idxR); if (match) { *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0]; } else { *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] + (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2; } } static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah, int32_t txPower, u16 chain) { u32 tmpVal; u32 a; /* Enable OLPC for chain 0 */ tmpVal = REG_READ(ah, 0xa270); tmpVal = tmpVal & 0xFCFFFFFF; tmpVal = tmpVal | (0x3 << 24); REG_WRITE(ah, 0xa270, tmpVal); /* Enable OLPC for chain 1 */ tmpVal = REG_READ(ah, 0xb270); tmpVal = tmpVal & 0xFCFFFFFF; tmpVal = tmpVal | (0x3 << 24); REG_WRITE(ah, 0xb270, tmpVal); /* Write the OLPC ref power for chain 0 */ if (chain == 0) { tmpVal = REG_READ(ah, 0xa398); tmpVal = tmpVal & 0xff00ffff; a = (txPower)&0xff; tmpVal = tmpVal | (a << 16); REG_WRITE(ah, 0xa398, tmpVal); } /* Write the OLPC ref power for chain 1 */ if (chain == 1) { tmpVal = REG_READ(ah, 0xb398); tmpVal = tmpVal & 0xff00ffff; a = (txPower)&0xff; tmpVal = tmpVal | (a << 16); REG_WRITE(ah, 0xb398, tmpVal); } } static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah, struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset) { struct cal_data_per_freq_ar9287 *pRawDataset; struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop; u8 *pCalBChans = NULL; u16 pdGainOverlap_t2; u8 pdadcValues[AR5416_NUM_PDADC_VALUES]; u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK]; u16 numPiers = 0, i, j; u16 numXpdGain, xpdMask; u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0}; u32 reg32, regOffset, regChainOffset, regval; int16_t modalIdx, diff = 0; struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0; xpdMask = pEepData->modalHeader.xpdGain; if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >= AR9287_EEP_MINOR_VER_2) pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap; else pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP)); if (IS_CHAN_2GHZ(chan)) { pCalBChans = pEepData->calFreqPier2G; numPiers = AR9287_NUM_2G_CAL_PIERS; if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0]; ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0]; } } numXpdGain = 0; /* Calculate the value of xpdgains from the xpdGain Mask */ for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) { if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) { if (numXpdGain >= AR5416_NUM_PD_GAINS) break; xpdGainValues[numXpdGain] = (u16)(AR5416_PD_GAINS_IN_MASK-i); numXpdGain++; } } REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN, (numXpdGain - 1) & 0x3); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1, xpdGainValues[0]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2, xpdGainValues[1]); REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, xpdGainValues[2]); for (i = 0; i < AR9287_MAX_CHAINS; i++) { regChainOffset = i * 0x1000; if (pEepData->baseEepHeader.txMask & (1 << i)) { pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i]; if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { int8_t txPower; ar9287_eeprom_get_tx_gain_index(ah, chan, pRawDatasetOpenLoop, pCalBChans, numPiers, &txPower); ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i); } else { pRawDataset = (struct cal_data_per_freq_ar9287 *) pEepData->calPierData2G[i]; ath9k_hw_get_gain_boundaries_pdadcs(ah, chan, pRawDataset, pCalBChans, numPiers, pdGainOverlap_t2, gainBoundaries, pdadcValues, numXpdGain); } if (i == 0) { if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { regval = SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) | SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) | SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) | SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) | SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4); REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset, regval); } } if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB != pEepData->baseEepHeader.pwrTableOffset) { diff = (u16)(pEepData->baseEepHeader.pwrTableOffset - (int32_t)AR9287_PWR_TABLE_OFFSET_DB); diff *= 2; for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++) pdadcValues[j] = pdadcValues[j+diff]; for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff); j < AR5416_NUM_PDADC_VALUES; j++) pdadcValues[j] = pdadcValues[AR5416_NUM_PDADC_VALUES-diff]; } if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset; for (j = 0; j < 32; j++) { reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) | ((pdadcValues[4*j + 1] & 0xFF) << 8) | ((pdadcValues[4*j + 2] & 0xFF) << 16) | ((pdadcValues[4*j + 3] & 0xFF) << 24); REG_WRITE(ah, regOffset, reg32); regOffset += 4; } } } } *pTxPowerIndexOffset = 0; } static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah, struct ath9k_channel *chan, int16_t *ratesArray, u16 cfgCtl, u16 AntennaReduction, u16 twiceMaxRegulatoryPower, u16 powerLimit) { #define CMP_CTL \ (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ pEepData->ctlIndex[i]) #define CMP_NO_CTL \ (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \ ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL)) #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); u16 twiceMaxEdgePower = MAX_RATE_POWER; static const u16 tpScaleReductionTable[5] = { 0, 3, 6, 9, MAX_RATE_POWER }; int i; int16_t twiceLargestAntenna; struct cal_ctl_data_ar9287 *rep; struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} }, targetPowerCck = {0, {0, 0, 0, 0} }; struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} }, targetPowerCckExt = {0, {0, 0, 0, 0} }; struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0} }; u16 scaledPower = 0, minCtlPower, maxRegAllowedPower; static const u16 ctlModesFor11g[] = { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40 }; u16 numCtlModes = 0; const u16 *pCtlMode = NULL; u16 ctlMode, freq; struct chan_centers centers; int tx_chainmask; u16 twiceMinEdgePower; struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; tx_chainmask = ah->txchainmask; ath9k_hw_get_channel_centers(ah, chan, ¢ers); /* Compute TxPower reduction due to Antenna Gain */ twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0], pEepData->modalHeader.antennaGainCh[1]); twiceLargestAntenna = (int16_t)min((AntennaReduction) - twiceLargestAntenna, 0); /* * scaledPower is the minimum of the user input power level * and the regulatory allowed power level. */ maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna; if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) maxRegAllowedPower -= (tpScaleReductionTable[(regulatory->tp_scale)] * 2); scaledPower = min(powerLimit, maxRegAllowedPower); /* * Reduce scaled Power by number of chains active * to get the per chain tx power level. */ switch (ar5416_get_ntxchains(tx_chainmask)) { case 1: break; case 2: scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; break; case 3: scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; break; } scaledPower = max((u16)0, scaledPower); /* * Get TX power from EEPROM. */ if (IS_CHAN_2GHZ(chan)) { /* CTL_11B, CTL_11G, CTL_2GHT20 */ numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; pCtlMode = ctlModesFor11g; ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, false); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, false); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT20, AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, false); if (IS_CHAN_HT40(chan)) { /* All 2G CTLs */ numCtlModes = ARRAY_SIZE(ctlModesFor11g); ath9k_hw_get_target_powers(ah, chan, pEepData->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, true); ath9k_hw_get_legacy_target_powers(ah, chan, pEepData->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, true); } } for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) { bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false; if (isHt40CtlMode) freq = centers.synth_center; else if (pCtlMode[ctlMode] & EXT_ADDITIVE) freq = centers.ext_center; else freq = centers.ctl_center; /* Walk through the CTL indices stored in EEPROM */ for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) { struct cal_ctl_edges *pRdEdgesPower; /* * Compare test group from regulatory channel list * with test mode from pCtlMode list */ if (CMP_CTL || CMP_NO_CTL) { rep = &(pEepData->ctlData[i]); pRdEdgesPower = rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1]; twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq, pRdEdgesPower, IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES); if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) { twiceMaxEdgePower = min(twiceMaxEdgePower, twiceMinEdgePower); } else { twiceMaxEdgePower = twiceMinEdgePower; break; } } } minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower); /* Apply ctl mode to correct target power set */ switch (pCtlMode[ctlMode]) { case CTL_11B: for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) { targetPowerCck.tPow2x[i] = (u8)min((u16)targetPowerCck.tPow2x[i], minCtlPower); } break; case CTL_11A: case CTL_11G: for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) { targetPowerOfdm.tPow2x[i] = (u8)min((u16)targetPowerOfdm.tPow2x[i], minCtlPower); } break; case CTL_5GHT20: case CTL_2GHT20: for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) { targetPowerHt20.tPow2x[i] = (u8)min((u16)targetPowerHt20.tPow2x[i], minCtlPower); } break; case CTL_11B_EXT: targetPowerCckExt.tPow2x[0] = (u8)min((u16)targetPowerCckExt.tPow2x[0], minCtlPower); break; case CTL_11A_EXT: case CTL_11G_EXT: targetPowerOfdmExt.tPow2x[0] = (u8)min((u16)targetPowerOfdmExt.tPow2x[0], minCtlPower); break; case CTL_5GHT40: case CTL_2GHT40: for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) { targetPowerHt40.tPow2x[i] = (u8)min((u16)targetPowerHt40.tPow2x[i], minCtlPower); } break; default: break; } } /* Now set the rates array */ ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] = ratesArray[rate18mb] = ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0]; ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1]; ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2]; ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3]; ratesArray[rateXr] = targetPowerOfdm.tPow2x[0]; for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i]; if (IS_CHAN_2GHZ(chan)) { ratesArray[rate1l] = targetPowerCck.tPow2x[0]; ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1]; ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2]; ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3]; } if (IS_CHAN_HT40(chan)) { for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i]; ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0]; ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0]; ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0]; if (IS_CHAN_2GHZ(chan)) ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0]; } #undef CMP_CTL #undef CMP_NO_CTL #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN } static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah, struct ath9k_channel *chan, u16 cfgCtl, u8 twiceAntennaReduction, u8 twiceMaxRegulatoryPower, u8 powerLimit, bool test) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ar9287_eeprom *pEepData = &ah->eeprom.map9287; struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader; int16_t ratesArray[Ar5416RateSize]; int16_t txPowerIndexOffset = 0; u8 ht40PowerIncForPdadc = 2; int i; memset(ratesArray, 0, sizeof(ratesArray)); if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >= AR9287_EEP_MINOR_VER_2) ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc; ath9k_hw_set_ar9287_power_per_rate_table(ah, chan, &ratesArray[0], cfgCtl, twiceAntennaReduction, twiceMaxRegulatoryPower, powerLimit); ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset); regulatory->max_power_level = 0; for (i = 0; i < ARRAY_SIZE(ratesArray); i++) { ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]); if (ratesArray[i] > MAX_RATE_POWER) ratesArray[i] = MAX_RATE_POWER; if (ratesArray[i] > regulatory->max_power_level) regulatory->max_power_level = ratesArray[i]; } if (test) return; if (IS_CHAN_2GHZ(chan)) i = rate1l; else i = rate6mb; regulatory->max_power_level = ratesArray[i]; if (AR_SREV_9280_20_OR_LATER(ah)) { for (i = 0; i < Ar5416RateSize; i++) ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2; } /* OFDM power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE1, ATH9K_POW_SM(ratesArray[rate18mb], 24) | ATH9K_POW_SM(ratesArray[rate12mb], 16) | ATH9K_POW_SM(ratesArray[rate9mb], 8) | ATH9K_POW_SM(ratesArray[rate6mb], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE2, ATH9K_POW_SM(ratesArray[rate54mb], 24) | ATH9K_POW_SM(ratesArray[rate48mb], 16) | ATH9K_POW_SM(ratesArray[rate36mb], 8) | ATH9K_POW_SM(ratesArray[rate24mb], 0)); /* CCK power per rate */ if (IS_CHAN_2GHZ(chan)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE3, ATH9K_POW_SM(ratesArray[rate2s], 24) | ATH9K_POW_SM(ratesArray[rate2l], 16) | ATH9K_POW_SM(ratesArray[rateXr], 8) | ATH9K_POW_SM(ratesArray[rate1l], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE4, ATH9K_POW_SM(ratesArray[rate11s], 24) | ATH9K_POW_SM(ratesArray[rate11l], 16) | ATH9K_POW_SM(ratesArray[rate5_5s], 8) | ATH9K_POW_SM(ratesArray[rate5_5l], 0)); } /* HT20 power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE5, ATH9K_POW_SM(ratesArray[rateHt20_3], 24) | ATH9K_POW_SM(ratesArray[rateHt20_2], 16) | ATH9K_POW_SM(ratesArray[rateHt20_1], 8) | ATH9K_POW_SM(ratesArray[rateHt20_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE6, ATH9K_POW_SM(ratesArray[rateHt20_7], 24) | ATH9K_POW_SM(ratesArray[rateHt20_6], 16) | ATH9K_POW_SM(ratesArray[rateHt20_5], 8) | ATH9K_POW_SM(ratesArray[rateHt20_4], 0)); /* HT40 power per rate */ if (IS_CHAN_HT40(chan)) { if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3], 24) | ATH9K_POW_SM(ratesArray[rateHt40_2], 16) | ATH9K_POW_SM(ratesArray[rateHt40_1], 8) | ATH9K_POW_SM(ratesArray[rateHt40_0], 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7], 24) | ATH9K_POW_SM(ratesArray[rateHt40_6], 16) | ATH9K_POW_SM(ratesArray[rateHt40_5], 8) | ATH9K_POW_SM(ratesArray[rateHt40_4], 0)); } else { REG_WRITE(ah, AR_PHY_POWER_TX_RATE7, ATH9K_POW_SM(ratesArray[rateHt40_3] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_2] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_1] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_0] + ht40PowerIncForPdadc, 0)); REG_WRITE(ah, AR_PHY_POWER_TX_RATE8, ATH9K_POW_SM(ratesArray[rateHt40_7] + ht40PowerIncForPdadc, 24) | ATH9K_POW_SM(ratesArray[rateHt40_6] + ht40PowerIncForPdadc, 16) | ATH9K_POW_SM(ratesArray[rateHt40_5] + ht40PowerIncForPdadc, 8) | ATH9K_POW_SM(ratesArray[rateHt40_4] + ht40PowerIncForPdadc, 0)); } /* Dup/Ext power per rate */ REG_WRITE(ah, AR_PHY_POWER_TX_RATE9, ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) | ATH9K_POW_SM(ratesArray[rateExtCck], 16) | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) | ATH9K_POW_SM(ratesArray[rateDupCck], 0)); } } static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah, struct ath9k_channel *chan) { } static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah, struct ath9k_channel *chan) { struct ar9287_eeprom *eep = &ah->eeprom.map9287; struct modal_eep_ar9287_header *pModal = &eep->modalHeader; u16 antWrites[AR9287_ANT_16S]; u32 regChainOffset, regval; u8 txRxAttenLocal; int i, j, offset_num; pModal = &eep->modalHeader; antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF); antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF); antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF); antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF); antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF); antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF); antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF); antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF); offset_num = 8; for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) { antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf); antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3); antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3); antWrites[j++] = 0; antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3); antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3); antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3); antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3); } REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon); for (i = 0; i < AR9287_MAX_CHAINS; i++) { regChainOffset = i * 0x1000; REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]); REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset, (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) | SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) | SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF)); txRxAttenLocal = pModal->txRxAttenCh[i]; REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[i]); REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset, AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[i]); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal); REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset, AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]); } if (IS_CHAN_HT40(chan)) REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40); else REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling); REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize); REG_WRITE(ah, AR_PHY_RF_CTL4, SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON)); REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn); REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62, pModal->thresh62); REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62); regval = REG_READ(ah, AR9287_AN_RF2G3_CH0); regval &= ~(AR9287_AN_RF2G3_DB1 | AR9287_AN_RF2G3_DB2 | AR9287_AN_RF2G3_OB_CCK | AR9287_AN_RF2G3_OB_PSK | AR9287_AN_RF2G3_OB_QAM | AR9287_AN_RF2G3_OB_PAL_OFF); regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) | SM(pModal->db2, AR9287_AN_RF2G3_DB2) | SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) | SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) | SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) | SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF)); ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval); regval = REG_READ(ah, AR9287_AN_RF2G3_CH1); regval &= ~(AR9287_AN_RF2G3_DB1 | AR9287_AN_RF2G3_DB2 | AR9287_AN_RF2G3_OB_CCK | AR9287_AN_RF2G3_OB_PSK | AR9287_AN_RF2G3_OB_QAM | AR9287_AN_RF2G3_OB_PAL_OFF); regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) | SM(pModal->db2, AR9287_AN_RF2G3_DB2) | SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) | SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) | SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) | SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF)); ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart); REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn); ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2, AR9287_AN_TOP2_XPABIAS_LVL, AR9287_AN_TOP2_XPABIAS_LVL_S, pModal->xpaBiasLvl); } static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz) { #define EEP_MAP9287_SPURCHAN \ (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan) struct ath_common *common = ath9k_hw_common(ah); u16 spur_val = AR_NO_SPUR; ath_dbg(common, ATH_DBG_ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n", i, is2GHz, ah->config.spurchans[i][is2GHz]); switch (ah->config.spurmode) { case SPUR_DISABLE: break; case SPUR_ENABLE_IOCTL: spur_val = ah->config.spurchans[i][is2GHz]; ath_dbg(common, ATH_DBG_ANI, "Getting spur val from new loc. %d\n", spur_val); break; case SPUR_ENABLE_EEPROM: spur_val = EEP_MAP9287_SPURCHAN; break; } return spur_val; #undef EEP_MAP9287_SPURCHAN } const struct eeprom_ops eep_ar9287_ops = { .check_eeprom = ath9k_hw_ar9287_check_eeprom, .get_eeprom = ath9k_hw_ar9287_get_eeprom, .fill_eeprom = ath9k_hw_ar9287_fill_eeprom, .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver, .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev, .set_board_values = ath9k_hw_ar9287_set_board_values, .set_addac = ath9k_hw_ar9287_set_addac, .set_txpower = ath9k_hw_ar9287_set_txpower, .get_spur_channel = ath9k_hw_ar9287_get_spur_channel };