/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2010 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2010 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include #include #include #include "iwl-commands.h" #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-debug.h" #include "iwl-agn.h" #include "iwl-io.h" /************************** EEPROM BANDS **************************** * * The iwl_eeprom_band definitions below provide the mapping from the * EEPROM contents to the specific channel number supported for each * band. * * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 * definition below maps to physical channel 42 in the 5.2GHz spectrum. * The specific geography and calibration information for that channel * is contained in the eeprom map itself. * * During init, we copy the eeprom information and channel map * information into priv->channel_info_24/52 and priv->channel_map_24/52 * * channel_map_24/52 provides the index in the channel_info array for a * given channel. We have to have two separate maps as there is channel * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and * band_2 * * A value of 0xff stored in the channel_map indicates that the channel * is not supported by the hardware at all. * * A value of 0xfe in the channel_map indicates that the channel is not * valid for Tx with the current hardware. This means that * while the system can tune and receive on a given channel, it may not * be able to associate or transmit any frames on that * channel. There is no corresponding channel information for that * entry. * *********************************************************************/ /** * struct iwl_txpwr_section: eeprom section information * @offset: indirect address into eeprom image * @count: number of "struct iwl_eeprom_enhanced_txpwr" in this section * @band: band type for the section * @is_common - true: common section, false: channel section * @is_cck - true: cck section, false: not cck section * @is_ht_40 - true: all channel in the section are HT40 channel, * false: legacy or HT 20 MHz * ignore if it is common section * @iwl_eeprom_section_channel: channel array in the section, * ignore if common section */ struct iwl_txpwr_section { u32 offset; u8 count; enum ieee80211_band band; bool is_common; bool is_cck; bool is_ht40; u8 iwl_eeprom_section_channel[EEPROM_MAX_TXPOWER_SECTION_ELEMENTS]; }; /** * section 1 - 3 are regulatory tx power apply to all channels based on * modulation: CCK, OFDM * Band: 2.4GHz, 5.2GHz * section 4 - 10 are regulatory tx power apply to specified channels * For example: * 1L - Channel 1 Legacy * 1HT - Channel 1 HT * (1,+1) - Channel 1 HT40 "_above_" * * Section 1: all CCK channels * Section 2: all 2.4 GHz OFDM (Legacy, HT and HT40) channels * Section 3: all 5.2 GHz OFDM (Legacy, HT and HT40) channels * Section 4: 2.4 GHz 20MHz channels: 1L, 1HT, 2L, 2HT, 10L, 10HT, 11L, 11HT * Section 5: 2.4 GHz 40MHz channels: (1,+1) (2,+1) (6,+1) (7,+1) (9,+1) * Section 6: 5.2 GHz 20MHz channels: 36L, 64L, 100L, 36HT, 64HT, 100HT * Section 7: 5.2 GHz 40MHz channels: (36,+1) (60,+1) (100,+1) * Section 8: 2.4 GHz channel: 13L, 13HT * Section 9: 2.4 GHz channel: 140L, 140HT * Section 10: 2.4 GHz 40MHz channels: (132,+1) (44,+1) * */ static const struct iwl_txpwr_section enhinfo[] = { { EEPROM_LB_CCK_20_COMMON, 1, IEEE80211_BAND_2GHZ, true, true, false }, { EEPROM_LB_OFDM_COMMON, 3, IEEE80211_BAND_2GHZ, true, false, false }, { EEPROM_HB_OFDM_COMMON, 3, IEEE80211_BAND_5GHZ, true, false, false }, { EEPROM_LB_OFDM_20_BAND, 8, IEEE80211_BAND_2GHZ, false, false, false, {1, 1, 2, 2, 10, 10, 11, 11 } }, { EEPROM_LB_OFDM_HT40_BAND, 5, IEEE80211_BAND_2GHZ, false, false, true, { 1, 2, 6, 7, 9 } }, { EEPROM_HB_OFDM_20_BAND, 6, IEEE80211_BAND_5GHZ, false, false, false, { 36, 64, 100, 36, 64, 100 } }, { EEPROM_HB_OFDM_HT40_BAND, 3, IEEE80211_BAND_5GHZ, false, false, true, { 36, 60, 100 } }, { EEPROM_LB_OFDM_20_CHANNEL_13, 2, IEEE80211_BAND_2GHZ, false, false, false, { 13, 13 } }, { EEPROM_HB_OFDM_20_CHANNEL_140, 2, IEEE80211_BAND_5GHZ, false, false, false, { 140, 140 } }, { EEPROM_HB_OFDM_HT40_BAND_1, 2, IEEE80211_BAND_5GHZ, false, false, true, { 132, 44 } }, }; /****************************************************************************** * * EEPROM related functions * ******************************************************************************/ /* * The device's EEPROM semaphore prevents conflicts between driver and uCode * when accessing the EEPROM; each access is a series of pulses to/from the * EEPROM chip, not a single event, so even reads could conflict if they * weren't arbitrated by the semaphore. */ int iwlcore_eeprom_acquire_semaphore(struct iwl_priv *priv) { u16 count; int ret; for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { /* Request semaphore */ iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); /* See if we got it */ ret = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, EEPROM_SEM_TIMEOUT); if (ret >= 0) { IWL_DEBUG_IO(priv, "Acquired semaphore after %d tries.\n", count+1); return ret; } } return ret; } void iwlcore_eeprom_release_semaphore(struct iwl_priv *priv) { iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); } int iwl_eeprom_check_version(struct iwl_priv *priv) { u16 eeprom_ver; u16 calib_ver; eeprom_ver = iwl_eeprom_query16(priv, EEPROM_VERSION); calib_ver = priv->cfg->ops->lib->eeprom_ops.calib_version(priv); if (eeprom_ver < priv->cfg->eeprom_ver || calib_ver < priv->cfg->eeprom_calib_ver) goto err; IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver); return 0; err: IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x " "CALIB=0x%x < 0x%x\n", eeprom_ver, priv->cfg->eeprom_ver, calib_ver, priv->cfg->eeprom_calib_ver); return -EINVAL; } void iwl_eeprom_get_mac(const struct iwl_priv *priv, u8 *mac) { const u8 *addr = priv->cfg->ops->lib->eeprom_ops.query_addr(priv, EEPROM_MAC_ADDRESS); memcpy(mac, addr, ETH_ALEN); } /** * iwl_get_max_txpower_avg - get the highest tx power from all chains. * find the highest tx power from all chains for the channel */ static s8 iwl_get_max_txpower_avg(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element, s8 *max_txpower_in_half_dbm) { s8 max_txpower_avg = 0; /* (dBm) */ IWL_DEBUG_INFO(priv, "%d - " "chain_a: %d dB chain_b: %d dB " "chain_c: %d dB mimo2: %d dB mimo3: %d dB\n", element, enhanced_txpower[element].chain_a_max >> 1, enhanced_txpower[element].chain_b_max >> 1, enhanced_txpower[element].chain_c_max >> 1, enhanced_txpower[element].mimo2_max >> 1, enhanced_txpower[element].mimo3_max >> 1); /* Take the highest tx power from any valid chains */ if ((priv->cfg->valid_tx_ant & ANT_A) && (enhanced_txpower[element].chain_a_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_a_max; if ((priv->cfg->valid_tx_ant & ANT_B) && (enhanced_txpower[element].chain_b_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_b_max; if ((priv->cfg->valid_tx_ant & ANT_C) && (enhanced_txpower[element].chain_c_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_c_max; if (((priv->cfg->valid_tx_ant == ANT_AB) | (priv->cfg->valid_tx_ant == ANT_BC) | (priv->cfg->valid_tx_ant == ANT_AC)) && (enhanced_txpower[element].mimo2_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo2_max; if ((priv->cfg->valid_tx_ant == ANT_ABC) && (enhanced_txpower[element].mimo3_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo3_max; /* * max. tx power in EEPROM is in 1/2 dBm format * convert from 1/2 dBm to dBm (round-up convert) * but we also do not want to loss 1/2 dBm resolution which * will impact performance */ *max_txpower_in_half_dbm = max_txpower_avg; return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1); } /** * iwl_update_common_txpower: update channel tx power * update tx power per band based on EEPROM enhanced tx power info. */ static s8 iwl_update_common_txpower(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int section, int element, s8 *max_txpower_in_half_dbm) { struct iwl_channel_info *ch_info; int ch; bool is_ht40 = false; s8 max_txpower_avg; /* (dBm) */ /* it is common section, contain all type (Legacy, HT and HT40) * based on the element in the section to determine * is it HT 40 or not */ if (element == EEPROM_TXPOWER_COMMON_HT40_INDEX) is_ht40 = true; max_txpower_avg = iwl_get_max_txpower_avg(priv, enhanced_txpower, element, max_txpower_in_half_dbm); ch_info = priv->channel_info; for (ch = 0; ch < priv->channel_count; ch++) { /* find matching band and update tx power if needed */ if ((ch_info->band == enhinfo[section].band) && (ch_info->max_power_avg < max_txpower_avg) && (!is_ht40)) { /* Update regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if ((ch_info->band == enhinfo[section].band) && is_ht40 && (ch_info->ht40_max_power_avg < max_txpower_avg)) { /* Update regulatory-based run-time data */ ch_info->ht40_max_power_avg = max_txpower_avg; } ch_info++; } return max_txpower_avg; } /** * iwl_update_channel_txpower: update channel tx power * update channel tx power based on EEPROM enhanced tx power info. */ static s8 iwl_update_channel_txpower(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int section, int element, s8 *max_txpower_in_half_dbm) { struct iwl_channel_info *ch_info; int ch; u8 channel; s8 max_txpower_avg; /* (dBm) */ channel = enhinfo[section].iwl_eeprom_section_channel[element]; max_txpower_avg = iwl_get_max_txpower_avg(priv, enhanced_txpower, element, max_txpower_in_half_dbm); ch_info = priv->channel_info; for (ch = 0; ch < priv->channel_count; ch++) { /* find matching channel and update tx power if needed */ if (ch_info->channel == channel) { if ((ch_info->max_power_avg < max_txpower_avg) && (!enhinfo[section].is_ht40)) { /* Update regulatory-based run-time data */ ch_info->max_power_avg = max_txpower_avg; ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if ((enhinfo[section].is_ht40) && (ch_info->ht40_max_power_avg < max_txpower_avg)) { /* Update regulatory-based run-time data */ ch_info->ht40_max_power_avg = max_txpower_avg; } break; } ch_info++; } return max_txpower_avg; } /** * iwlcore_eeprom_enhanced_txpower: process enhanced tx power info */ static void iwlcore_eeprom_enhanced_txpower_old(struct iwl_priv *priv) { int eeprom_section_count = 0; int section, element; struct iwl_eeprom_enhanced_txpwr *enhanced_txpower; u32 offset; s8 max_txpower_avg; /* (dBm) */ s8 max_txpower_in_half_dbm; /* (half-dBm) */ /* Loop through all the sections * adjust bands and channel's max tx power * Set the tx_power_user_lmt to the highest power * supported by any channels and chains */ for (section = 0; section < ARRAY_SIZE(enhinfo); section++) { eeprom_section_count = enhinfo[section].count; offset = enhinfo[section].offset; enhanced_txpower = (struct iwl_eeprom_enhanced_txpwr *) iwl_eeprom_query_addr(priv, offset); /* * check for valid entry - * different version of EEPROM might contain different set * of enhanced tx power table * always check for valid entry before process * the information */ if (!(enhanced_txpower->flags || enhanced_txpower->channel) || enhanced_txpower->delta_20_in_40) continue; for (element = 0; element < eeprom_section_count; element++) { if (enhinfo[section].is_common) max_txpower_avg = iwl_update_common_txpower(priv, enhanced_txpower, section, element, &max_txpower_in_half_dbm); else max_txpower_avg = iwl_update_channel_txpower(priv, enhanced_txpower, section, element, &max_txpower_in_half_dbm); /* Update the tx_power_user_lmt to the highest power * supported by any channel */ if (max_txpower_avg > priv->tx_power_user_lmt) priv->tx_power_user_lmt = max_txpower_avg; /* * Update the tx_power_lmt_in_half_dbm to * the highest power supported by any channel */ if (max_txpower_in_half_dbm > priv->tx_power_lmt_in_half_dbm) priv->tx_power_lmt_in_half_dbm = max_txpower_in_half_dbm; } } } static void iwlcore_eeprom_enh_txp_read_element(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *txp, s8 max_txpower_avg) { int ch_idx; bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ; enum ieee80211_band band; band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ; for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) { struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx]; /* update matching channel or from common data only */ if (txp->channel != 0 && ch_info->channel != txp->channel) continue; /* update matching band only */ if (band != ch_info->band) continue; if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) { ch_info->max_power_avg = max_txpower_avg; ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg) ch_info->ht40_max_power_avg = max_txpower_avg; } } #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT) #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr) #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE) static void iwlcore_eeprom_enhanced_txpower_new(struct iwl_priv *priv) { struct iwl_eeprom_enhanced_txpwr *txp_array, *txp; int idx, entries; __le16 *txp_len; s8 max_txp_avg, max_txp_avg_halfdbm; BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8); /* the length is in 16-bit words, but we want entries */ txp_len = (__le16 *) iwlagn_eeprom_query_addr(priv, EEPROM_TXP_SZ_OFFS); entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN; txp_array = (void *) iwlagn_eeprom_query_addr(priv, EEPROM_TXP_OFFS); for (idx = 0; idx < entries; idx++) { txp = &txp_array[idx]; /* skip invalid entries */ if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID)) continue; max_txp_avg = iwl_get_max_txpower_avg(priv, txp_array, idx, &max_txp_avg_halfdbm); /* * Update the user limit values values to the highest * power supported by any channel */ if (max_txp_avg > priv->tx_power_user_lmt) priv->tx_power_user_lmt = max_txp_avg; if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm) priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm; iwlcore_eeprom_enh_txp_read_element(priv, txp, max_txp_avg); } } void iwlcore_eeprom_enhanced_txpower(struct iwl_priv *priv) { if (priv->cfg->use_new_eeprom_reading) iwlcore_eeprom_enhanced_txpower_new(priv); else iwlcore_eeprom_enhanced_txpower_old(priv); }