/* * Datapath implementation for ST-Ericsson CW1200 mac80211 drivers * * Copyright (c) 2010, ST-Ericsson * Author: Dmitry Tarnyagin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include "cw1200.h" #include "wsm.h" #include "bh.h" #include "sta.h" #include "debug.h" #define CW1200_INVALID_RATE_ID (0xFF) static int cw1200_handle_action_rx(struct cw1200_common *priv, struct sk_buff *skb); static const struct ieee80211_rate * cw1200_get_tx_rate(const struct cw1200_common *priv, const struct ieee80211_tx_rate *rate); /* ******************************************************************** */ /* TX queue lock / unlock */ static inline void cw1200_tx_queues_lock(struct cw1200_common *priv) { int i; for (i = 0; i < 4; ++i) cw1200_queue_lock(&priv->tx_queue[i]); } static inline void cw1200_tx_queues_unlock(struct cw1200_common *priv) { int i; for (i = 0; i < 4; ++i) cw1200_queue_unlock(&priv->tx_queue[i]); } /* ******************************************************************** */ /* TX policy cache implementation */ static void tx_policy_dump(struct tx_policy *policy) { pr_debug("[TX policy] %.1X%.1X%.1X%.1X%.1X%.1X%.1X%.1X %.1X%.1X%.1X%.1X%.1X%.1X%.1X%.1X %.1X%.1X%.1X%.1X%.1X%.1X%.1X%.1X: %d\n", policy->raw[0] & 0x0F, policy->raw[0] >> 4, policy->raw[1] & 0x0F, policy->raw[1] >> 4, policy->raw[2] & 0x0F, policy->raw[2] >> 4, policy->raw[3] & 0x0F, policy->raw[3] >> 4, policy->raw[4] & 0x0F, policy->raw[4] >> 4, policy->raw[5] & 0x0F, policy->raw[5] >> 4, policy->raw[6] & 0x0F, policy->raw[6] >> 4, policy->raw[7] & 0x0F, policy->raw[7] >> 4, policy->raw[8] & 0x0F, policy->raw[8] >> 4, policy->raw[9] & 0x0F, policy->raw[9] >> 4, policy->raw[10] & 0x0F, policy->raw[10] >> 4, policy->raw[11] & 0x0F, policy->raw[11] >> 4, policy->defined); } static void tx_policy_build(const struct cw1200_common *priv, /* [out] */ struct tx_policy *policy, struct ieee80211_tx_rate *rates, size_t count) { int i, j; unsigned limit = priv->short_frame_max_tx_count; unsigned total = 0; BUG_ON(rates[0].idx < 0); memset(policy, 0, sizeof(*policy)); /* Sort rates in descending order. */ for (i = 1; i < count; ++i) { if (rates[i].idx < 0) { count = i; break; } if (rates[i].idx > rates[i - 1].idx) { struct ieee80211_tx_rate tmp = rates[i - 1]; rates[i - 1] = rates[i]; rates[i] = tmp; } } /* Eliminate duplicates. */ total = rates[0].count; for (i = 0, j = 1; j < count; ++j) { if (rates[j].idx == rates[i].idx) { rates[i].count += rates[j].count; } else if (rates[j].idx > rates[i].idx) { break; } else { ++i; if (i != j) rates[i] = rates[j]; } total += rates[j].count; } count = i + 1; /* Re-fill policy trying to keep every requested rate and with * respect to the global max tx retransmission count. */ if (limit < count) limit = count; if (total > limit) { for (i = 0; i < count; ++i) { int left = count - i - 1; if (rates[i].count > limit - left) rates[i].count = limit - left; limit -= rates[i].count; } } /* HACK!!! Device has problems (at least) switching from * 54Mbps CTS to 1Mbps. This switch takes enormous amount * of time (100-200 ms), leading to valuable throughput drop. * As a workaround, additional g-rates are injected to the * policy. */ if (count == 2 && !(rates[0].flags & IEEE80211_TX_RC_MCS) && rates[0].idx > 4 && rates[0].count > 2 && rates[1].idx < 2) { int mid_rate = (rates[0].idx + 4) >> 1; /* Decrease number of retries for the initial rate */ rates[0].count -= 2; if (mid_rate != 4) { /* Keep fallback rate at 1Mbps. */ rates[3] = rates[1]; /* Inject 1 transmission on lowest g-rate */ rates[2].idx = 4; rates[2].count = 1; rates[2].flags = rates[1].flags; /* Inject 1 transmission on mid-rate */ rates[1].idx = mid_rate; rates[1].count = 1; /* Fallback to 1 Mbps is a really bad thing, * so let's try to increase probability of * successful transmission on the lowest g rate * even more */ if (rates[0].count >= 3) { --rates[0].count; ++rates[2].count; } /* Adjust amount of rates defined */ count += 2; } else { /* Keep fallback rate at 1Mbps. */ rates[2] = rates[1]; /* Inject 2 transmissions on lowest g-rate */ rates[1].idx = 4; rates[1].count = 2; /* Adjust amount of rates defined */ count += 1; } } policy->defined = cw1200_get_tx_rate(priv, &rates[0])->hw_value + 1; for (i = 0; i < count; ++i) { register unsigned rateid, off, shift, retries; rateid = cw1200_get_tx_rate(priv, &rates[i])->hw_value; off = rateid >> 3; /* eq. rateid / 8 */ shift = (rateid & 0x07) << 2; /* eq. (rateid % 8) * 4 */ retries = rates[i].count; if (retries > 0x0F) { rates[i].count = 0x0f; retries = 0x0F; } policy->tbl[off] |= __cpu_to_le32(retries << shift); policy->retry_count += retries; } pr_debug("[TX policy] Policy (%zu): %d:%d, %d:%d, %d:%d, %d:%d\n", count, rates[0].idx, rates[0].count, rates[1].idx, rates[1].count, rates[2].idx, rates[2].count, rates[3].idx, rates[3].count); } static inline bool tx_policy_is_equal(const struct tx_policy *wanted, const struct tx_policy *cached) { size_t count = wanted->defined >> 1; if (wanted->defined > cached->defined) return false; if (count) { if (memcmp(wanted->raw, cached->raw, count)) return false; } if (wanted->defined & 1) { if ((wanted->raw[count] & 0x0F) != (cached->raw[count] & 0x0F)) return false; } return true; } static int tx_policy_find(struct tx_policy_cache *cache, const struct tx_policy *wanted) { /* O(n) complexity. Not so good, but there's only 8 entries in * the cache. * Also lru helps to reduce search time. */ struct tx_policy_cache_entry *it; /* First search for policy in "used" list */ list_for_each_entry(it, &cache->used, link) { if (tx_policy_is_equal(wanted, &it->policy)) return it - cache->cache; } /* Then - in "free list" */ list_for_each_entry(it, &cache->free, link) { if (tx_policy_is_equal(wanted, &it->policy)) return it - cache->cache; } return -1; } static inline void tx_policy_use(struct tx_policy_cache *cache, struct tx_policy_cache_entry *entry) { ++entry->policy.usage_count; list_move(&entry->link, &cache->used); } static inline int tx_policy_release(struct tx_policy_cache *cache, struct tx_policy_cache_entry *entry) { int ret = --entry->policy.usage_count; if (!ret) list_move(&entry->link, &cache->free); return ret; } void tx_policy_clean(struct cw1200_common *priv) { int idx, locked; struct tx_policy_cache *cache = &priv->tx_policy_cache; struct tx_policy_cache_entry *entry; cw1200_tx_queues_lock(priv); spin_lock_bh(&cache->lock); locked = list_empty(&cache->free); for (idx = 0; idx < TX_POLICY_CACHE_SIZE; idx++) { entry = &cache->cache[idx]; /* Policy usage count should be 0 at this time as all queues should be empty */ if (WARN_ON(entry->policy.usage_count)) { entry->policy.usage_count = 0; list_move(&entry->link, &cache->free); } memset(&entry->policy, 0, sizeof(entry->policy)); } if (locked) cw1200_tx_queues_unlock(priv); cw1200_tx_queues_unlock(priv); spin_unlock_bh(&cache->lock); } /* ******************************************************************** */ /* External TX policy cache API */ void tx_policy_init(struct cw1200_common *priv) { struct tx_policy_cache *cache = &priv->tx_policy_cache; int i; memset(cache, 0, sizeof(*cache)); spin_lock_init(&cache->lock); INIT_LIST_HEAD(&cache->used); INIT_LIST_HEAD(&cache->free); for (i = 0; i < TX_POLICY_CACHE_SIZE; ++i) list_add(&cache->cache[i].link, &cache->free); } static int tx_policy_get(struct cw1200_common *priv, struct ieee80211_tx_rate *rates, size_t count, bool *renew) { int idx; struct tx_policy_cache *cache = &priv->tx_policy_cache; struct tx_policy wanted; tx_policy_build(priv, &wanted, rates, count); spin_lock_bh(&cache->lock); if (WARN_ON_ONCE(list_empty(&cache->free))) { spin_unlock_bh(&cache->lock); return CW1200_INVALID_RATE_ID; } idx = tx_policy_find(cache, &wanted); if (idx >= 0) { pr_debug("[TX policy] Used TX policy: %d\n", idx); *renew = false; } else { struct tx_policy_cache_entry *entry; *renew = true; /* If policy is not found create a new one * using the oldest entry in "free" list */ entry = list_entry(cache->free.prev, struct tx_policy_cache_entry, link); entry->policy = wanted; idx = entry - cache->cache; pr_debug("[TX policy] New TX policy: %d\n", idx); tx_policy_dump(&entry->policy); } tx_policy_use(cache, &cache->cache[idx]); if (list_empty(&cache->free)) { /* Lock TX queues. */ cw1200_tx_queues_lock(priv); } spin_unlock_bh(&cache->lock); return idx; } static void tx_policy_put(struct cw1200_common *priv, int idx) { int usage, locked; struct tx_policy_cache *cache = &priv->tx_policy_cache; spin_lock_bh(&cache->lock); locked = list_empty(&cache->free); usage = tx_policy_release(cache, &cache->cache[idx]); if (locked && !usage) { /* Unlock TX queues. */ cw1200_tx_queues_unlock(priv); } spin_unlock_bh(&cache->lock); } static int tx_policy_upload(struct cw1200_common *priv) { struct tx_policy_cache *cache = &priv->tx_policy_cache; int i; struct wsm_set_tx_rate_retry_policy arg = { .num = 0, }; spin_lock_bh(&cache->lock); /* Upload only modified entries. */ for (i = 0; i < TX_POLICY_CACHE_SIZE; ++i) { struct tx_policy *src = &cache->cache[i].policy; if (src->retry_count && !src->uploaded) { struct wsm_tx_rate_retry_policy *dst = &arg.tbl[arg.num]; dst->index = i; dst->short_retries = priv->short_frame_max_tx_count; dst->long_retries = priv->long_frame_max_tx_count; dst->flags = WSM_TX_RATE_POLICY_FLAG_TERMINATE_WHEN_FINISHED | WSM_TX_RATE_POLICY_FLAG_COUNT_INITIAL_TRANSMIT; memcpy(dst->rate_count_indices, src->tbl, sizeof(dst->rate_count_indices)); src->uploaded = 1; ++arg.num; } } spin_unlock_bh(&cache->lock); cw1200_debug_tx_cache_miss(priv); pr_debug("[TX policy] Upload %d policies\n", arg.num); return wsm_set_tx_rate_retry_policy(priv, &arg); } void tx_policy_upload_work(struct work_struct *work) { struct cw1200_common *priv = container_of(work, struct cw1200_common, tx_policy_upload_work); pr_debug("[TX] TX policy upload.\n"); tx_policy_upload(priv); wsm_unlock_tx(priv); cw1200_tx_queues_unlock(priv); } /* ******************************************************************** */ /* cw1200 TX implementation */ struct cw1200_txinfo { struct sk_buff *skb; unsigned queue; struct ieee80211_tx_info *tx_info; const struct ieee80211_rate *rate; struct ieee80211_hdr *hdr; size_t hdrlen; const u8 *da; struct cw1200_sta_priv *sta_priv; struct ieee80211_sta *sta; struct cw1200_txpriv txpriv; }; u32 cw1200_rate_mask_to_wsm(struct cw1200_common *priv, u32 rates) { u32 ret = 0; int i; for (i = 0; i < 32; ++i) { if (rates & BIT(i)) ret |= BIT(priv->rates[i].hw_value); } return ret; } static const struct ieee80211_rate * cw1200_get_tx_rate(const struct cw1200_common *priv, const struct ieee80211_tx_rate *rate) { if (rate->idx < 0) return NULL; if (rate->flags & IEEE80211_TX_RC_MCS) return &priv->mcs_rates[rate->idx]; return &priv->hw->wiphy->bands[priv->channel->band]-> bitrates[rate->idx]; } static int cw1200_tx_h_calc_link_ids(struct cw1200_common *priv, struct cw1200_txinfo *t) { if (t->sta && t->sta_priv->link_id) t->txpriv.raw_link_id = t->txpriv.link_id = t->sta_priv->link_id; else if (priv->mode != NL80211_IFTYPE_AP) t->txpriv.raw_link_id = t->txpriv.link_id = 0; else if (is_multicast_ether_addr(t->da)) { if (priv->enable_beacon) { t->txpriv.raw_link_id = 0; t->txpriv.link_id = CW1200_LINK_ID_AFTER_DTIM; } else { t->txpriv.raw_link_id = 0; t->txpriv.link_id = 0; } } else { t->txpriv.link_id = cw1200_find_link_id(priv, t->da); if (!t->txpriv.link_id) t->txpriv.link_id = cw1200_alloc_link_id(priv, t->da); if (!t->txpriv.link_id) { wiphy_err(priv->hw->wiphy, "No more link IDs available.\n"); return -ENOENT; } t->txpriv.raw_link_id = t->txpriv.link_id; } if (t->txpriv.raw_link_id) priv->link_id_db[t->txpriv.raw_link_id - 1].timestamp = jiffies; if (t->sta && (t->sta->uapsd_queues & BIT(t->queue))) t->txpriv.link_id = CW1200_LINK_ID_UAPSD; return 0; } static void cw1200_tx_h_pm(struct cw1200_common *priv, struct cw1200_txinfo *t) { if (ieee80211_is_auth(t->hdr->frame_control)) { u32 mask = ~BIT(t->txpriv.raw_link_id); spin_lock_bh(&priv->ps_state_lock); priv->sta_asleep_mask &= mask; priv->pspoll_mask &= mask; spin_unlock_bh(&priv->ps_state_lock); } } static void cw1200_tx_h_calc_tid(struct cw1200_common *priv, struct cw1200_txinfo *t) { if (ieee80211_is_data_qos(t->hdr->frame_control)) { u8 *qos = ieee80211_get_qos_ctl(t->hdr); t->txpriv.tid = qos[0] & IEEE80211_QOS_CTL_TID_MASK; } else if (ieee80211_is_data(t->hdr->frame_control)) { t->txpriv.tid = 0; } } static int cw1200_tx_h_crypt(struct cw1200_common *priv, struct cw1200_txinfo *t) { if (!t->tx_info->control.hw_key || !ieee80211_has_protected(t->hdr->frame_control)) return 0; t->hdrlen += t->tx_info->control.hw_key->iv_len; skb_put(t->skb, t->tx_info->control.hw_key->icv_len); if (t->tx_info->control.hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) skb_put(t->skb, 8); /* MIC space */ return 0; } static int cw1200_tx_h_align(struct cw1200_common *priv, struct cw1200_txinfo *t, u8 *flags) { size_t offset = (size_t)t->skb->data & 3; if (!offset) return 0; if (offset & 1) { wiphy_err(priv->hw->wiphy, "Bug: attempt to transmit a frame with wrong alignment: %zu\n", offset); return -EINVAL; } if (skb_headroom(t->skb) < offset) { wiphy_err(priv->hw->wiphy, "Bug: no space allocated for DMA alignment. headroom: %d\n", skb_headroom(t->skb)); return -ENOMEM; } skb_push(t->skb, offset); t->hdrlen += offset; t->txpriv.offset += offset; *flags |= WSM_TX_2BYTES_SHIFT; cw1200_debug_tx_align(priv); return 0; } static int cw1200_tx_h_action(struct cw1200_common *priv, struct cw1200_txinfo *t) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)t->hdr; if (ieee80211_is_action(t->hdr->frame_control) && mgmt->u.action.category == WLAN_CATEGORY_BACK) return 1; else return 0; } /* Add WSM header */ static struct wsm_tx * cw1200_tx_h_wsm(struct cw1200_common *priv, struct cw1200_txinfo *t) { struct wsm_tx *wsm; if (skb_headroom(t->skb) < sizeof(struct wsm_tx)) { wiphy_err(priv->hw->wiphy, "Bug: no space allocated for WSM header. headroom: %d\n", skb_headroom(t->skb)); return NULL; } wsm = (struct wsm_tx *)skb_push(t->skb, sizeof(struct wsm_tx)); t->txpriv.offset += sizeof(struct wsm_tx); memset(wsm, 0, sizeof(*wsm)); wsm->hdr.len = __cpu_to_le16(t->skb->len); wsm->hdr.id = __cpu_to_le16(0x0004); wsm->queue_id = wsm_queue_id_to_wsm(t->queue); return wsm; } /* BT Coex specific handling */ static void cw1200_tx_h_bt(struct cw1200_common *priv, struct cw1200_txinfo *t, struct wsm_tx *wsm) { u8 priority = 0; if (!priv->bt_present) return; if (ieee80211_is_nullfunc(t->hdr->frame_control)) { priority = WSM_EPTA_PRIORITY_MGT; } else if (ieee80211_is_data(t->hdr->frame_control)) { /* Skip LLC SNAP header (+6) */ u8 *payload = &t->skb->data[t->hdrlen]; __be16 *ethertype = (__be16 *)&payload[6]; if (be16_to_cpu(*ethertype) == ETH_P_PAE) priority = WSM_EPTA_PRIORITY_EAPOL; } else if (ieee80211_is_assoc_req(t->hdr->frame_control) || ieee80211_is_reassoc_req(t->hdr->frame_control)) { struct ieee80211_mgmt *mgt_frame = (struct ieee80211_mgmt *)t->hdr; if (le16_to_cpu(mgt_frame->u.assoc_req.listen_interval) < priv->listen_interval) { pr_debug("Modified Listen Interval to %d from %d\n", priv->listen_interval, mgt_frame->u.assoc_req.listen_interval); /* Replace listen interval derieved from * the one read from SDD */ mgt_frame->u.assoc_req.listen_interval = cpu_to_le16(priv->listen_interval); } } if (!priority) { if (ieee80211_is_action(t->hdr->frame_control)) priority = WSM_EPTA_PRIORITY_ACTION; else if (ieee80211_is_mgmt(t->hdr->frame_control)) priority = WSM_EPTA_PRIORITY_MGT; else if ((wsm->queue_id == WSM_QUEUE_VOICE)) priority = WSM_EPTA_PRIORITY_VOICE; else if ((wsm->queue_id == WSM_QUEUE_VIDEO)) priority = WSM_EPTA_PRIORITY_VIDEO; else priority = WSM_EPTA_PRIORITY_DATA; } pr_debug("[TX] EPTA priority %d.\n", priority); wsm->flags |= priority << 1; } static int cw1200_tx_h_rate_policy(struct cw1200_common *priv, struct cw1200_txinfo *t, struct wsm_tx *wsm) { bool tx_policy_renew = false; t->txpriv.rate_id = tx_policy_get(priv, t->tx_info->control.rates, IEEE80211_TX_MAX_RATES, &tx_policy_renew); if (t->txpriv.rate_id == CW1200_INVALID_RATE_ID) return -EFAULT; wsm->flags |= t->txpriv.rate_id << 4; t->rate = cw1200_get_tx_rate(priv, &t->tx_info->control.rates[0]), wsm->max_tx_rate = t->rate->hw_value; if (t->rate->flags & IEEE80211_TX_RC_MCS) { if (cw1200_ht_greenfield(&priv->ht_info)) wsm->ht_tx_parameters |= __cpu_to_le32(WSM_HT_TX_GREENFIELD); else wsm->ht_tx_parameters |= __cpu_to_le32(WSM_HT_TX_MIXED); } if (tx_policy_renew) { pr_debug("[TX] TX policy renew.\n"); /* It's not so optimal to stop TX queues every now and then. * Better to reimplement task scheduling with * a counter. TODO. */ wsm_lock_tx_async(priv); cw1200_tx_queues_lock(priv); if (queue_work(priv->workqueue, &priv->tx_policy_upload_work) <= 0) { cw1200_tx_queues_unlock(priv); wsm_unlock_tx(priv); } } return 0; } static bool cw1200_tx_h_pm_state(struct cw1200_common *priv, struct cw1200_txinfo *t) { int was_buffered = 1; if (t->txpriv.link_id == CW1200_LINK_ID_AFTER_DTIM && !priv->buffered_multicasts) { priv->buffered_multicasts = true; if (priv->sta_asleep_mask) queue_work(priv->workqueue, &priv->multicast_start_work); } if (t->txpriv.raw_link_id && t->txpriv.tid < CW1200_MAX_TID) was_buffered = priv->link_id_db[t->txpriv.raw_link_id - 1].buffered[t->txpriv.tid]++; return !was_buffered; } /* ******************************************************************** */ void cw1200_tx(struct ieee80211_hw *dev, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct cw1200_common *priv = dev->priv; struct cw1200_txinfo t = { .skb = skb, .queue = skb_get_queue_mapping(skb), .tx_info = IEEE80211_SKB_CB(skb), .hdr = (struct ieee80211_hdr *)skb->data, .txpriv.tid = CW1200_MAX_TID, .txpriv.rate_id = CW1200_INVALID_RATE_ID, }; struct ieee80211_sta *sta; struct wsm_tx *wsm; bool tid_update = 0; u8 flags = 0; int ret; if (priv->bh_error) goto drop; t.hdrlen = ieee80211_hdrlen(t.hdr->frame_control); t.da = ieee80211_get_DA(t.hdr); if (control) { t.sta = control->sta; t.sta_priv = (struct cw1200_sta_priv *)&t.sta->drv_priv; } if (WARN_ON(t.queue >= 4)) goto drop; ret = cw1200_tx_h_calc_link_ids(priv, &t); if (ret) goto drop; pr_debug("[TX] TX %d bytes (queue: %d, link_id: %d (%d)).\n", skb->len, t.queue, t.txpriv.link_id, t.txpriv.raw_link_id); cw1200_tx_h_pm(priv, &t); cw1200_tx_h_calc_tid(priv, &t); ret = cw1200_tx_h_crypt(priv, &t); if (ret) goto drop; ret = cw1200_tx_h_align(priv, &t, &flags); if (ret) goto drop; ret = cw1200_tx_h_action(priv, &t); if (ret) goto drop; wsm = cw1200_tx_h_wsm(priv, &t); if (!wsm) { ret = -ENOMEM; goto drop; } wsm->flags |= flags; cw1200_tx_h_bt(priv, &t, wsm); ret = cw1200_tx_h_rate_policy(priv, &t, wsm); if (ret) goto drop; rcu_read_lock(); sta = rcu_dereference(t.sta); spin_lock_bh(&priv->ps_state_lock); { tid_update = cw1200_tx_h_pm_state(priv, &t); BUG_ON(cw1200_queue_put(&priv->tx_queue[t.queue], t.skb, &t.txpriv)); } spin_unlock_bh(&priv->ps_state_lock); if (tid_update && sta) ieee80211_sta_set_buffered(sta, t.txpriv.tid, true); rcu_read_unlock(); cw1200_bh_wakeup(priv); return; drop: cw1200_skb_dtor(priv, skb, &t.txpriv); return; } /* ******************************************************************** */ static int cw1200_handle_action_rx(struct cw1200_common *priv, struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; /* Filter block ACK negotiation: fully controlled by firmware */ if (mgmt->u.action.category == WLAN_CATEGORY_BACK) return 1; return 0; } static int cw1200_handle_pspoll(struct cw1200_common *priv, struct sk_buff *skb) { struct ieee80211_sta *sta; struct ieee80211_pspoll *pspoll = (struct ieee80211_pspoll *)skb->data; int link_id = 0; u32 pspoll_mask = 0; int drop = 1; int i; if (priv->join_status != CW1200_JOIN_STATUS_AP) goto done; if (memcmp(priv->vif->addr, pspoll->bssid, ETH_ALEN)) goto done; rcu_read_lock(); sta = ieee80211_find_sta(priv->vif, pspoll->ta); if (sta) { struct cw1200_sta_priv *sta_priv; sta_priv = (struct cw1200_sta_priv *)&sta->drv_priv; link_id = sta_priv->link_id; pspoll_mask = BIT(sta_priv->link_id); } rcu_read_unlock(); if (!link_id) goto done; priv->pspoll_mask |= pspoll_mask; drop = 0; /* Do not report pspols if data for given link id is queued already. */ for (i = 0; i < 4; ++i) { if (cw1200_queue_get_num_queued(&priv->tx_queue[i], pspoll_mask)) { cw1200_bh_wakeup(priv); drop = 1; break; } } pr_debug("[RX] PSPOLL: %s\n", drop ? "local" : "fwd"); done: return drop; } /* ******************************************************************** */ void cw1200_tx_confirm_cb(struct cw1200_common *priv, int link_id, struct wsm_tx_confirm *arg) { u8 queue_id = cw1200_queue_get_queue_id(arg->packet_id); struct cw1200_queue *queue = &priv->tx_queue[queue_id]; struct sk_buff *skb; const struct cw1200_txpriv *txpriv; pr_debug("[TX] TX confirm: %d, %d.\n", arg->status, arg->ack_failures); if (priv->mode == NL80211_IFTYPE_UNSPECIFIED) { /* STA is stopped. */ return; } if (WARN_ON(queue_id >= 4)) return; if (arg->status) pr_debug("TX failed: %d.\n", arg->status); if ((arg->status == WSM_REQUEUE) && (arg->flags & WSM_TX_STATUS_REQUEUE)) { /* "Requeue" means "implicit suspend" */ struct wsm_suspend_resume suspend = { .link_id = link_id, .stop = 1, .multicast = !link_id, }; cw1200_suspend_resume(priv, &suspend); wiphy_warn(priv->hw->wiphy, "Requeue for link_id %d (try %d). STAs asleep: 0x%.8X\n", link_id, cw1200_queue_get_generation(arg->packet_id) + 1, priv->sta_asleep_mask); cw1200_queue_requeue(queue, arg->packet_id); spin_lock_bh(&priv->ps_state_lock); if (!link_id) { priv->buffered_multicasts = true; if (priv->sta_asleep_mask) { queue_work(priv->workqueue, &priv->multicast_start_work); } } spin_unlock_bh(&priv->ps_state_lock); } else if (!cw1200_queue_get_skb(queue, arg->packet_id, &skb, &txpriv)) { struct ieee80211_tx_info *tx = IEEE80211_SKB_CB(skb); int tx_count = arg->ack_failures; u8 ht_flags = 0; int i; if (cw1200_ht_greenfield(&priv->ht_info)) ht_flags |= IEEE80211_TX_RC_GREEN_FIELD; spin_lock(&priv->bss_loss_lock); if (priv->bss_loss_state && arg->packet_id == priv->bss_loss_confirm_id) { if (arg->status) { /* Recovery failed */ __cw1200_cqm_bssloss_sm(priv, 0, 0, 1); } else { /* Recovery succeeded */ __cw1200_cqm_bssloss_sm(priv, 0, 1, 0); } } spin_unlock(&priv->bss_loss_lock); if (!arg->status) { tx->flags |= IEEE80211_TX_STAT_ACK; ++tx_count; cw1200_debug_txed(priv); if (arg->flags & WSM_TX_STATUS_AGGREGATION) { /* Do not report aggregation to mac80211: * it confuses minstrel a lot. */ /* tx->flags |= IEEE80211_TX_STAT_AMPDU; */ cw1200_debug_txed_agg(priv); } } else { if (tx_count) ++tx_count; } for (i = 0; i < IEEE80211_TX_MAX_RATES; ++i) { if (tx->status.rates[i].count >= tx_count) { tx->status.rates[i].count = tx_count; break; } tx_count -= tx->status.rates[i].count; if (tx->status.rates[i].flags & IEEE80211_TX_RC_MCS) tx->status.rates[i].flags |= ht_flags; } for (++i; i < IEEE80211_TX_MAX_RATES; ++i) { tx->status.rates[i].count = 0; tx->status.rates[i].idx = -1; } /* Pull off any crypto trailers that we added on */ if (tx->control.hw_key) { skb_trim(skb, skb->len - tx->control.hw_key->icv_len); if (tx->control.hw_key->cipher == WLAN_CIPHER_SUITE_TKIP) skb_trim(skb, skb->len - 8); /* MIC space */ } cw1200_queue_remove(queue, arg->packet_id); } /* XXX TODO: Only wake if there are pending transmits.. */ cw1200_bh_wakeup(priv); } static void cw1200_notify_buffered_tx(struct cw1200_common *priv, struct sk_buff *skb, int link_id, int tid) { struct ieee80211_sta *sta; struct ieee80211_hdr *hdr; u8 *buffered; u8 still_buffered = 0; if (link_id && tid < CW1200_MAX_TID) { buffered = priv->link_id_db [link_id - 1].buffered; spin_lock_bh(&priv->ps_state_lock); if (!WARN_ON(!buffered[tid])) still_buffered = --buffered[tid]; spin_unlock_bh(&priv->ps_state_lock); if (!still_buffered && tid < CW1200_MAX_TID) { hdr = (struct ieee80211_hdr *)skb->data; rcu_read_lock(); sta = ieee80211_find_sta(priv->vif, hdr->addr1); if (sta) ieee80211_sta_set_buffered(sta, tid, false); rcu_read_unlock(); } } } void cw1200_skb_dtor(struct cw1200_common *priv, struct sk_buff *skb, const struct cw1200_txpriv *txpriv) { skb_pull(skb, txpriv->offset); if (txpriv->rate_id != CW1200_INVALID_RATE_ID) { cw1200_notify_buffered_tx(priv, skb, txpriv->raw_link_id, txpriv->tid); tx_policy_put(priv, txpriv->rate_id); } ieee80211_tx_status(priv->hw, skb); } void cw1200_rx_cb(struct cw1200_common *priv, struct wsm_rx *arg, int link_id, struct sk_buff **skb_p) { struct sk_buff *skb = *skb_p; struct ieee80211_rx_status *hdr = IEEE80211_SKB_RXCB(skb); struct ieee80211_hdr *frame = (struct ieee80211_hdr *)skb->data; struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; struct cw1200_link_entry *entry = NULL; unsigned long grace_period; bool early_data = false; bool p2p = priv->vif && priv->vif->p2p; size_t hdrlen; hdr->flag = 0; if (priv->mode == NL80211_IFTYPE_UNSPECIFIED) { /* STA is stopped. */ goto drop; } if (link_id && link_id <= CW1200_MAX_STA_IN_AP_MODE) { entry = &priv->link_id_db[link_id - 1]; if (entry->status == CW1200_LINK_SOFT && ieee80211_is_data(frame->frame_control)) early_data = true; entry->timestamp = jiffies; } else if (p2p && ieee80211_is_action(frame->frame_control) && (mgmt->u.action.category == WLAN_CATEGORY_PUBLIC)) { pr_debug("[RX] Going to MAP&RESET link ID\n"); WARN_ON(work_pending(&priv->linkid_reset_work)); memcpy(&priv->action_frame_sa[0], ieee80211_get_SA(frame), ETH_ALEN); priv->action_linkid = 0; schedule_work(&priv->linkid_reset_work); } if (link_id && p2p && ieee80211_is_action(frame->frame_control) && (mgmt->u.action.category == WLAN_CATEGORY_PUBLIC)) { /* Link ID already exists for the ACTION frame. * Reset and Remap */ WARN_ON(work_pending(&priv->linkid_reset_work)); memcpy(&priv->action_frame_sa[0], ieee80211_get_SA(frame), ETH_ALEN); priv->action_linkid = link_id; schedule_work(&priv->linkid_reset_work); } if (arg->status) { if (arg->status == WSM_STATUS_MICFAILURE) { pr_debug("[RX] MIC failure.\n"); hdr->flag |= RX_FLAG_MMIC_ERROR; } else if (arg->status == WSM_STATUS_NO_KEY_FOUND) { pr_debug("[RX] No key found.\n"); goto drop; } else { pr_debug("[RX] Receive failure: %d.\n", arg->status); goto drop; } } if (skb->len < sizeof(struct ieee80211_pspoll)) { wiphy_warn(priv->hw->wiphy, "Mailformed SDU rx'ed. Size is lesser than IEEE header.\n"); goto drop; } if (ieee80211_is_pspoll(frame->frame_control)) if (cw1200_handle_pspoll(priv, skb)) goto drop; hdr->band = ((arg->channel_number & 0xff00) || (arg->channel_number > 14)) ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ; hdr->freq = ieee80211_channel_to_frequency( arg->channel_number, hdr->band); if (arg->rx_rate >= 14) { hdr->flag |= RX_FLAG_HT; hdr->rate_idx = arg->rx_rate - 14; } else if (arg->rx_rate >= 4) { hdr->rate_idx = arg->rx_rate - 2; } else { hdr->rate_idx = arg->rx_rate; } hdr->signal = (s8)arg->rcpi_rssi; hdr->antenna = 0; hdrlen = ieee80211_hdrlen(frame->frame_control); if (WSM_RX_STATUS_ENCRYPTION(arg->flags)) { size_t iv_len = 0, icv_len = 0; hdr->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED; /* Oops... There is no fast way to ask mac80211 about * IV/ICV lengths. Even defineas are not exposed. */ switch (WSM_RX_STATUS_ENCRYPTION(arg->flags)) { case WSM_RX_STATUS_WEP: iv_len = 4 /* WEP_IV_LEN */; icv_len = 4 /* WEP_ICV_LEN */; break; case WSM_RX_STATUS_TKIP: iv_len = 8 /* TKIP_IV_LEN */; icv_len = 4 /* TKIP_ICV_LEN */ + 8 /*MICHAEL_MIC_LEN*/; hdr->flag |= RX_FLAG_MMIC_STRIPPED; break; case WSM_RX_STATUS_AES: iv_len = 8 /* CCMP_HDR_LEN */; icv_len = 8 /* CCMP_MIC_LEN */; break; case WSM_RX_STATUS_WAPI: iv_len = 18 /* WAPI_HDR_LEN */; icv_len = 16 /* WAPI_MIC_LEN */; break; default: pr_warn("Unknown encryption type %d\n", WSM_RX_STATUS_ENCRYPTION(arg->flags)); goto drop; } /* Firmware strips ICV in case of MIC failure. */ if (arg->status == WSM_STATUS_MICFAILURE) icv_len = 0; if (skb->len < hdrlen + iv_len + icv_len) { wiphy_warn(priv->hw->wiphy, "Malformed SDU rx'ed. Size is lesser than crypto headers.\n"); goto drop; } /* Remove IV, ICV and MIC */ skb_trim(skb, skb->len - icv_len); memmove(skb->data + iv_len, skb->data, hdrlen); skb_pull(skb, iv_len); } /* Remove TSF from the end of frame */ if (arg->flags & WSM_RX_STATUS_TSF_INCLUDED) { memcpy(&hdr->mactime, skb->data + skb->len - 8, 8); hdr->mactime = le64_to_cpu(hdr->mactime); if (skb->len >= 8) skb_trim(skb, skb->len - 8); } else { hdr->mactime = 0; } cw1200_debug_rxed(priv); if (arg->flags & WSM_RX_STATUS_AGGREGATE) cw1200_debug_rxed_agg(priv); if (ieee80211_is_action(frame->frame_control) && (arg->flags & WSM_RX_STATUS_ADDRESS1)) { if (cw1200_handle_action_rx(priv, skb)) return; } else if (ieee80211_is_beacon(frame->frame_control) && !arg->status && priv->vif && ether_addr_equal(ieee80211_get_SA(frame), priv->vif->bss_conf.bssid)) { const u8 *tim_ie; u8 *ies = ((struct ieee80211_mgmt *) (skb->data))->u.beacon.variable; size_t ies_len = skb->len - (ies - (u8 *)(skb->data)); tim_ie = cfg80211_find_ie(WLAN_EID_TIM, ies, ies_len); if (tim_ie) { struct ieee80211_tim_ie *tim = (struct ieee80211_tim_ie *)&tim_ie[2]; if (priv->join_dtim_period != tim->dtim_period) { priv->join_dtim_period = tim->dtim_period; queue_work(priv->workqueue, &priv->set_beacon_wakeup_period_work); } } /* Disable beacon filter once we're associated... */ if (priv->disable_beacon_filter && (priv->vif->bss_conf.assoc || priv->vif->bss_conf.ibss_joined)) { priv->disable_beacon_filter = false; queue_work(priv->workqueue, &priv->update_filtering_work); } } /* Stay awake after frame is received to give * userspace chance to react and acquire appropriate * wakelock. */ if (ieee80211_is_auth(frame->frame_control)) grace_period = 5 * HZ; else if (ieee80211_is_deauth(frame->frame_control)) grace_period = 5 * HZ; else grace_period = 1 * HZ; cw1200_pm_stay_awake(&priv->pm_state, grace_period); if (early_data) { spin_lock_bh(&priv->ps_state_lock); /* Double-check status with lock held */ if (entry->status == CW1200_LINK_SOFT) skb_queue_tail(&entry->rx_queue, skb); else ieee80211_rx_irqsafe(priv->hw, skb); spin_unlock_bh(&priv->ps_state_lock); } else { ieee80211_rx_irqsafe(priv->hw, skb); } *skb_p = NULL; return; drop: /* TODO: update failure counters */ return; } /* ******************************************************************** */ /* Security */ int cw1200_alloc_key(struct cw1200_common *priv) { int idx; idx = ffs(~priv->key_map) - 1; if (idx < 0 || idx > WSM_KEY_MAX_INDEX) return -1; priv->key_map |= BIT(idx); priv->keys[idx].index = idx; return idx; } void cw1200_free_key(struct cw1200_common *priv, int idx) { BUG_ON(!(priv->key_map & BIT(idx))); memset(&priv->keys[idx], 0, sizeof(priv->keys[idx])); priv->key_map &= ~BIT(idx); } void cw1200_free_keys(struct cw1200_common *priv) { memset(&priv->keys, 0, sizeof(priv->keys)); priv->key_map = 0; } int cw1200_upload_keys(struct cw1200_common *priv) { int idx, ret = 0; for (idx = 0; idx <= WSM_KEY_MAX_INDEX; ++idx) if (priv->key_map & BIT(idx)) { ret = wsm_add_key(priv, &priv->keys[idx]); if (ret < 0) break; } return ret; } /* Workaround for WFD test case 6.1.10 */ void cw1200_link_id_reset(struct work_struct *work) { struct cw1200_common *priv = container_of(work, struct cw1200_common, linkid_reset_work); int temp_linkid; if (!priv->action_linkid) { /* In GO mode we can receive ACTION frames without a linkID */ temp_linkid = cw1200_alloc_link_id(priv, &priv->action_frame_sa[0]); WARN_ON(!temp_linkid); if (temp_linkid) { /* Make sure we execute the WQ */ flush_workqueue(priv->workqueue); /* Release the link ID */ spin_lock_bh(&priv->ps_state_lock); priv->link_id_db[temp_linkid - 1].prev_status = priv->link_id_db[temp_linkid - 1].status; priv->link_id_db[temp_linkid - 1].status = CW1200_LINK_RESET; spin_unlock_bh(&priv->ps_state_lock); wsm_lock_tx_async(priv); if (queue_work(priv->workqueue, &priv->link_id_work) <= 0) wsm_unlock_tx(priv); } } else { spin_lock_bh(&priv->ps_state_lock); priv->link_id_db[priv->action_linkid - 1].prev_status = priv->link_id_db[priv->action_linkid - 1].status; priv->link_id_db[priv->action_linkid - 1].status = CW1200_LINK_RESET_REMAP; spin_unlock_bh(&priv->ps_state_lock); wsm_lock_tx_async(priv); if (queue_work(priv->workqueue, &priv->link_id_work) <= 0) wsm_unlock_tx(priv); flush_workqueue(priv->workqueue); } } int cw1200_find_link_id(struct cw1200_common *priv, const u8 *mac) { int i, ret = 0; spin_lock_bh(&priv->ps_state_lock); for (i = 0; i < CW1200_MAX_STA_IN_AP_MODE; ++i) { if (!memcmp(mac, priv->link_id_db[i].mac, ETH_ALEN) && priv->link_id_db[i].status) { priv->link_id_db[i].timestamp = jiffies; ret = i + 1; break; } } spin_unlock_bh(&priv->ps_state_lock); return ret; } int cw1200_alloc_link_id(struct cw1200_common *priv, const u8 *mac) { int i, ret = 0; unsigned long max_inactivity = 0; unsigned long now = jiffies; spin_lock_bh(&priv->ps_state_lock); for (i = 0; i < CW1200_MAX_STA_IN_AP_MODE; ++i) { if (!priv->link_id_db[i].status) { ret = i + 1; break; } else if (priv->link_id_db[i].status != CW1200_LINK_HARD && !priv->tx_queue_stats.link_map_cache[i + 1]) { unsigned long inactivity = now - priv->link_id_db[i].timestamp; if (inactivity < max_inactivity) continue; max_inactivity = inactivity; ret = i + 1; } } if (ret) { struct cw1200_link_entry *entry = &priv->link_id_db[ret - 1]; pr_debug("[AP] STA added, link_id: %d\n", ret); entry->status = CW1200_LINK_RESERVE; memcpy(&entry->mac, mac, ETH_ALEN); memset(&entry->buffered, 0, CW1200_MAX_TID); skb_queue_head_init(&entry->rx_queue); wsm_lock_tx_async(priv); if (queue_work(priv->workqueue, &priv->link_id_work) <= 0) wsm_unlock_tx(priv); } else { wiphy_info(priv->hw->wiphy, "[AP] Early: no more link IDs available.\n"); } spin_unlock_bh(&priv->ps_state_lock); return ret; } void cw1200_link_id_work(struct work_struct *work) { struct cw1200_common *priv = container_of(work, struct cw1200_common, link_id_work); wsm_flush_tx(priv); cw1200_link_id_gc_work(&priv->link_id_gc_work.work); wsm_unlock_tx(priv); } void cw1200_link_id_gc_work(struct work_struct *work) { struct cw1200_common *priv = container_of(work, struct cw1200_common, link_id_gc_work.work); struct wsm_reset reset = { .reset_statistics = false, }; struct wsm_map_link map_link = { .link_id = 0, }; unsigned long now = jiffies; unsigned long next_gc = -1; long ttl; bool need_reset; u32 mask; int i; if (priv->join_status != CW1200_JOIN_STATUS_AP) return; wsm_lock_tx(priv); spin_lock_bh(&priv->ps_state_lock); for (i = 0; i < CW1200_MAX_STA_IN_AP_MODE; ++i) { need_reset = false; mask = BIT(i + 1); if (priv->link_id_db[i].status == CW1200_LINK_RESERVE || (priv->link_id_db[i].status == CW1200_LINK_HARD && !(priv->link_id_map & mask))) { if (priv->link_id_map & mask) { priv->sta_asleep_mask &= ~mask; priv->pspoll_mask &= ~mask; need_reset = true; } priv->link_id_map |= mask; if (priv->link_id_db[i].status != CW1200_LINK_HARD) priv->link_id_db[i].status = CW1200_LINK_SOFT; memcpy(map_link.mac_addr, priv->link_id_db[i].mac, ETH_ALEN); spin_unlock_bh(&priv->ps_state_lock); if (need_reset) { reset.link_id = i + 1; wsm_reset(priv, &reset); } map_link.link_id = i + 1; wsm_map_link(priv, &map_link); next_gc = min(next_gc, CW1200_LINK_ID_GC_TIMEOUT); spin_lock_bh(&priv->ps_state_lock); } else if (priv->link_id_db[i].status == CW1200_LINK_SOFT) { ttl = priv->link_id_db[i].timestamp - now + CW1200_LINK_ID_GC_TIMEOUT; if (ttl <= 0) { need_reset = true; priv->link_id_db[i].status = CW1200_LINK_OFF; priv->link_id_map &= ~mask; priv->sta_asleep_mask &= ~mask; priv->pspoll_mask &= ~mask; eth_zero_addr(map_link.mac_addr); spin_unlock_bh(&priv->ps_state_lock); reset.link_id = i + 1; wsm_reset(priv, &reset); spin_lock_bh(&priv->ps_state_lock); } else { next_gc = min_t(unsigned long, next_gc, ttl); } } else if (priv->link_id_db[i].status == CW1200_LINK_RESET || priv->link_id_db[i].status == CW1200_LINK_RESET_REMAP) { int status = priv->link_id_db[i].status; priv->link_id_db[i].status = priv->link_id_db[i].prev_status; priv->link_id_db[i].timestamp = now; reset.link_id = i + 1; spin_unlock_bh(&priv->ps_state_lock); wsm_reset(priv, &reset); if (status == CW1200_LINK_RESET_REMAP) { memcpy(map_link.mac_addr, priv->link_id_db[i].mac, ETH_ALEN); map_link.link_id = i + 1; wsm_map_link(priv, &map_link); next_gc = min(next_gc, CW1200_LINK_ID_GC_TIMEOUT); } spin_lock_bh(&priv->ps_state_lock); } if (need_reset) { skb_queue_purge(&priv->link_id_db[i].rx_queue); pr_debug("[AP] STA removed, link_id: %d\n", reset.link_id); } } spin_unlock_bh(&priv->ps_state_lock); if (next_gc != -1) queue_delayed_work(priv->workqueue, &priv->link_id_gc_work, next_gc); wsm_unlock_tx(priv); }