/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "ath9k.h" #include "ar9003_mac.h" #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb)) static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) { return sc->ps_enabled && (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); } /* * Setup and link descriptors. * * 11N: we can no longer afford to self link the last descriptor. * MAC acknowledges BA status as long as it copies frames to host * buffer (or rx fifo). This can incorrectly acknowledge packets * to a sender if last desc is self-linked. */ static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_desc *ds; struct sk_buff *skb; ATH_RXBUF_RESET(bf); ds = bf->bf_desc; ds->ds_link = 0; /* link to null */ ds->ds_data = bf->bf_buf_addr; /* virtual addr of the beginning of the buffer. */ skb = bf->bf_mpdu; BUG_ON(skb == NULL); ds->ds_vdata = skb->data; /* * setup rx descriptors. The rx_bufsize here tells the hardware * how much data it can DMA to us and that we are prepared * to process */ ath9k_hw_setuprxdesc(ah, ds, common->rx_bufsize, 0); if (sc->rx.rxlink == NULL) ath9k_hw_putrxbuf(ah, bf->bf_daddr); else *sc->rx.rxlink = bf->bf_daddr; sc->rx.rxlink = &ds->ds_link; } static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) { /* XXX block beacon interrupts */ ath9k_hw_setantenna(sc->sc_ah, antenna); sc->rx.defant = antenna; sc->rx.rxotherant = 0; } static void ath_opmode_init(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); u32 rfilt, mfilt[2]; /* configure rx filter */ rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(ah, rfilt); /* configure bssid mask */ ath_hw_setbssidmask(common); /* configure operational mode */ ath9k_hw_setopmode(ah); /* calculate and install multicast filter */ mfilt[0] = mfilt[1] = ~0; ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); } static bool ath_rx_edma_buf_link(struct ath_softc *sc, enum ath9k_rx_qtype qtype) { struct ath_hw *ah = sc->sc_ah; struct ath_rx_edma *rx_edma; struct sk_buff *skb; struct ath_buf *bf; rx_edma = &sc->rx.rx_edma[qtype]; if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) return false; bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); list_del_init(&bf->list); skb = bf->bf_mpdu; ATH_RXBUF_RESET(bf); memset(skb->data, 0, ah->caps.rx_status_len); dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, ah->caps.rx_status_len, DMA_TO_DEVICE); SKB_CB_ATHBUF(skb) = bf; ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); skb_queue_tail(&rx_edma->rx_fifo, skb); return true; } static void ath_rx_addbuffer_edma(struct ath_softc *sc, enum ath9k_rx_qtype qtype, int size) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_buf *bf, *tbf; if (list_empty(&sc->rx.rxbuf)) { ath_dbg(common, QUEUE, "No free rx buf available\n"); return; } list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) if (!ath_rx_edma_buf_link(sc, qtype)) break; } static void ath_rx_remove_buffer(struct ath_softc *sc, enum ath9k_rx_qtype qtype) { struct ath_buf *bf; struct ath_rx_edma *rx_edma; struct sk_buff *skb; rx_edma = &sc->rx.rx_edma[qtype]; while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) { bf = SKB_CB_ATHBUF(skb); BUG_ON(!bf); list_add_tail(&bf->list, &sc->rx.rxbuf); } } static void ath_rx_edma_cleanup(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_buf *bf; ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); list_for_each_entry(bf, &sc->rx.rxbuf, list) { if (bf->bf_mpdu) { dma_unmap_single(sc->dev, bf->bf_buf_addr, common->rx_bufsize, DMA_BIDIRECTIONAL); dev_kfree_skb_any(bf->bf_mpdu); bf->bf_buf_addr = 0; bf->bf_mpdu = NULL; } } INIT_LIST_HEAD(&sc->rx.rxbuf); kfree(sc->rx.rx_bufptr); sc->rx.rx_bufptr = NULL; } static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) { skb_queue_head_init(&rx_edma->rx_fifo); rx_edma->rx_fifo_hwsize = size; } static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; struct sk_buff *skb; struct ath_buf *bf; int error = 0, i; u32 size; ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - ah->caps.rx_status_len); ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], ah->caps.rx_lp_qdepth); ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], ah->caps.rx_hp_qdepth); size = sizeof(struct ath_buf) * nbufs; bf = kzalloc(size, GFP_KERNEL); if (!bf) return -ENOMEM; INIT_LIST_HEAD(&sc->rx.rxbuf); sc->rx.rx_bufptr = bf; for (i = 0; i < nbufs; i++, bf++) { skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); if (!skb) { error = -ENOMEM; goto rx_init_fail; } memset(skb->data, 0, common->rx_bufsize); bf->bf_mpdu = skb; bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, common->rx_bufsize, DMA_BIDIRECTIONAL); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; bf->bf_buf_addr = 0; ath_err(common, "dma_mapping_error() on RX init\n"); error = -ENOMEM; goto rx_init_fail; } list_add_tail(&bf->list, &sc->rx.rxbuf); } return 0; rx_init_fail: ath_rx_edma_cleanup(sc); return error; } static void ath_edma_start_recv(struct ath_softc *sc) { spin_lock_bh(&sc->rx.rxbuflock); ath9k_hw_rxena(sc->sc_ah); ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP, sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize); ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP, sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize); ath_opmode_init(sc); ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); spin_unlock_bh(&sc->rx.rxbuflock); } static void ath_edma_stop_recv(struct ath_softc *sc) { ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); } int ath_rx_init(struct ath_softc *sc, int nbufs) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct sk_buff *skb; struct ath_buf *bf; int error = 0; spin_lock_init(&sc->sc_pcu_lock); spin_lock_init(&sc->rx.rxbuflock); clear_bit(SC_OP_RXFLUSH, &sc->sc_flags); common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + sc->sc_ah->caps.rx_status_len; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { return ath_rx_edma_init(sc, nbufs); } else { ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", common->cachelsz, common->rx_bufsize); /* Initialize rx descriptors */ error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, "rx", nbufs, 1, 0); if (error != 0) { ath_err(common, "failed to allocate rx descriptors: %d\n", error); goto err; } list_for_each_entry(bf, &sc->rx.rxbuf, list) { skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); if (skb == NULL) { error = -ENOMEM; goto err; } bf->bf_mpdu = skb; bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, common->rx_bufsize, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; bf->bf_buf_addr = 0; ath_err(common, "dma_mapping_error() on RX init\n"); error = -ENOMEM; goto err; } } sc->rx.rxlink = NULL; } err: if (error) ath_rx_cleanup(sc); return error; } void ath_rx_cleanup(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct sk_buff *skb; struct ath_buf *bf; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { ath_rx_edma_cleanup(sc); return; } else { list_for_each_entry(bf, &sc->rx.rxbuf, list) { skb = bf->bf_mpdu; if (skb) { dma_unmap_single(sc->dev, bf->bf_buf_addr, common->rx_bufsize, DMA_FROM_DEVICE); dev_kfree_skb(skb); bf->bf_buf_addr = 0; bf->bf_mpdu = NULL; } } if (sc->rx.rxdma.dd_desc_len != 0) ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf); } } /* * Calculate the receive filter according to the * operating mode and state: * * o always accept unicast, broadcast, and multicast traffic * o maintain current state of phy error reception (the hal * may enable phy error frames for noise immunity work) * o probe request frames are accepted only when operating in * hostap, adhoc, or monitor modes * o enable promiscuous mode according to the interface state * o accept beacons: * - when operating in adhoc mode so the 802.11 layer creates * node table entries for peers, * - when operating in station mode for collecting rssi data when * the station is otherwise quiet, or * - when operating as a repeater so we see repeater-sta beacons * - when scanning */ u32 ath_calcrxfilter(struct ath_softc *sc) { u32 rfilt; rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST | ATH9K_RX_FILTER_MCAST; if (sc->rx.rxfilter & FIF_PROBE_REQ) rfilt |= ATH9K_RX_FILTER_PROBEREQ; /* * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station * mode interface or when in monitor mode. AP mode does not need this * since it receives all in-BSS frames anyway. */ if (sc->sc_ah->is_monitoring) rfilt |= ATH9K_RX_FILTER_PROM; if (sc->rx.rxfilter & FIF_CONTROL) rfilt |= ATH9K_RX_FILTER_CONTROL; if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && (sc->nvifs <= 1) && !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) rfilt |= ATH9K_RX_FILTER_MYBEACON; else rfilt |= ATH9K_RX_FILTER_BEACON; if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || (sc->rx.rxfilter & FIF_PSPOLL)) rfilt |= ATH9K_RX_FILTER_PSPOLL; if (conf_is_ht(&sc->hw->conf)) rfilt |= ATH9K_RX_FILTER_COMP_BAR; if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { /* The following may also be needed for other older chips */ if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160) rfilt |= ATH9K_RX_FILTER_PROM; rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; } return rfilt; } int ath_startrecv(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf, *tbf; if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { ath_edma_start_recv(sc); return 0; } spin_lock_bh(&sc->rx.rxbuflock); if (list_empty(&sc->rx.rxbuf)) goto start_recv; sc->rx.rxlink = NULL; list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { ath_rx_buf_link(sc, bf); } /* We could have deleted elements so the list may be empty now */ if (list_empty(&sc->rx.rxbuf)) goto start_recv; bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); ath9k_hw_putrxbuf(ah, bf->bf_daddr); ath9k_hw_rxena(ah); start_recv: ath_opmode_init(sc); ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); spin_unlock_bh(&sc->rx.rxbuflock); return 0; } bool ath_stoprecv(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; bool stopped, reset = false; spin_lock_bh(&sc->rx.rxbuflock); ath9k_hw_abortpcurecv(ah); ath9k_hw_setrxfilter(ah, 0); stopped = ath9k_hw_stopdmarecv(ah, &reset); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ath_edma_stop_recv(sc); else sc->rx.rxlink = NULL; spin_unlock_bh(&sc->rx.rxbuflock); if (!(ah->ah_flags & AH_UNPLUGGED) && unlikely(!stopped)) { ath_err(ath9k_hw_common(sc->sc_ah), "Could not stop RX, we could be " "confusing the DMA engine when we start RX up\n"); ATH_DBG_WARN_ON_ONCE(!stopped); } return stopped && !reset; } void ath_flushrecv(struct ath_softc *sc) { set_bit(SC_OP_RXFLUSH, &sc->sc_flags); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ath_rx_tasklet(sc, 1, true); ath_rx_tasklet(sc, 1, false); clear_bit(SC_OP_RXFLUSH, &sc->sc_flags); } static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) { /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ struct ieee80211_mgmt *mgmt; u8 *pos, *end, id, elen; struct ieee80211_tim_ie *tim; mgmt = (struct ieee80211_mgmt *)skb->data; pos = mgmt->u.beacon.variable; end = skb->data + skb->len; while (pos + 2 < end) { id = *pos++; elen = *pos++; if (pos + elen > end) break; if (id == WLAN_EID_TIM) { if (elen < sizeof(*tim)) break; tim = (struct ieee80211_tim_ie *) pos; if (tim->dtim_count != 0) break; return tim->bitmap_ctrl & 0x01; } pos += elen; } return false; } static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); if (skb->len < 24 + 8 + 2 + 2) return; sc->ps_flags &= ~PS_WAIT_FOR_BEACON; if (sc->ps_flags & PS_BEACON_SYNC) { sc->ps_flags &= ~PS_BEACON_SYNC; ath_dbg(common, PS, "Reconfigure Beacon timers based on timestamp from the AP\n"); ath_set_beacon(sc); } if (ath_beacon_dtim_pending_cab(skb)) { /* * Remain awake waiting for buffered broadcast/multicast * frames. If the last broadcast/multicast frame is not * received properly, the next beacon frame will work as * a backup trigger for returning into NETWORK SLEEP state, * so we are waiting for it as well. */ ath_dbg(common, PS, "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; return; } if (sc->ps_flags & PS_WAIT_FOR_CAB) { /* * This can happen if a broadcast frame is dropped or the AP * fails to send a frame indicating that all CAB frames have * been delivered. */ sc->ps_flags &= ~PS_WAIT_FOR_CAB; ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); } } static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) { struct ieee80211_hdr *hdr; struct ath_common *common = ath9k_hw_common(sc->sc_ah); hdr = (struct ieee80211_hdr *)skb->data; /* Process Beacon and CAB receive in PS state */ if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) && mybeacon) { ath_rx_ps_beacon(sc, skb); } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && (ieee80211_is_data(hdr->frame_control) || ieee80211_is_action(hdr->frame_control)) && is_multicast_ether_addr(hdr->addr1) && !ieee80211_has_moredata(hdr->frame_control)) { /* * No more broadcast/multicast frames to be received at this * point. */ sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); ath_dbg(common, PS, "All PS CAB frames received, back to sleep\n"); } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && !is_multicast_ether_addr(hdr->addr1) && !ieee80211_has_morefrags(hdr->frame_control)) { sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; ath_dbg(common, PS, "Going back to sleep after having received PS-Poll data (0x%lx)\n", sc->ps_flags & (PS_WAIT_FOR_BEACON | PS_WAIT_FOR_CAB | PS_WAIT_FOR_PSPOLL_DATA | PS_WAIT_FOR_TX_ACK)); } } static bool ath_edma_get_buffers(struct ath_softc *sc, enum ath9k_rx_qtype qtype, struct ath_rx_status *rs, struct ath_buf **dest) { struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct sk_buff *skb; struct ath_buf *bf; int ret; skb = skb_peek(&rx_edma->rx_fifo); if (!skb) return false; bf = SKB_CB_ATHBUF(skb); BUG_ON(!bf); dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, common->rx_bufsize, DMA_FROM_DEVICE); ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); if (ret == -EINPROGRESS) { /*let device gain the buffer again*/ dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, common->rx_bufsize, DMA_FROM_DEVICE); return false; } __skb_unlink(skb, &rx_edma->rx_fifo); if (ret == -EINVAL) { /* corrupt descriptor, skip this one and the following one */ list_add_tail(&bf->list, &sc->rx.rxbuf); ath_rx_edma_buf_link(sc, qtype); skb = skb_peek(&rx_edma->rx_fifo); if (skb) { bf = SKB_CB_ATHBUF(skb); BUG_ON(!bf); __skb_unlink(skb, &rx_edma->rx_fifo); list_add_tail(&bf->list, &sc->rx.rxbuf); ath_rx_edma_buf_link(sc, qtype); } bf = NULL; } *dest = bf; return true; } static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc, struct ath_rx_status *rs, enum ath9k_rx_qtype qtype) { struct ath_buf *bf = NULL; while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { if (!bf) continue; return bf; } return NULL; } static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc, struct ath_rx_status *rs) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_desc *ds; struct ath_buf *bf; int ret; if (list_empty(&sc->rx.rxbuf)) { sc->rx.rxlink = NULL; return NULL; } bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); ds = bf->bf_desc; /* * Must provide the virtual address of the current * descriptor, the physical address, and the virtual * address of the next descriptor in the h/w chain. * This allows the HAL to look ahead to see if the * hardware is done with a descriptor by checking the * done bit in the following descriptor and the address * of the current descriptor the DMA engine is working * on. All this is necessary because of our use of * a self-linked list to avoid rx overruns. */ ret = ath9k_hw_rxprocdesc(ah, ds, rs); if (ret == -EINPROGRESS) { struct ath_rx_status trs; struct ath_buf *tbf; struct ath_desc *tds; memset(&trs, 0, sizeof(trs)); if (list_is_last(&bf->list, &sc->rx.rxbuf)) { sc->rx.rxlink = NULL; return NULL; } tbf = list_entry(bf->list.next, struct ath_buf, list); /* * On some hardware the descriptor status words could * get corrupted, including the done bit. Because of * this, check if the next descriptor's done bit is * set or not. * * If the next descriptor's done bit is set, the current * descriptor has been corrupted. Force s/w to discard * this descriptor and continue... */ tds = tbf->bf_desc; ret = ath9k_hw_rxprocdesc(ah, tds, &trs); if (ret == -EINPROGRESS) return NULL; } if (!bf->bf_mpdu) return bf; /* * Synchronize the DMA transfer with CPU before * 1. accessing the frame * 2. requeueing the same buffer to h/w */ dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, common->rx_bufsize, DMA_FROM_DEVICE); return bf; } /* Assumes you've already done the endian to CPU conversion */ static bool ath9k_rx_accept(struct ath_common *common, struct ieee80211_hdr *hdr, struct ieee80211_rx_status *rxs, struct ath_rx_status *rx_stats, bool *decrypt_error) { struct ath_softc *sc = (struct ath_softc *) common->priv; bool is_mc, is_valid_tkip, strip_mic, mic_error; struct ath_hw *ah = common->ah; __le16 fc; u8 rx_status_len = ah->caps.rx_status_len; fc = hdr->frame_control; is_mc = !!is_multicast_ether_addr(hdr->addr1); is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && test_bit(rx_stats->rs_keyix, common->tkip_keymap); strip_mic = is_valid_tkip && ieee80211_is_data(fc) && ieee80211_has_protected(fc) && !(rx_stats->rs_status & (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | ATH9K_RXERR_KEYMISS)); /* * Key miss events are only relevant for pairwise keys where the * descriptor does contain a valid key index. This has been observed * mostly with CCMP encryption. */ if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; if (!rx_stats->rs_datalen) { RX_STAT_INC(rx_len_err); return false; } /* * rs_status follows rs_datalen so if rs_datalen is too large * we can take a hint that hardware corrupted it, so ignore * those frames. */ if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) { RX_STAT_INC(rx_len_err); return false; } /* Only use error bits from the last fragment */ if (rx_stats->rs_more) return true; mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && !ieee80211_has_morefrags(fc) && !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && (rx_stats->rs_status & ATH9K_RXERR_MIC); /* * The rx_stats->rs_status will not be set until the end of the * chained descriptors so it can be ignored if rs_more is set. The * rs_more will be false at the last element of the chained * descriptors. */ if (rx_stats->rs_status != 0) { u8 status_mask; if (rx_stats->rs_status & ATH9K_RXERR_CRC) { rxs->flag |= RX_FLAG_FAILED_FCS_CRC; mic_error = false; } if (rx_stats->rs_status & ATH9K_RXERR_PHY) return false; if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { *decrypt_error = true; mic_error = false; } /* * Reject error frames with the exception of * decryption and MIC failures. For monitor mode, * we also ignore the CRC error. */ status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | ATH9K_RXERR_KEYMISS; if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) status_mask |= ATH9K_RXERR_CRC; if (rx_stats->rs_status & ~status_mask) return false; } /* * For unicast frames the MIC error bit can have false positives, * so all MIC error reports need to be validated in software. * False negatives are not common, so skip software verification * if the hardware considers the MIC valid. */ if (strip_mic) rxs->flag |= RX_FLAG_MMIC_STRIPPED; else if (is_mc && mic_error) rxs->flag |= RX_FLAG_MMIC_ERROR; return true; } static int ath9k_process_rate(struct ath_common *common, struct ieee80211_hw *hw, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rxs) { struct ieee80211_supported_band *sband; enum ieee80211_band band; unsigned int i = 0; struct ath_softc __maybe_unused *sc = common->priv; band = hw->conf.channel->band; sband = hw->wiphy->bands[band]; if (rx_stats->rs_rate & 0x80) { /* HT rate */ rxs->flag |= RX_FLAG_HT; if (rx_stats->rs_flags & ATH9K_RX_2040) rxs->flag |= RX_FLAG_40MHZ; if (rx_stats->rs_flags & ATH9K_RX_GI) rxs->flag |= RX_FLAG_SHORT_GI; rxs->rate_idx = rx_stats->rs_rate & 0x7f; return 0; } for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { rxs->rate_idx = i; return 0; } if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { rxs->flag |= RX_FLAG_SHORTPRE; rxs->rate_idx = i; return 0; } } /* * No valid hardware bitrate found -- we should not get here * because hardware has already validated this frame as OK. */ ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", rx_stats->rs_rate); RX_STAT_INC(rx_rate_err); return -EINVAL; } static void ath9k_process_rssi(struct ath_common *common, struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, struct ath_rx_status *rx_stats) { struct ath_softc *sc = hw->priv; struct ath_hw *ah = common->ah; int last_rssi; int rssi = rx_stats->rs_rssi; if (!rx_stats->is_mybeacon || ((ah->opmode != NL80211_IFTYPE_STATION) && (ah->opmode != NL80211_IFTYPE_ADHOC))) return; if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr) ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); last_rssi = sc->last_rssi; if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); if (rssi < 0) rssi = 0; /* Update Beacon RSSI, this is used by ANI. */ ah->stats.avgbrssi = rssi; } /* * For Decrypt or Demic errors, we only mark packet status here and always push * up the frame up to let mac80211 handle the actual error case, be it no * decryption key or real decryption error. This let us keep statistics there. */ static int ath9k_rx_skb_preprocess(struct ath_common *common, struct ieee80211_hw *hw, struct ieee80211_hdr *hdr, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rx_status, bool *decrypt_error) { struct ath_hw *ah = common->ah; /* * everything but the rate is checked here, the rate check is done * separately to avoid doing two lookups for a rate for each frame. */ if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) return -EINVAL; /* Only use status info from the last fragment */ if (rx_stats->rs_more) return 0; ath9k_process_rssi(common, hw, hdr, rx_stats); if (ath9k_process_rate(common, hw, rx_stats, rx_status)) return -EINVAL; rx_status->band = hw->conf.channel->band; rx_status->freq = hw->conf.channel->center_freq; rx_status->signal = ah->noise + rx_stats->rs_rssi; rx_status->antenna = rx_stats->rs_antenna; rx_status->flag |= RX_FLAG_MACTIME_MPDU; if (rx_stats->rs_moreaggr) rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; return 0; } static void ath9k_rx_skb_postprocess(struct ath_common *common, struct sk_buff *skb, struct ath_rx_status *rx_stats, struct ieee80211_rx_status *rxs, bool decrypt_error) { struct ath_hw *ah = common->ah; struct ieee80211_hdr *hdr; int hdrlen, padpos, padsize; u8 keyix; __le16 fc; /* see if any padding is done by the hw and remove it */ hdr = (struct ieee80211_hdr *) skb->data; hdrlen = ieee80211_get_hdrlen_from_skb(skb); fc = hdr->frame_control; padpos = ath9k_cmn_padpos(hdr->frame_control); /* The MAC header is padded to have 32-bit boundary if the * packet payload is non-zero. The general calculation for * padsize would take into account odd header lengths: * padsize = (4 - padpos % 4) % 4; However, since only * even-length headers are used, padding can only be 0 or 2 * bytes and we can optimize this a bit. In addition, we must * not try to remove padding from short control frames that do * not have payload. */ padsize = padpos & 3; if (padsize && skb->len>=padpos+padsize+FCS_LEN) { memmove(skb->data + padsize, skb->data, padpos); skb_pull(skb, padsize); } keyix = rx_stats->rs_keyix; if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && ieee80211_has_protected(fc)) { rxs->flag |= RX_FLAG_DECRYPTED; } else if (ieee80211_has_protected(fc) && !decrypt_error && skb->len >= hdrlen + 4) { keyix = skb->data[hdrlen + 3] >> 6; if (test_bit(keyix, common->keymap)) rxs->flag |= RX_FLAG_DECRYPTED; } if (ah->sw_mgmt_crypto && (rxs->flag & RX_FLAG_DECRYPTED) && ieee80211_is_mgmt(fc)) /* Use software decrypt for management frames. */ rxs->flag &= ~RX_FLAG_DECRYPTED; } int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) { struct ath_buf *bf; struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; struct ieee80211_rx_status *rxs; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_hw *hw = sc->hw; struct ieee80211_hdr *hdr; int retval; bool decrypt_error = false; struct ath_rx_status rs; enum ath9k_rx_qtype qtype; bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); int dma_type; u8 rx_status_len = ah->caps.rx_status_len; u64 tsf = 0; u32 tsf_lower = 0; unsigned long flags; if (edma) dma_type = DMA_BIDIRECTIONAL; else dma_type = DMA_FROM_DEVICE; qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; spin_lock_bh(&sc->rx.rxbuflock); tsf = ath9k_hw_gettsf64(ah); tsf_lower = tsf & 0xffffffff; do { /* If handling rx interrupt and flush is in progress => exit */ if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags) && (flush == 0)) break; memset(&rs, 0, sizeof(rs)); if (edma) bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); else bf = ath_get_next_rx_buf(sc, &rs); if (!bf) break; skb = bf->bf_mpdu; if (!skb) continue; /* * Take frame header from the first fragment and RX status from * the last one. */ if (sc->rx.frag) hdr_skb = sc->rx.frag; else hdr_skb = skb; hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len); rxs = IEEE80211_SKB_RXCB(hdr_skb); if (ieee80211_is_beacon(hdr->frame_control)) { RX_STAT_INC(rx_beacons); if (!is_zero_ether_addr(common->curbssid) && ether_addr_equal(hdr->addr3, common->curbssid)) rs.is_mybeacon = true; else rs.is_mybeacon = false; } else rs.is_mybeacon = false; sc->rx.num_pkts++; ath_debug_stat_rx(sc, &rs); /* * If we're asked to flush receive queue, directly * chain it back at the queue without processing it. */ if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags)) { RX_STAT_INC(rx_drop_rxflush); goto requeue_drop_frag; } memset(rxs, 0, sizeof(struct ieee80211_rx_status)); rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp; if (rs.rs_tstamp > tsf_lower && unlikely(rs.rs_tstamp - tsf_lower > 0x10000000)) rxs->mactime -= 0x100000000ULL; if (rs.rs_tstamp < tsf_lower && unlikely(tsf_lower - rs.rs_tstamp > 0x10000000)) rxs->mactime += 0x100000000ULL; retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs, rxs, &decrypt_error); if (retval) goto requeue_drop_frag; if (rs.is_mybeacon) { sc->hw_busy_count = 0; ath_start_rx_poll(sc, 3); } /* Ensure we always have an skb to requeue once we are done * processing the current buffer's skb */ requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); /* If there is no memory we ignore the current RX'd frame, * tell hardware it can give us a new frame using the old * skb and put it at the tail of the sc->rx.rxbuf list for * processing. */ if (!requeue_skb) { RX_STAT_INC(rx_oom_err); goto requeue_drop_frag; } /* Unmap the frame */ dma_unmap_single(sc->dev, bf->bf_buf_addr, common->rx_bufsize, dma_type); skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); if (ah->caps.rx_status_len) skb_pull(skb, ah->caps.rx_status_len); if (!rs.rs_more) ath9k_rx_skb_postprocess(common, hdr_skb, &rs, rxs, decrypt_error); /* We will now give hardware our shiny new allocated skb */ bf->bf_mpdu = requeue_skb; bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data, common->rx_bufsize, dma_type); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(requeue_skb); bf->bf_mpdu = NULL; bf->bf_buf_addr = 0; ath_err(common, "dma_mapping_error() on RX\n"); ieee80211_rx(hw, skb); break; } if (rs.rs_more) { RX_STAT_INC(rx_frags); /* * rs_more indicates chained descriptors which can be * used to link buffers together for a sort of * scatter-gather operation. */ if (sc->rx.frag) { /* too many fragments - cannot handle frame */ dev_kfree_skb_any(sc->rx.frag); dev_kfree_skb_any(skb); RX_STAT_INC(rx_too_many_frags_err); skb = NULL; } sc->rx.frag = skb; goto requeue; } if (sc->rx.frag) { int space = skb->len - skb_tailroom(hdr_skb); if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { dev_kfree_skb(skb); RX_STAT_INC(rx_oom_err); goto requeue_drop_frag; } sc->rx.frag = NULL; skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), skb->len); dev_kfree_skb_any(skb); skb = hdr_skb; } if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { /* * change the default rx antenna if rx diversity * chooses the other antenna 3 times in a row. */ if (sc->rx.defant != rs.rs_antenna) { if (++sc->rx.rxotherant >= 3) ath_setdefantenna(sc, rs.rs_antenna); } else { sc->rx.rxotherant = 0; } } if (rxs->flag & RX_FLAG_MMIC_STRIPPED) skb_trim(skb, skb->len - 8); spin_lock_irqsave(&sc->sc_pm_lock, flags); if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | PS_WAIT_FOR_CAB | PS_WAIT_FOR_PSPOLL_DATA)) || ath9k_check_auto_sleep(sc)) ath_rx_ps(sc, skb, rs.is_mybeacon); spin_unlock_irqrestore(&sc->sc_pm_lock, flags); if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3) ath_ant_comb_scan(sc, &rs); ieee80211_rx(hw, skb); requeue_drop_frag: if (sc->rx.frag) { dev_kfree_skb_any(sc->rx.frag); sc->rx.frag = NULL; } requeue: if (edma) { list_add_tail(&bf->list, &sc->rx.rxbuf); ath_rx_edma_buf_link(sc, qtype); } else { list_move_tail(&bf->list, &sc->rx.rxbuf); ath_rx_buf_link(sc, bf); if (!flush) ath9k_hw_rxena(ah); } } while (1); spin_unlock_bh(&sc->rx.rxbuflock); if (!(ah->imask & ATH9K_INT_RXEOL)) { ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); ath9k_hw_set_interrupts(ah); } return 0; }