// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright (C) 2012-2014, 2018-2021 Intel Corporation * Copyright (C) 2013-2014 Intel Mobile Communications GmbH * Copyright (C) 2015-2017 Intel Deutschland GmbH */ #include #include "iwl-debug.h" #include "iwl-io.h" #include "iwl-prph.h" #include "iwl-csr.h" #include "mvm.h" #include "fw/api/rs.h" #include "fw/img.h" /* * Will return 0 even if the cmd failed when RFKILL is asserted unless * CMD_WANT_SKB is set in cmd->flags. */ int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) { int ret; #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) if (WARN_ON(mvm->d3_test_active)) return -EIO; #endif /* * Synchronous commands from this op-mode must hold * the mutex, this ensures we don't try to send two * (or more) synchronous commands at a time. */ if (!(cmd->flags & CMD_ASYNC)) lockdep_assert_held(&mvm->mutex); ret = iwl_trans_send_cmd(mvm->trans, cmd); /* * If the caller wants the SKB, then don't hide any problems, the * caller might access the response buffer which will be NULL if * the command failed. */ if (cmd->flags & CMD_WANT_SKB) return ret; /* * Silently ignore failures if RFKILL is asserted or * we are in suspend\resume process */ if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) return 0; return ret; } int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, u32 flags, u16 len, const void *data) { struct iwl_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, .flags = flags, }; return iwl_mvm_send_cmd(mvm, &cmd); } /* * We assume that the caller set the status to the success value */ int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, u32 *status) { struct iwl_rx_packet *pkt; struct iwl_cmd_response *resp; int ret, resp_len; lockdep_assert_held(&mvm->mutex); #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) if (WARN_ON(mvm->d3_test_active)) return -EIO; #endif /* * Only synchronous commands can wait for status, * we use WANT_SKB so the caller can't. */ if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), "cmd flags %x", cmd->flags)) return -EINVAL; cmd->flags |= CMD_WANT_SKB; ret = iwl_trans_send_cmd(mvm->trans, cmd); if (ret == -ERFKILL) { /* * The command failed because of RFKILL, don't update * the status, leave it as success and return 0. */ return 0; } else if (ret) { return ret; } pkt = cmd->resp_pkt; resp_len = iwl_rx_packet_payload_len(pkt); if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { ret = -EIO; goto out_free_resp; } resp = (void *)pkt->data; *status = le32_to_cpu(resp->status); out_free_resp: iwl_free_resp(cmd); return ret; } /* * We assume that the caller set the status to the sucess value */ int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, const void *data, u32 *status) { struct iwl_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, }; return iwl_mvm_send_cmd_status(mvm, &cmd, status); } int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, enum nl80211_band band) { int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; bool is_LB = band == NL80211_BAND_2GHZ; if (format == RATE_MCS_LEGACY_OFDM_MSK) return is_LB ? rate + IWL_FIRST_OFDM_RATE : rate; /* CCK is not allowed in HB */ return is_LB ? rate : -1; } int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, enum nl80211_band band) { int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; int idx; int band_offset = 0; /* Legacy rate format, search for match in table */ if (band != NL80211_BAND_2GHZ) band_offset = IWL_FIRST_OFDM_RATE; for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) if (iwl_fw_rate_idx_to_plcp(idx) == rate) return idx - band_offset; return -1; } u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) { if (iwl_fw_lookup_cmd_ver(fw, LONG_GROUP, TX_CMD, 0) > 8) /* In the new rate legacy rates are indexed: * 0 - 3 for CCK and 0 - 7 for OFDM. */ return (rate_idx >= IWL_FIRST_OFDM_RATE ? rate_idx - IWL_FIRST_OFDM_RATE : rate_idx); return iwl_fw_rate_idx_to_plcp(rate_idx); } u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) { static const u8 mac80211_ac_to_ucode_ac[] = { AC_VO, AC_VI, AC_BE, AC_BK }; return mac80211_ac_to_ucode_ac[ac]; } void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) { struct iwl_rx_packet *pkt = rxb_addr(rxb); struct iwl_error_resp *err_resp = (void *)pkt->data; IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", le32_to_cpu(err_resp->error_type), err_resp->cmd_id); IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", le16_to_cpu(err_resp->bad_cmd_seq_num), le32_to_cpu(err_resp->error_service)); IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", le64_to_cpu(err_resp->timestamp)); } /* * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. * The parameter should also be a combination of ANT_[ABC]. */ u8 first_antenna(u8 mask) { BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ return BIT(0); return BIT(ffs(mask) - 1); } #define MAX_ANT_NUM 2 /* * Toggles between TX antennas to send the probe request on. * Receives the bitmask of valid TX antennas and the *index* used * for the last TX, and returns the next valid *index* to use. * In order to set it in the tx_cmd, must do BIT(idx). */ u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) { u8 ind = last_idx; int i; for (i = 0; i < MAX_ANT_NUM; i++) { ind = (ind + 1) % MAX_ANT_NUM; if (valid & BIT(ind)) return ind; } WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); return last_idx; } int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, int tid, int frame_limit, u16 ssn) { struct iwl_scd_txq_cfg_cmd cmd = { .scd_queue = queue, .action = SCD_CFG_ENABLE_QUEUE, .window = frame_limit, .sta_id = sta_id, .ssn = cpu_to_le16(ssn), .tx_fifo = fifo, .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), .tid = tid, }; int ret; if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) return -EINVAL; if (WARN(mvm->queue_info[queue].tid_bitmap == 0, "Trying to reconfig unallocated queue %d\n", queue)) return -ENXIO; IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", queue, fifo, ret); return ret; } /** * iwl_mvm_send_lq_cmd() - Send link quality command * @mvm: Driver data. * @lq: Link quality command to send. * * The link quality command is sent as the last step of station creation. * This is the special case in which init is set and we call a callback in * this case to clear the state indicating that station creation is in * progress. */ int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) { struct iwl_host_cmd cmd = { .id = LQ_CMD, .len = { sizeof(struct iwl_lq_cmd), }, .flags = CMD_ASYNC, .data = { lq, }, }; if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || iwl_mvm_has_tlc_offload(mvm))) return -EINVAL; return iwl_mvm_send_cmd(mvm, &cmd); } /** * iwl_mvm_update_smps - Get a request to change the SMPS mode * @mvm: Driver data. * @vif: Pointer to the ieee80211_vif structure * @req_type: The part of the driver who call for a change. * @smps_request: The request to change the SMPS mode. * * Get a requst to change the SMPS mode, * and change it according to all other requests in the driver. */ void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, enum iwl_mvm_smps_type_request req_type, enum ieee80211_smps_mode smps_request) { struct iwl_mvm_vif *mvmvif; enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; int i; lockdep_assert_held(&mvm->mutex); /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) return; if (vif->type != NL80211_IFTYPE_STATION) return; mvmvif = iwl_mvm_vif_from_mac80211(vif); mvmvif->smps_requests[req_type] = smps_request; for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { smps_mode = IEEE80211_SMPS_STATIC; break; } if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) smps_mode = IEEE80211_SMPS_DYNAMIC; } ieee80211_request_smps(vif, smps_mode); } int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) { struct iwl_statistics_cmd scmd = { .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, }; struct iwl_host_cmd cmd = { .id = STATISTICS_CMD, .len[0] = sizeof(scmd), .data[0] = &scmd, .flags = CMD_WANT_SKB, }; int ret; ret = iwl_mvm_send_cmd(mvm, &cmd); if (ret) return ret; iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); iwl_free_resp(&cmd); if (clear) iwl_mvm_accu_radio_stats(mvm); return 0; } void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) { mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; } struct iwl_mvm_diversity_iter_data { struct iwl_mvm_phy_ctxt *ctxt; bool result; }; static void iwl_mvm_diversity_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); struct iwl_mvm_diversity_iter_data *data = _data; int i; if (mvmvif->phy_ctxt != data->ctxt) return; for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { data->result = false; break; } } } bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, struct iwl_mvm_phy_ctxt *ctxt) { struct iwl_mvm_diversity_iter_data data = { .ctxt = ctxt, .result = true, }; lockdep_assert_held(&mvm->mutex); if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) return false; if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) return false; if (mvm->cfg->rx_with_siso_diversity) return false; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_diversity_iter, &data); return data.result; } void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, bool low_latency, u16 mac_id) { struct iwl_mac_low_latency_cmd cmd = { .mac_id = cpu_to_le32(mac_id) }; if (!fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) return; if (low_latency) { /* currently we don't care about the direction */ cmd.low_latency_rx = 1; cmd.low_latency_tx = 1; } if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, MAC_CONF_GROUP, 0), 0, sizeof(cmd), &cmd)) IWL_ERR(mvm, "Failed to send low latency command\n"); } int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, bool low_latency, enum iwl_mvm_low_latency_cause cause) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); int res; bool prev; lockdep_assert_held(&mvm->mutex); prev = iwl_mvm_vif_low_latency(mvmvif); iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); low_latency = iwl_mvm_vif_low_latency(mvmvif); if (low_latency == prev) return 0; iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); res = iwl_mvm_update_quotas(mvm, false, NULL); if (res) return res; iwl_mvm_bt_coex_vif_change(mvm); return iwl_mvm_power_update_mac(mvm); } struct iwl_mvm_low_latency_iter { bool result; bool result_per_band[NUM_NL80211_BANDS]; }; static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm_low_latency_iter *result = _data; struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); enum nl80211_band band; if (iwl_mvm_vif_low_latency(mvmvif)) { result->result = true; if (!mvmvif->phy_ctxt) return; band = mvmvif->phy_ctxt->channel->band; result->result_per_band[band] = true; } } bool iwl_mvm_low_latency(struct iwl_mvm *mvm) { struct iwl_mvm_low_latency_iter data = {}; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_ll_iter, &data); return data.result; } bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) { struct iwl_mvm_low_latency_iter data = {}; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_ll_iter, &data); return data.result_per_band[band]; } struct iwl_bss_iter_data { struct ieee80211_vif *vif; bool error; }; static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_bss_iter_data *data = _data; if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) return; if (data->vif) { data->error = true; return; } data->vif = vif; } struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) { struct iwl_bss_iter_data bss_iter_data = {}; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_bss_iface_iterator, &bss_iter_data); if (bss_iter_data.error) { IWL_ERR(mvm, "More than one managed interface active!\n"); return ERR_PTR(-EINVAL); } return bss_iter_data.vif; } struct iwl_bss_find_iter_data { struct ieee80211_vif *vif; u32 macid; }; static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_bss_find_iter_data *data = _data; struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); if (mvmvif->id == data->macid) data->vif = vif; } struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) { struct iwl_bss_find_iter_data data = { .macid = macid, }; lockdep_assert_held(&mvm->mutex); ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_bss_find_iface_iterator, &data); return data.vif; } struct iwl_sta_iter_data { bool assoc; }; static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_sta_iter_data *data = _data; if (vif->type != NL80211_IFTYPE_STATION) return; if (vif->bss_conf.assoc) data->assoc = true; } bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) { struct iwl_sta_iter_data data = { .assoc = false, }; ieee80211_iterate_active_interfaces_atomic(mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_sta_iface_iterator, &data); return data.assoc; } unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, struct ieee80211_vif *vif, bool tdls, bool cmd_q) { struct iwl_fw_dbg_trigger_tlv *trigger; struct iwl_fw_dbg_trigger_txq_timer *txq_timer; unsigned int default_timeout = cmd_q ? IWL_DEF_WD_TIMEOUT : mvm->trans->trans_cfg->base_params->wd_timeout; if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { /* * We can't know when the station is asleep or awake, so we * must disable the queue hang detection. */ if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && vif && vif->type == NL80211_IFTYPE_AP) return IWL_WATCHDOG_DISABLED; return default_timeout; } trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); txq_timer = (void *)trigger->data; if (tdls) return le32_to_cpu(txq_timer->tdls); if (cmd_q) return le32_to_cpu(txq_timer->command_queue); if (WARN_ON(!vif)) return default_timeout; switch (ieee80211_vif_type_p2p(vif)) { case NL80211_IFTYPE_ADHOC: return le32_to_cpu(txq_timer->ibss); case NL80211_IFTYPE_STATION: return le32_to_cpu(txq_timer->bss); case NL80211_IFTYPE_AP: return le32_to_cpu(txq_timer->softap); case NL80211_IFTYPE_P2P_CLIENT: return le32_to_cpu(txq_timer->p2p_client); case NL80211_IFTYPE_P2P_GO: return le32_to_cpu(txq_timer->p2p_go); case NL80211_IFTYPE_P2P_DEVICE: return le32_to_cpu(txq_timer->p2p_device); case NL80211_IFTYPE_MONITOR: return default_timeout; default: WARN_ON(1); return mvm->trans->trans_cfg->base_params->wd_timeout; } } void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, const char *errmsg) { struct iwl_fw_dbg_trigger_tlv *trig; struct iwl_fw_dbg_trigger_mlme *trig_mlme; trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), FW_DBG_TRIGGER_MLME); if (!trig) goto out; trig_mlme = (void *)trig->data; if (trig_mlme->stop_connection_loss && --trig_mlme->stop_connection_loss) goto out; iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); out: ieee80211_connection_loss(vif); } void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, struct ieee80211_vif *vif, const struct ieee80211_sta *sta, u16 tid) { struct iwl_fw_dbg_trigger_tlv *trig; struct iwl_fw_dbg_trigger_ba *ba_trig; trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), FW_DBG_TRIGGER_BA); if (!trig) return; ba_trig = (void *)trig->data; if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) return; iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "Frame from %pM timed out, tid %d", sta->addr, tid); } u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) { if (!elapsed) return 0; return (100 * airtime / elapsed) / USEC_PER_MSEC; } static enum iwl_mvm_traffic_load iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) { u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) return IWL_MVM_TRAFFIC_HIGH; if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) return IWL_MVM_TRAFFIC_MEDIUM; return IWL_MVM_TRAFFIC_LOW; } static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm *mvm = _data; struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) return; low_latency = mvm->tcm.result.low_latency[mvmvif->id]; if (!mvm->tcm.result.change[mvmvif->id] && prev == low_latency) { iwl_mvm_update_quotas(mvm, false, NULL); return; } if (prev != low_latency) { /* this sends traffic load and updates quota as well */ iwl_mvm_update_low_latency(mvm, vif, low_latency, LOW_LATENCY_TRAFFIC); } else { iwl_mvm_update_quotas(mvm, false, NULL); } } static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) { mutex_lock(&mvm->mutex); ieee80211_iterate_active_interfaces( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_tcm_iter, mvm); if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) iwl_mvm_config_scan(mvm); mutex_unlock(&mvm->mutex); } static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) { struct iwl_mvm *mvm; struct iwl_mvm_vif *mvmvif; struct ieee80211_vif *vif; mvmvif = container_of(wk, struct iwl_mvm_vif, uapsd_nonagg_detected_wk.work); vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); mvm = mvmvif->mvm; if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) return; /* remember that this AP is broken */ memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, vif->bss_conf.bssid, ETH_ALEN); mvm->uapsd_noagg_bssid_write_idx++; if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) mvm->uapsd_noagg_bssid_write_idx = 0; iwl_mvm_connection_loss(mvm, vif, "AP isn't using AMPDU with uAPSD enabled"); } static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); if (vif->type != NL80211_IFTYPE_STATION) return; if (!vif->bss_conf.assoc) return; if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) return; if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) return; mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; IWL_INFO(mvm, "detected AP should do aggregation but isn't, likely due to U-APSD\n"); schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); } static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, unsigned int elapsed, int mac) { u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; u64 tpt; unsigned long rate; struct ieee80211_vif *vif; rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || mvm->tcm.data[mac].uapsd_nonagg_detect.detected) return; if (iwl_mvm_has_new_rx_api(mvm)) { tpt = 8 * bytes; /* kbps */ do_div(tpt, elapsed); rate *= 1000; /* kbps */ if (tpt < 22 * rate / 100) return; } else { /* * the rate here is actually the threshold, in 100Kbps units, * so do the needed conversion from bytes to 100Kbps: * 100kb = bits / (100 * 1000), * 100kbps = 100kb / (msecs / 1000) == * (bits / (100 * 1000)) / (msecs / 1000) == * bits / (100 * msecs) */ tpt = (8 * bytes); do_div(tpt, elapsed * 100); if (tpt < rate) return; } rcu_read_lock(); vif = rcu_dereference(mvm->vif_id_to_mac[mac]); if (vif) iwl_mvm_uapsd_agg_disconnect(mvm, vif); rcu_read_unlock(); } static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); u32 *band = _data; if (!mvmvif->phy_ctxt) return; band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; } static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, unsigned long ts, bool handle_uapsd) { unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); unsigned int uapsd_elapsed = jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); u32 total_airtime = 0; u32 band_airtime[NUM_NL80211_BANDS] = {0}; u32 band[NUM_MAC_INDEX_DRIVER] = {0}; int ac, mac, i; bool low_latency = false; enum iwl_mvm_traffic_load load, band_load; bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); if (handle_ll) mvm->tcm.ll_ts = ts; if (handle_uapsd) mvm->tcm.uapsd_nonagg_ts = ts; mvm->tcm.result.elapsed = elapsed; ieee80211_iterate_active_interfaces_atomic(mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_tcm_iterator, &band); for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; u32 vo_vi_pkts = 0; u32 airtime = mdata->rx.airtime + mdata->tx.airtime; total_airtime += airtime; band_airtime[band[mac]] += airtime; load = iwl_mvm_tcm_load(mvm, airtime, elapsed); mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; mvm->tcm.result.load[mac] = load; mvm->tcm.result.airtime[mac] = airtime; for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) vo_vi_pkts += mdata->rx.pkts[ac] + mdata->tx.pkts[ac]; /* enable immediately with enough packets but defer disabling */ if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) mvm->tcm.result.low_latency[mac] = true; else if (handle_ll) mvm->tcm.result.low_latency[mac] = false; if (handle_ll) { /* clear old data */ memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); } low_latency |= mvm->tcm.result.low_latency[mac]; if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, mac); /* clear old data */ if (handle_uapsd) mdata->uapsd_nonagg_detect.rx_bytes = 0; memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); } load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); mvm->tcm.result.global_load = load; for (i = 0; i < NUM_NL80211_BANDS; i++) { band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); mvm->tcm.result.band_load[i] = band_load; } /* * If the current load isn't low we need to force re-evaluation * in the TCM period, so that we can return to low load if there * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get * triggered by traffic). */ if (load != IWL_MVM_TRAFFIC_LOW) return MVM_TCM_PERIOD; /* * If low-latency is active we need to force re-evaluation after * (the longer) MVM_LL_PERIOD, so that we can disable low-latency * when there's no traffic at all. */ if (low_latency) return MVM_LL_PERIOD; /* * Otherwise, we don't need to run the work struct because we're * in the default "idle" state - traffic indication is low (which * also covers the "no traffic" case) and low-latency is disabled * so there's no state that may need to be disabled when there's * no traffic at all. * * Note that this has no impact on the regular scheduling of the * updates triggered by traffic - those happen whenever one of the * two timeouts expire (if there's traffic at all.) */ return 0; } void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) { unsigned long ts = jiffies; bool handle_uapsd = time_after(ts, mvm->tcm.uapsd_nonagg_ts + msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); spin_lock(&mvm->tcm.lock); if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { spin_unlock(&mvm->tcm.lock); return; } spin_unlock(&mvm->tcm.lock); if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { mutex_lock(&mvm->mutex); if (iwl_mvm_request_statistics(mvm, true)) handle_uapsd = false; mutex_unlock(&mvm->mutex); } spin_lock(&mvm->tcm.lock); /* re-check if somebody else won the recheck race */ if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { /* calculate statistics */ unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, handle_uapsd); /* the memset needs to be visible before the timestamp */ smp_mb(); mvm->tcm.ts = ts; if (work_delay) schedule_delayed_work(&mvm->tcm.work, work_delay); } spin_unlock(&mvm->tcm.lock); iwl_mvm_tcm_results(mvm); } void iwl_mvm_tcm_work(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, tcm.work); iwl_mvm_recalc_tcm(mvm); } void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) { spin_lock_bh(&mvm->tcm.lock); mvm->tcm.paused = true; spin_unlock_bh(&mvm->tcm.lock); if (with_cancel) cancel_delayed_work_sync(&mvm->tcm.work); } void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) { int mac; bool low_latency = false; spin_lock_bh(&mvm->tcm.lock); mvm->tcm.ts = jiffies; mvm->tcm.ll_ts = jiffies; for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); if (mvm->tcm.result.low_latency[mac]) low_latency = true; } /* The TCM data needs to be reset before "paused" flag changes */ smp_mb(); mvm->tcm.paused = false; /* * if the current load is not low or low latency is active, force * re-evaluation to cover the case of no traffic. */ if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); else if (low_latency) schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); spin_unlock_bh(&mvm->tcm.lock); } void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, iwl_mvm_tcm_uapsd_nonagg_detected_wk); } void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) { struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); } u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) { u32 reg_addr = DEVICE_SYSTEM_TIME_REG; if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && mvm->trans->cfg->gp2_reg_addr) reg_addr = mvm->trans->cfg->gp2_reg_addr; return iwl_read_prph(mvm->trans, reg_addr); } void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, u32 *gp2, u64 *boottime, ktime_t *realtime) { bool ps_disabled; lockdep_assert_held(&mvm->mutex); /* Disable power save when reading GP2 */ ps_disabled = mvm->ps_disabled; if (!ps_disabled) { mvm->ps_disabled = true; iwl_mvm_power_update_device(mvm); } *gp2 = iwl_mvm_get_systime(mvm); if (clock_type == CLOCK_BOOTTIME && boottime) *boottime = ktime_get_boottime_ns(); else if (clock_type == CLOCK_REALTIME && realtime) *realtime = ktime_get_real(); if (!ps_disabled) { mvm->ps_disabled = ps_disabled; iwl_mvm_power_update_device(mvm); } }