/****************************************************************************** * * Copyright(c) 2009-2012 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../pci.h" #include "../ps.h" #include "../core.h" #include "reg.h" #include "def.h" #include "phy.h" #include "rf.h" #include "dm.h" #include "table.h" #include "sw.h" #include "hw.h" #define MAX_RF_IMR_INDEX 12 #define MAX_RF_IMR_INDEX_NORMAL 13 #define RF_REG_NUM_FOR_C_CUT_5G 6 #define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7 #define RF_REG_NUM_FOR_C_CUT_2G 5 #define RF_CHNL_NUM_5G 19 #define RF_CHNL_NUM_5G_40M 17 #define TARGET_CHNL_NUM_5G 221 #define TARGET_CHNL_NUM_2G 14 #define CV_CURVE_CNT 64 static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = { 0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0 }; static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = { RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6 }; static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = { RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8 }; static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = { 0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E }; static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = { BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1), BIT(10) | BIT(9), BIT(18) | BIT(17) | BIT(16) | BIT(1), BIT(2) | BIT(1), BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11) }; static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = { 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = { 38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138 }; static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = { {0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04}, {0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04}, {0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04}, {0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04}, {0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04} }; static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = { {0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840}, {0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840}, {0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41} }; static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF; static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = { {0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12}, {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52}, {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12} }; /* [mode][patha+b][reg] */ static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = { { /* channel 1-14. */ { 0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff }, /* path 36-64 */ { 0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000, 0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090, 0x32c9a }, /* 100 -165 */ { 0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000, 0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a } } }; static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0}; static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0}; static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = { 25141, 25116, 25091, 25066, 25041, 25016, 24991, 24966, 24941, 24917, 24892, 24867, 24843, 24818, 24794, 24770, 24765, 24721, 24697, 24672, 24648, 24624, 24600, 24576, 24552, 24528, 24504, 24480, 24457, 24433, 24409, 24385, 24362, 24338, 24315, 24291, 24268, 24245, 24221, 24198, 24175, 24151, 24128, 24105, 24082, 24059, 24036, 24013, 23990, 23967, 23945, 23922, 23899, 23876, 23854, 23831, 23809, 23786, 23764, 23741, 23719, 23697, 23674, 23652, 23630, 23608, 23586, 23564, 23541, 23519, 23498, 23476, 23454, 23432, 23410, 23388, 23367, 23345, 23323, 23302, 23280, 23259, 23237, 23216, 23194, 23173, 23152, 23130, 23109, 23088, 23067, 23046, 23025, 23003, 22982, 22962, 22941, 22920, 22899, 22878, 22857, 22837, 22816, 22795, 22775, 22754, 22733, 22713, 22692, 22672, 22652, 22631, 22611, 22591, 22570, 22550, 22530, 22510, 22490, 22469, 22449, 22429, 22409, 22390, 22370, 22350, 22336, 22310, 22290, 22271, 22251, 22231, 22212, 22192, 22173, 22153, 22134, 22114, 22095, 22075, 22056, 22037, 22017, 21998, 21979, 21960, 21941, 21921, 21902, 21883, 21864, 21845, 21826, 21807, 21789, 21770, 21751, 21732, 21713, 21695, 21676, 21657, 21639, 21620, 21602, 21583, 21565, 21546, 21528, 21509, 21491, 21473, 21454, 21436, 21418, 21400, 21381, 21363, 21345, 21327, 21309, 21291, 21273, 21255, 21237, 21219, 21201, 21183, 21166, 21148, 21130, 21112, 21095, 21077, 21059, 21042, 21024, 21007, 20989, 20972, 25679, 25653, 25627, 25601, 25575, 25549, 25523, 25497, 25471, 25446, 25420, 25394, 25369, 25343, 25318, 25292, 25267, 25242, 25216, 25191, 25166 }; /* channel 1~14 */ static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = { 26084, 26030, 25976, 25923, 25869, 25816, 25764, 25711, 25658, 25606, 25554, 25502, 25451, 25328 }; static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask) { u32 i; for (i = 0; i <= 31; i++) { if (((bitmask >> i) & 0x1) == 1) break; } return i; } u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u32 returnvalue, originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask); if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) { u8 dbi_direct = 0; /* mac1 use phy0 read radio_b. */ /* mac0 use phy1 read radio_b. */ if (rtlhal->during_mac1init_radioa) dbi_direct = BIT(3); else if (rtlhal->during_mac0init_radiob) dbi_direct = BIT(3) | BIT(2); originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr, dbi_direct); } else { originalvalue = rtl_read_dword(rtlpriv, regaddr); } bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); returnvalue = (originalvalue & bitmask) >> bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "BBR MASK=0x%x Addr[0x%x]=0x%x\n", bitmask, regaddr, originalvalue); return returnvalue; } void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtlpriv); u8 dbi_direct = 0; u32 originalvalue, bitshift; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x)\n", regaddr, bitmask, data); if (rtlhal->during_mac1init_radioa) dbi_direct = BIT(3); else if (rtlhal->during_mac0init_radiob) /* mac0 use phy1 write radio_b. */ dbi_direct = BIT(3) | BIT(2); if (bitmask != MASKDWORD) { if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) originalvalue = rtl92de_read_dword_dbi(hw, (u16) regaddr, dbi_direct); else originalvalue = rtl_read_dword(rtlpriv, regaddr); bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); data = ((originalvalue & (~bitmask)) | (data << bitshift)); } if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct); else rtl_write_dword(rtlpriv, regaddr, data); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x)\n", regaddr, bitmask, data); } static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; u32 newoffset; u32 tmplong, tmplong2; u8 rfpi_enable = 0; u32 retvalue; newoffset = offset; tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD); if (rfpath == RF90_PATH_A) tmplong2 = tmplong; else tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD); tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) | (newoffset << 23) | BLSSIREADEDGE; rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong & (~BLSSIREADEDGE)); udelay(10); rtl_set_bbreg(hw, pphyreg->rfhssi_para2, MASKDWORD, tmplong2); udelay(50); udelay(50); rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD, tmplong | BLSSIREADEDGE); udelay(10); if (rfpath == RF90_PATH_A) rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); else if (rfpath == RF90_PATH_B) rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1, BIT(8)); if (rfpi_enable) retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi, BLSSIREADBACKDATA); else retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb, BLSSIREADBACKDATA); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n", rfpath, pphyreg->rf_rb, retvalue); return retvalue; } static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw, enum radio_path rfpath, u32 offset, u32 data) { u32 data_and_addr; u32 newoffset; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; newoffset = offset; /* T65 RF */ data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff; rtl_set_bbreg(hw, pphyreg->rf3wire_offset, MASKDWORD, data_and_addr); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n", rfpath, pphyreg->rf3wire_offset, data_and_addr); } u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 original_value, readback_value, bitshift; unsigned long flags; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n", regaddr, rfpath, bitmask); spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags); original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); readback_value = (original_value & bitmask) >> bitshift; spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n", regaddr, rfpath, bitmask, original_value); return readback_value; } void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 original_value, bitshift; unsigned long flags; RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); if (bitmask == 0) return; spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags); if (rtlphy->rf_mode != RF_OP_BY_FW) { if (bitmask != RFREG_OFFSET_MASK) { original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr); bitshift = _rtl92d_phy_calculate_bit_shift(bitmask); data = ((original_value & (~bitmask)) | (data << bitshift)); } _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data); } spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n", regaddr, bitmask, data, rfpath); } bool rtl92d_phy_mac_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; u32 arraylength; u32 *ptrarray; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n"); arraylength = MAC_2T_ARRAYLENGTH; ptrarray = rtl8192de_mac_2tarray; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n"); for (i = 0; i < arraylength; i = i + 2) rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]); if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) { /* improve 2-stream TX EVM */ /* rtl_write_byte(rtlpriv, 0x14,0x71); */ /* AMPDU aggregation number 9 */ /* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */ rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B); } else { /* 92D need to test to decide the num. */ rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07); } return true; } static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); /* RF Interface Sowrtware Control */ /* 16 LSBs if read 32-bit from 0x870 */ rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */ rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW; /* 16 LSBs if read 32-bit from 0x874 */ rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW; /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */ rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW; /* RF Interface Readback Value */ /* 16 LSBs if read 32-bit from 0x8E0 */ rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB; /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */ rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB; /* 16 LSBs if read 32-bit from 0x8E4 */ rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB; /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */ rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB; /* RF Interface Output (and Enable) */ /* 16 LSBs if read 32-bit from 0x860 */ rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE; /* 16 LSBs if read 32-bit from 0x864 */ rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE; /* RF Interface (Output and) Enable */ /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */ rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */ rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE; /* Addr of LSSI. Wirte RF register by driver */ /* LSSI Parameter */ rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset = RFPGA0_XA_LSSIPARAMETER; rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset = RFPGA0_XB_LSSIPARAMETER; /* RF parameter */ /* BB Band Select */ rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER; rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER; /* Tx AGC Gain Stage (same for all path. Should we remove this?) */ /* Tx gain stage */ rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE; /* Tx gain stage */ rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE; /* Tx gain stage */ rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE; /* Tx gain stage */ rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE; /* Tranceiver A~D HSSI Parameter-1 */ /* wire control parameter1 */ rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1; /* wire control parameter1 */ rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1; /* Tranceiver A~D HSSI Parameter-2 */ /* wire control parameter2 */ rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2; /* wire control parameter2 */ rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2; /* RF switch Control */ /* TR/Ant switch control */ rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL; rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL; /* AGC control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1; rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1; /* AGC control 2 */ rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2; rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2; rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2; rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2; /* RX AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE; /*RX AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE; rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE; rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE; rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE; /* Tx AFE control 1 */ rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE; rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE; /* Tx AFE control 2 */ rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE; rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE; rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE; rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE; /* Tranceiver LSSI Readback SI mode */ rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK; rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK; /* Tranceiver LSSI Readback PI mode */ rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK; rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK; } static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw, u8 configtype) { int i; u32 *phy_regarray_table; u32 *agctab_array_table = NULL; u32 *agctab_5garray_table; u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); /* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */ if (rtlhal->interfaceindex == 0) { agctab_arraylen = AGCTAB_ARRAYLENGTH; agctab_array_table = rtl8192de_agctab_array; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " ===> phy:MAC0, Rtl819XAGCTAB_Array\n"); } else { if (rtlhal->current_bandtype == BAND_ON_2_4G) { agctab_arraylen = AGCTAB_2G_ARRAYLENGTH; agctab_array_table = rtl8192de_agctab_2garray; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n"); } else { agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH; agctab_5garray_table = rtl8192de_agctab_5garray; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n"); } } phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH; phy_regarray_table = rtl8192de_phy_reg_2tarray; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " ===> phy:Rtl819XPHY_REG_Array_PG\n"); if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_reg_arraylen; i = i + 2) { rtl_addr_delay(phy_regarray_table[i]); rtl_set_bbreg(hw, phy_regarray_table[i], MASKDWORD, phy_regarray_table[i + 1]); udelay(1); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n", phy_regarray_table[i], phy_regarray_table[i + 1]); } } else if (configtype == BASEBAND_CONFIG_AGC_TAB) { if (rtlhal->interfaceindex == 0) { for (i = 0; i < agctab_arraylen; i = i + 2) { rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD, agctab_array_table[i + 1]); /* Add 1us delay between BB/RF register * setting. */ udelay(1); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", agctab_array_table[i], agctab_array_table[i + 1]); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n"); } else { if (rtlhal->current_bandtype == BAND_ON_2_4G) { for (i = 0; i < agctab_arraylen; i = i + 2) { rtl_set_bbreg(hw, agctab_array_table[i], MASKDWORD, agctab_array_table[i + 1]); /* Add 1us delay between BB/RF register * setting. */ udelay(1); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", agctab_array_table[i], agctab_array_table[i + 1]); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Load Rtl819XAGCTAB_2GArray\n"); } else { for (i = 0; i < agctab_5garraylen; i = i + 2) { rtl_set_bbreg(hw, agctab_5garray_table[i], MASKDWORD, agctab_5garray_table[i + 1]); /* Add 1us delay between BB/RF registeri * setting. */ udelay(1); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n", agctab_5garray_table[i], agctab_5garray_table[i + 1]); } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Load Rtl819XAGCTAB_5GArray\n"); } } } return true; } static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); int index; if (regaddr == RTXAGC_A_RATE18_06) index = 0; else if (regaddr == RTXAGC_A_RATE54_24) index = 1; else if (regaddr == RTXAGC_A_CCK1_MCS32) index = 6; else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) index = 7; else if (regaddr == RTXAGC_A_MCS03_MCS00) index = 2; else if (regaddr == RTXAGC_A_MCS07_MCS04) index = 3; else if (regaddr == RTXAGC_A_MCS11_MCS08) index = 4; else if (regaddr == RTXAGC_A_MCS15_MCS12) index = 5; else if (regaddr == RTXAGC_B_RATE18_06) index = 8; else if (regaddr == RTXAGC_B_RATE54_24) index = 9; else if (regaddr == RTXAGC_B_CCK1_55_MCS32) index = 14; else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) index = 15; else if (regaddr == RTXAGC_B_MCS03_MCS00) index = 10; else if (regaddr == RTXAGC_B_MCS07_MCS04) index = 11; else if (regaddr == RTXAGC_B_MCS11_MCS08) index = 12; else if (regaddr == RTXAGC_B_MCS15_MCS12) index = 13; else return; rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%x\n", rtlphy->pwrgroup_cnt, index, rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]); if (index == 13) rtlphy->pwrgroup_cnt++; } static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw, u8 configtype) { struct rtl_priv *rtlpriv = rtl_priv(hw); int i; u32 *phy_regarray_table_pg; u16 phy_regarray_pg_len; phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH; phy_regarray_table_pg = rtl8192de_phy_reg_array_pg; if (configtype == BASEBAND_CONFIG_PHY_REG) { for (i = 0; i < phy_regarray_pg_len; i = i + 3) { rtl_addr_delay(phy_regarray_table_pg[i]); _rtl92d_store_pwrindex_diffrate_offset(hw, phy_regarray_table_pg[i], phy_regarray_table_pg[i + 1], phy_regarray_table_pg[i + 2]); } } else { RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE, "configtype != BaseBand_Config_PHY_REG\n"); } return true; } static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); bool rtstatus = true; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n"); rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_PHY_REG); if (!rtstatus) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n"); return false; } /* if (rtlphy->rf_type == RF_1T2R) { * _rtl92c_phy_bb_config_1t(hw); * RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n"); *} */ if (rtlefuse->autoload_failflag == false) { rtlphy->pwrgroup_cnt = 0; rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw, BASEBAND_CONFIG_PHY_REG); } if (!rtstatus) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n"); return false; } rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB); if (!rtstatus) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n"); return false; } rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, 0x200)); return true; } bool rtl92d_phy_bb_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 regval; u32 regvaldw; u8 value; _rtl92d_phy_init_bb_rf_register_definition(hw); regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN); rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, regval | BIT(13) | BIT(0) | BIT(1)); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83); rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb); /* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */ value = rtl_read_byte(rtlpriv, REG_RF_CTRL); rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB | RF_SDMRSTB); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB); rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80); if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) { regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0); rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23)); } return _rtl92d_phy_bb_config(hw); } bool rtl92d_phy_rf_config(struct ieee80211_hw *hw) { return rtl92d_phy_rf6052_config(hw); } bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw, enum rf_content content, enum radio_path rfpath) { int i; u32 *radioa_array_table; u32 *radiob_array_table; u16 radioa_arraylen, radiob_arraylen; struct rtl_priv *rtlpriv = rtl_priv(hw); radioa_arraylen = RADIOA_2T_ARRAYLENGTH; radioa_array_table = rtl8192de_radioa_2tarray; radiob_arraylen = RADIOB_2T_ARRAYLENGTH; radiob_array_table = rtl8192de_radiob_2tarray; if (rtlpriv->efuse.internal_pa_5g[0]) { radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH; radioa_array_table = rtl8192de_radioa_2t_int_paarray; } if (rtlpriv->efuse.internal_pa_5g[1]) { radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH; radiob_array_table = rtl8192de_radiob_2t_int_paarray; } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n"); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n"); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath); /* this only happens when DMDP, mac0 start on 2.4G, * mac1 start on 5G, mac 0 has to set phy0&phy1 * pathA or mac1 has to set phy0&phy1 pathA */ if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, " ===> althougth Path A, we load radiob.txt\n"); radioa_arraylen = radiob_arraylen; radioa_array_table = radiob_array_table; } switch (rfpath) { case RF90_PATH_A: for (i = 0; i < radioa_arraylen; i = i + 2) { rtl_rfreg_delay(hw, rfpath, radioa_array_table[i], RFREG_OFFSET_MASK, radioa_array_table[i + 1]); } break; case RF90_PATH_B: for (i = 0; i < radiob_arraylen; i = i + 2) { rtl_rfreg_delay(hw, rfpath, radiob_array_table[i], RFREG_OFFSET_MASK, radiob_array_table[i + 1]); } break; case RF90_PATH_C: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; case RF90_PATH_D: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } return true; } void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); rtlphy->default_initialgain[0] = (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[1] = (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[2] = (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0); rtlphy->default_initialgain[3] = (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n", rtlphy->default_initialgain[0], rtlphy->default_initialgain[1], rtlphy->default_initialgain[2], rtlphy->default_initialgain[3]); rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3, MASKBYTE0); rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2, MASKDWORD); RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Default framesync (0x%x) = 0x%x\n", ROFDM0_RXDETECTOR3, rtlphy->framesync); } static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 index = (channel - 1); /* 1. CCK */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* RF-A */ cckpowerlevel[RF90_PATH_A] = rtlefuse->txpwrlevel_cck[RF90_PATH_A][index]; /* RF-B */ cckpowerlevel[RF90_PATH_B] = rtlefuse->txpwrlevel_cck[RF90_PATH_B][index]; } else { cckpowerlevel[RF90_PATH_A] = 0; cckpowerlevel[RF90_PATH_B] = 0; } /* 2. OFDM for 1S or 2S */ if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { /* Read HT 40 OFDM TX power */ ofdmpowerlevel[RF90_PATH_A] = rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index]; ofdmpowerlevel[RF90_PATH_B] = rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index]; } else if (rtlphy->rf_type == RF_2T2R) { /* Read HT 40 OFDM TX power */ ofdmpowerlevel[RF90_PATH_A] = rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index]; ofdmpowerlevel[RF90_PATH_B] = rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index]; } } static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw, u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); rtlphy->cur_cck_txpwridx = cckpowerlevel[0]; rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0]; } static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl) { u8 place = chnl; if (chnl > 14) { for (place = 14; place < sizeof(channel5g); place++) { if (channel5g[place] == chnl) { place++; break; } } } return place; } void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); u8 cckpowerlevel[2], ofdmpowerlevel[2]; if (!rtlefuse->txpwr_fromeprom) return; channel = _rtl92c_phy_get_rightchnlplace(channel); _rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0], &ofdmpowerlevel[0]); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) _rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0], &ofdmpowerlevel[0]); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]); rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel); } void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw, enum nl80211_channel_type ch_type) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); unsigned long flag = 0; u8 reg_prsr_rsc; u8 reg_bw_opmode; if (rtlphy->set_bwmode_inprogress) return; if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "FALSE driver sleep or unload\n"); return; } rtlphy->set_bwmode_inprogress = true; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n", rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ? "20MHz" : "40MHz"); reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE); reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2); switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: reg_bw_opmode |= BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); break; case HT_CHANNEL_WIDTH_20_40: reg_bw_opmode &= ~BW_OPMODE_20MHZ; rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); reg_prsr_rsc = (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5); rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } switch (rtlphy->current_chan_bw) { case HT_CHANNEL_WIDTH_20: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0); /* SET BIT10 BIT11 for receive cck */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | BIT(11), 3); break; case HT_CHANNEL_WIDTH_20_40: rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1); rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1); /* Set Control channel to upper or lower. * These settings are required only for 40MHz */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag); rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND, (mac->cur_40_prime_sc >> 1)); rtl92d_release_cckandrw_pagea_ctl(hw, &flag); } rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc); /* SET BIT10 BIT11 for receive cck */ rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) | BIT(11), 0); rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)), (mac->cur_40_prime_sc == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "unknown bandwidth: %#X\n", rtlphy->current_chan_bw); break; } rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw); rtlphy->set_bwmode_inprogress = false; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n"); } static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw) { rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0); rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x00); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0); } static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 value8; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n"); rtlhal->bandset = band; rtlhal->current_bandtype = band; if (IS_92D_SINGLEPHY(rtlhal->version)) rtlhal->bandset = BAND_ON_BOTH; /* stop RX/Tx */ _rtl92d_phy_stop_trx_before_changeband(hw); /* reconfig BB/RF according to wireless mode */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* BB & RF Config */ RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n"); if (rtlhal->interfaceindex == 1) _rtl92d_phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB); } else { /* 5G band */ RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n"); if (rtlhal->interfaceindex == 1) _rtl92d_phy_config_bb_with_headerfile(hw, BASEBAND_CONFIG_AGC_TAB); } rtl92d_update_bbrf_configuration(hw); if (rtlhal->current_bandtype == BAND_ON_2_4G) rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); /* 20M BW. */ /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */ rtlhal->reloadtxpowerindex = true; /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1)); value8 |= BIT(1); rtl_write_byte(rtlpriv, (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1), value8); } else { value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1)); value8 &= (~BIT(1)); rtl_write_byte(rtlpriv, (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1), value8); } mdelay(1); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n"); } static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw, u8 channel, u8 rfpath) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 imr_num = MAX_RF_IMR_INDEX; u32 rfmask = RFREG_OFFSET_MASK; u8 group, i; unsigned long flag = 0; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) { RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n"); rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); /* fc area 0xd2c */ if (channel > 99) rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) | BIT(14), 2); else rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) | BIT(14), 1); /* leave 0 for channel1-14. */ group = channel <= 64 ? 1 : 2; imr_num = MAX_RF_IMR_INDEX_NORMAL; for (i = 0; i < imr_num; i++) rtl_set_rfreg(hw, (enum radio_path)rfpath, rf_reg_for_5g_swchnl_normal[i], rfmask, rf_imr_param_normal[0][group][i]); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1); } else { /* G band. */ RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "Load RF IMR parameters for G band. IMR already setting %d\n", rtlpriv->rtlhal.load_imrandiqk_setting_for2g); RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n"); if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) { RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "Load RF IMR parameters for G band. %d\n", rfpath); rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag); rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf); imr_num = MAX_RF_IMR_INDEX_NORMAL; for (i = 0; i < imr_num; i++) { rtl_set_rfreg(hw, (enum radio_path)rfpath, rf_reg_for_5g_swchnl_normal[i], RFREG_OFFSET_MASK, rf_imr_param_normal[0][0][i]); } rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3); rtl92d_release_cckandrw_pagea_ctl(hw, &flag); } } RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n"); } static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw, u8 rfpath, u32 *pu4_regval) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n"); /*----Store original RFENV control type----*/ switch (rfpath) { case RF90_PATH_A: case RF90_PATH_C: *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV); break; case RF90_PATH_B: case RF90_PATH_D: *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16); break; } /*----Set RF_ENV enable----*/ rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1); udelay(1); /*----Set RF_ENV output high----*/ rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1); udelay(1); /* Set bit number of Address and Data for RF register */ /* Set 1 to 4 bits for 8255 */ rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0); udelay(1); /*Set 0 to 12 bits for 8255 */ rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0); udelay(1); RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n"); } static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath, u32 *pu4_regval) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath]; RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n"); /*----Restore RFENV control type----*/ switch (rfpath) { case RF90_PATH_A: case RF90_PATH_C: rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval); break; case RF90_PATH_B: case RF90_PATH_D: rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16, *pu4_regval); break; } RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n"); } static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u8 path = rtlhal->current_bandtype == BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B; u8 index = 0, i = 0, rfpath = RF90_PATH_A; bool need_pwr_down = false, internal_pa = false; u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n"); /* config path A for 5G */ if (rtlhal->current_bandtype == BAND_ON_5G) { RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n"); u4tmp = curveindex_5g[channel - 1]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp); for (i = 0; i < RF_CHNL_NUM_5G; i++) { if (channel == rf_chnl_5g[i] && channel <= 140) index = 0; } for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) { if (channel == rf_chnl_5g_40m[i] && channel <= 140) index = 1; } if (channel == 149 || channel == 155 || channel == 161) index = 2; else if (channel == 151 || channel == 153 || channel == 163 || channel == 165) index = 3; else if (channel == 157 || channel == 159) index = 4; if (rtlhal->macphymode == DUALMAC_DUALPHY && rtlhal->interfaceindex == 1) { need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false); rtlhal->during_mac1init_radioa = true; /* asume no this case */ if (need_pwr_down) _rtl92d_phy_enable_rf_env(hw, path, &u4regvalue); } for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) { if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) { rtl_set_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_5g[i], RFREG_OFFSET_MASK, 0xE439D); } else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) { u4tmp2 = (rf_reg_pram_c_5g[index][i] & 0x7FF) | (u4tmp << 11); if (channel == 36) u4tmp2 &= ~(BIT(7) | BIT(6)); rtl_set_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_5g[i], RFREG_OFFSET_MASK, u4tmp2); } else { rtl_set_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_5g[i], RFREG_OFFSET_MASK, rf_reg_pram_c_5g[index][i]); } RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "offset 0x%x value 0x%x path %d index %d readback 0x%x\n", rf_reg_for_c_cut_5g[i], rf_reg_pram_c_5g[index][i], path, index, rtl_get_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_5g[i], RFREG_OFFSET_MASK)); } if (need_pwr_down) _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue); if (rtlhal->during_mac1init_radioa) rtl92d_phy_powerdown_anotherphy(hw, false); if (channel < 149) value = 0x07; else if (channel >= 149) value = 0x02; if (channel >= 36 && channel <= 64) index = 0; else if (channel >= 100 && channel <= 140) index = 1; else index = 2; for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath; rfpath++) { if (rtlhal->macphymode == DUALMAC_DUALPHY && rtlhal->interfaceindex == 1) /* MAC 1 5G */ internal_pa = rtlpriv->efuse.internal_pa_5g[1]; else internal_pa = rtlpriv->efuse.internal_pa_5g[rfpath]; if (internal_pa) { for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA; i++) { rtl_set_rfreg(hw, rfpath, rf_for_c_cut_5g_internal_pa[i], RFREG_OFFSET_MASK, rf_pram_c_5g_int_pa[index][i]); RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "offset 0x%x value 0x%x path %d index %d\n", rf_for_c_cut_5g_internal_pa[i], rf_pram_c_5g_int_pa[index][i], rfpath, index); } } else { rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B, mask, value); } } } else if (rtlhal->current_bandtype == BAND_ON_2_4G) { RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n"); u4tmp = curveindex_2g[channel - 1]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp); if (channel == 1 || channel == 2 || channel == 4 || channel == 9 || channel == 10 || channel == 11 || channel == 12) index = 0; else if (channel == 3 || channel == 13 || channel == 14) index = 1; else if (channel >= 5 && channel <= 8) index = 2; if (rtlhal->macphymode == DUALMAC_DUALPHY) { path = RF90_PATH_A; if (rtlhal->interfaceindex == 0) { need_pwr_down = rtl92d_phy_enable_anotherphy(hw, true); rtlhal->during_mac0init_radiob = true; if (need_pwr_down) _rtl92d_phy_enable_rf_env(hw, path, &u4regvalue); } } for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) { if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7) rtl_set_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_2g[i], RFREG_OFFSET_MASK, (rf_reg_param_for_c_cut_2g[index][i] | BIT(17))); else rtl_set_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_2g[i], RFREG_OFFSET_MASK, rf_reg_param_for_c_cut_2g [index][i]); RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n", rf_reg_for_c_cut_2g[i], rf_reg_param_for_c_cut_2g[index][i], rf_reg_mask_for_c_cut_2g[i], path, index, rtl_get_rfreg(hw, (enum radio_path)path, rf_reg_for_c_cut_2g[i], RFREG_OFFSET_MASK)); } RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", rf_syn_g4_for_c_cut_2g | (u4tmp << 11)); rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4, RFREG_OFFSET_MASK, rf_syn_g4_for_c_cut_2g | (u4tmp << 11)); if (need_pwr_down) _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue); if (rtlhal->during_mac0init_radiob) rtl92d_phy_powerdown_anotherphy(hw, true); } RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n"); } u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl) { u8 channel_all[59] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 149, 151, 153, 155, 157, 159, 161, 163, 165 }; u8 place = chnl; if (chnl > 14) { for (place = 14; place < sizeof(channel_all); place++) { if (channel_all[place] == chnl) return place - 13; } } return 0; } #define MAX_TOLERANCE 5 #define IQK_DELAY_TIME 1 /* ms */ #define MAX_TOLERANCE_92D 3 /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 regeac, rege94, rege9c, regea4; u8 result = 0; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n"); /* path-A IQK setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n"); if (rtlhal->interfaceindex == 0) { rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1f); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c1f); } else { rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c22); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x10008c22); } rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140102); rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160206); /* path-B IQK setting */ if (configpathb) { rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x10008c22); rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x10008c22); rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140102); rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x28160206); } /* LO calibration setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n"); rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911); /* One shot, path A LOK & IQK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n"); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000); /* delay x ms */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Delay %d ms for One shot, path A LOK & IQK\n", IQK_DELAY_TIME); mdelay(IQK_DELAY_TIME); /* Check failed */ regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac); rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94); rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c); regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4); if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) && (((rege9c & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else /* if Tx not OK, ignore Rx */ return result; /* if Tx is OK, check whether Rx is OK */ if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) && (((regeac & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; else RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n"); return result; } /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw, bool configpathb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 regeac, rege94, rege9c, regea4; u8 result = 0; u8 i; u8 retrycount = 2; u32 TxOKBit = BIT(28), RxOKBit = BIT(27); if (rtlhal->interfaceindex == 1) { /* PHY1 */ TxOKBit = BIT(31); RxOKBit = BIT(30); } RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n"); /* path-A IQK setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n"); rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f); rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82140307); rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68160960); /* path-B IQK setting */ if (configpathb) { rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f); rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f); rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82110000); rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68110000); } /* LO calibration setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n"); rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911); /* path-A PA on */ rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x07000f60); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD, 0x66e60e30); for (i = 0; i < retrycount; i++) { /* One shot, path A LOK & IQK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n"); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000); /* delay x ms */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Delay %d ms for One shot, path A LOK & IQK.\n", IQK_DELAY_TIME); mdelay(IQK_DELAY_TIME * 10); /* Check failed */ regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac); rege94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94); rege9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c); regea4 = rtl_get_bbreg(hw, 0xea4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4); if (!(regeac & TxOKBit) && (((rege94 & 0x03FF0000) >> 16) != 0x142)) { result |= 0x01; } else { /* if Tx not OK, ignore Rx */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Tx IQK fail!!\n"); continue; } /* if Tx is OK, check whether Rx is OK */ if (!(regeac & RxOKBit) && (((regea4 & 0x03FF0000) >> 16) != 0x132)) { result |= 0x02; break; } else { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n"); } } /* path A PA off */ rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, rtlphy->iqk_bb_backup[0]); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, MASKDWORD, rtlphy->iqk_bb_backup[1]); return result; } /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 regeac, regeb4, regebc, regec4, regecc; u8 result = 0; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n"); /* One shot, path B LOK & IQK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n"); rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002); rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000); /* delay x ms */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME); mdelay(IQK_DELAY_TIME); /* Check failed */ regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac); regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4); regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc); regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4); regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc); if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) && (((regebc & 0x03FF0000) >> 16) != 0x42)) result |= 0x01; else return result; if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) && (((regecc & 0x03FF0000) >> 16) != 0x36)) result |= 0x02; else RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n"); return result; } /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */ static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 regeac, regeb4, regebc, regec4, regecc; u8 result = 0; u8 i; u8 retrycount = 2; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n"); /* path-A IQK setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n"); rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x18008c1f); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x18008c1f); rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x82110000); rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x68110000); /* path-B IQK setting */ rtl_set_bbreg(hw, 0xe50, MASKDWORD, 0x18008c2f); rtl_set_bbreg(hw, 0xe54, MASKDWORD, 0x18008c2f); rtl_set_bbreg(hw, 0xe58, MASKDWORD, 0x82140307); rtl_set_bbreg(hw, 0xe5c, MASKDWORD, 0x68160960); /* LO calibration setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n"); rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911); /* path-B PA on */ rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, 0x0f600700); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD, 0x061f0d30); for (i = 0; i < retrycount; i++) { /* One shot, path B LOK & IQK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n"); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xfa000000); rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000); /* delay x ms */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Delay %d ms for One shot, path B LOK & IQK.\n", 10); mdelay(IQK_DELAY_TIME * 10); /* Check failed */ regeac = rtl_get_bbreg(hw, 0xeac, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac); regeb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4); regebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc); regec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4); regecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc); if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142)) result |= 0x01; else continue; if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132)) { result |= 0x02; break; } else { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n"); } } /* path B PA off */ rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, MASKDWORD, rtlphy->iqk_bb_backup[0]); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, MASKDWORD, rtlphy->iqk_bb_backup[2]); return result; } static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw, u32 *adda_reg, u32 *adda_backup, u32 regnum) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n"); for (i = 0; i < regnum; i++) adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], MASKDWORD); } static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw, u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n"); for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]); macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]); } static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw, u32 *adda_reg, u32 *adda_backup, u32 regnum) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload ADDA power saving parameters !\n"); for (i = 0; i < regnum; i++) rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, adda_backup[i]); } static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw, u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n"); for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]); rtl_write_byte(rtlpriv, macreg[i], macbackup[i]); } static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw, u32 *adda_reg, bool patha_on, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 pathon; u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n"); pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4; if (patha_on) pathon = rtlpriv->rtlhal.interfaceindex == 0 ? 0x04db25a4 : 0x0b1b25a4; for (i = 0; i < IQK_ADDA_REG_NUM; i++) rtl_set_bbreg(hw, adda_reg[i], MASKDWORD, pathon); } static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw, u32 *macreg, u32 *macbackup) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 i; RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n"); rtl_write_byte(rtlpriv, macreg[0], 0x3F); for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] & (~BIT(3)))); rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5)))); } static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n"); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0); rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD, 0x00010000); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000); } static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 mode; RTPRINT(rtlpriv, FINIT, INIT_IQK, "BB Switch to %s mode!\n", pi_mode ? "PI" : "SI"); mode = pi_mode ? 0x01000100 : 0x01000000; rtl_set_bbreg(hw, 0x820, MASKDWORD, mode); rtl_set_bbreg(hw, 0x828, MASKDWORD, mode); } static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8], u8 t, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u32 i; u8 patha_ok, pathb_ok; static u32 adda_reg[IQK_ADDA_REG_NUM] = { RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74, 0xe78, 0xe7c, 0xe80, 0xe84, 0xe88, 0xe8c, 0xed0, 0xed4, 0xed8, 0xedc, 0xee0, 0xeec }; static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = { 0x522, 0x550, 0x551, 0x040 }; static u32 iqk_bb_reg[IQK_BB_REG_NUM] = { RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE, RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR, RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE, RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4, ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1 }; const u32 retrycount = 2; u32 bbvalue; RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n"); if (t == 0) { bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue); RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n", is2t ? "2T2R" : "1T1R"); /* Save ADDA parameters, turn Path A ADDA on */ _rtl92d_phy_save_adda_registers(hw, adda_reg, rtlphy->adda_backup, IQK_ADDA_REG_NUM); _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); } _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t); if (t == 0) rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); /* Switch BB to PI mode to do IQ Calibration. */ if (!rtlphy->rfpi_enable) _rtl92d_phy_pimode_switch(hw, true); rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00); rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600); rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4); rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22204000); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f); if (is2t) { rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, MASKDWORD, 0x00010000); rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, MASKDWORD, 0x00010000); } /* MAC settings */ _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); /* Page B init */ rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000); if (is2t) rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000); /* IQ calibration setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n"); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000); rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00); rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800); for (i = 0; i < retrycount; i++) { patha_ok = _rtl92d_phy_patha_iqk(hw, is2t); if (patha_ok == 0x03) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n"); result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) & 0x3FF0000) >> 16; result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) & 0x3FF0000) >> 16; result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) & 0x3FF0000) >> 16; result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) & 0x3FF0000) >> 16; break; } else if (i == (retrycount - 1) && patha_ok == 0x01) { /* Tx IQK OK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Only Tx Success!!\n"); result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) & 0x3FF0000) >> 16; result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) & 0x3FF0000) >> 16; } } if (0x00 == patha_ok) RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n"); if (is2t) { _rtl92d_phy_patha_standby(hw); /* Turn Path B ADDA on */ _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t); for (i = 0; i < retrycount; i++) { pathb_ok = _rtl92d_phy_pathb_iqk(hw); if (pathb_ok == 0x03) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK Success!!\n"); result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) & 0x3FF0000) >> 16; result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) & 0x3FF0000) >> 16; break; } else if (i == (retrycount - 1) && pathb_ok == 0x01) { /* Tx IQK OK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Only Tx IQK Success!!\n"); result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; } } if (0x00 == pathb_ok) RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK failed!!\n"); } /* Back to BB mode, load original value */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK:Back to BB mode, load original value!\n"); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0); if (t != 0) { /* Switch back BB to SI mode after finish IQ Calibration. */ if (!rtlphy->rfpi_enable) _rtl92d_phy_pimode_switch(hw, false); /* Reload ADDA power saving parameters */ _rtl92d_phy_reload_adda_registers(hw, adda_reg, rtlphy->adda_backup, IQK_ADDA_REG_NUM); /* Reload MAC parameters */ _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); if (is2t) _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); else _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM - 1); /* load 0xe30 IQC default value */ rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00); rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00); } RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n"); } static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw, long result[][8], u8 t) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u8 patha_ok, pathb_ok; static u32 adda_reg[IQK_ADDA_REG_NUM] = { RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74, 0xe78, 0xe7c, 0xe80, 0xe84, 0xe88, 0xe8c, 0xed0, 0xed4, 0xed8, 0xedc, 0xee0, 0xeec }; static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = { 0x522, 0x550, 0x551, 0x040 }; static u32 iqk_bb_reg[IQK_BB_REG_NUM] = { RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE, RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR, RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE, RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4, ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1 }; u32 bbvalue; bool is2t = IS_92D_SINGLEPHY(rtlhal->version); /* Note: IQ calibration must be performed after loading * PHY_REG.txt , and radio_a, radio_b.txt */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n"); mdelay(IQK_DELAY_TIME * 20); if (t == 0) { bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, MASKDWORD); RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue); RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n", is2t ? "2T2R" : "1T1R"); /* Save ADDA parameters, turn Path A ADDA on */ _rtl92d_phy_save_adda_registers(hw, adda_reg, rtlphy->adda_backup, IQK_ADDA_REG_NUM); _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); if (is2t) _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); else _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM - 1); } _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t); /* MAC settings */ _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); if (t == 0) rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1, BIT(8)); /* Switch BB to PI mode to do IQ Calibration. */ if (!rtlphy->rfpi_enable) _rtl92d_phy_pimode_switch(hw, true); rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00); rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKDWORD, 0x03a05600); rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, MASKDWORD, 0x000800e4); rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, MASKDWORD, 0x22208000); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f); /* Page B init */ rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000); if (is2t) rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000); /* IQ calibration setting */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n"); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000); rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x10007c00); rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x01004800); patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t); if (patha_ok == 0x03) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n"); result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) & 0x3FF0000) >> 16; result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) & 0x3FF0000) >> 16; result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) & 0x3FF0000) >> 16; result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) & 0x3FF0000) >> 16; } else if (patha_ok == 0x01) { /* Tx IQK OK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Only Tx Success!!\n"); result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) & 0x3FF0000) >> 16; result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) & 0x3FF0000) >> 16; } else { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n"); } if (is2t) { /* _rtl92d_phy_patha_standby(hw); */ /* Turn Path B ADDA on */ _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t); pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw); if (pathb_ok == 0x03) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK Success!!\n"); result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; result[t][6] = (rtl_get_bbreg(hw, 0xec4, MASKDWORD) & 0x3FF0000) >> 16; result[t][7] = (rtl_get_bbreg(hw, 0xecc, MASKDWORD) & 0x3FF0000) >> 16; } else if (pathb_ok == 0x01) { /* Tx IQK OK */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Only Tx IQK Success!!\n"); result[t][4] = (rtl_get_bbreg(hw, 0xeb4, MASKDWORD) & 0x3FF0000) >> 16; result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) & 0x3FF0000) >> 16; } else { RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK failed!!\n"); } } /* Back to BB mode, load original value */ RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK:Back to BB mode, load original value!\n"); rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0); if (t != 0) { if (is2t) _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM); else _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, IQK_BB_REG_NUM - 1); /* Reload MAC parameters */ _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg, rtlphy->iqk_mac_backup); /* Switch back BB to SI mode after finish IQ Calibration. */ if (!rtlphy->rfpi_enable) _rtl92d_phy_pimode_switch(hw, false); /* Reload ADDA power saving parameters */ _rtl92d_phy_reload_adda_registers(hw, adda_reg, rtlphy->adda_backup, IQK_ADDA_REG_NUM); } RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n"); } static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw, long result[][8], u8 c1, u8 c2) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u32 i, j, diff, sim_bitmap, bound; u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */ bool bresult = true; bool is2t = IS_92D_SINGLEPHY(rtlhal->version); if (is2t) bound = 8; else bound = 4; sim_bitmap = 0; for (i = 0; i < bound; i++) { diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] - result[c2][i]) : (result[c2][i] - result[c1][i]); if (diff > MAX_TOLERANCE_92D) { if ((i == 2 || i == 6) && !sim_bitmap) { if (result[c1][i] + result[c1][i + 1] == 0) final_candidate[(i / 4)] = c2; else if (result[c2][i] + result[c2][i + 1] == 0) final_candidate[(i / 4)] = c1; else sim_bitmap = sim_bitmap | (1 << i); } else { sim_bitmap = sim_bitmap | (1 << i); } } } if (sim_bitmap == 0) { for (i = 0; i < (bound / 4); i++) { if (final_candidate[i] != 0xFF) { for (j = i * 4; j < (i + 1) * 4 - 2; j++) result[3][j] = result[final_candidate[i]][j]; bresult = false; } } return bresult; } if (!(sim_bitmap & 0x0F)) { /* path A OK */ for (i = 0; i < 4; i++) result[3][i] = result[c1][i]; } else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */ for (i = 0; i < 2; i++) result[3][i] = result[c1][i]; } if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */ for (i = 4; i < 8; i++) result[3][i] = result[c1][i]; } else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */ for (i = 4; i < 6; i++) result[3][i] = result[c1][i]; } return false; } static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw, bool iqk_ok, long result[][8], u8 final_candidate, bool txonly) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u32 oldval_0, val_x, tx0_a, reg; long val_y, tx0_c; bool is2t = IS_92D_SINGLEPHY(rtlhal->version) || rtlhal->macphymode == DUALMAC_DUALPHY; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed"); if (final_candidate == 0xFF) { return; } else if (iqk_ok) { oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */ val_x = result[final_candidate][0]; if ((val_x & 0x00000200) != 0) val_x = val_x | 0xFFFFFC00; tx0_a = (val_x * oldval_0) >> 8; RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n", val_x, tx0_a, oldval_0); rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a); rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24), ((val_x * oldval_0 >> 7) & 0x1)); val_y = result[final_candidate][1]; if ((val_y & 0x00000200) != 0) val_y = val_y | 0xFFFFFC00; /* path B IQK result + 3 */ if (rtlhal->interfaceindex == 1 && rtlhal->current_bandtype == BAND_ON_5G) val_y += 3; tx0_c = (val_y * oldval_0) >> 8; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx0_c = 0x%lx\n", val_y, tx0_c); rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, ((tx0_c & 0x3C0) >> 6)); rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000, (tx0_c & 0x3F)); if (is2t) rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26), ((val_y * oldval_0 >> 7) & 0x1)); RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n", rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD)); if (txonly) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n"); return; } reg = result[final_candidate][2]; rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg); reg = result[final_candidate][3] & 0x3F; rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg); reg = (result[final_candidate][3] >> 6) & 0xF; rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg); } } static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw, bool iqk_ok, long result[][8], u8 final_candidate, bool txonly) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u32 oldval_1, val_x, tx1_a, reg; long val_y, tx1_c; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed"); if (final_candidate == 0xFF) { return; } else if (iqk_ok) { oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD) >> 22) & 0x3FF; val_x = result[final_candidate][4]; if ((val_x & 0x00000200) != 0) val_x = val_x | 0xFFFFFC00; tx1_a = (val_x * oldval_1) >> 8; RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n", val_x, tx1_a); rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a); rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28), ((val_x * oldval_1 >> 7) & 0x1)); val_y = result[final_candidate][5]; if ((val_y & 0x00000200) != 0) val_y = val_y | 0xFFFFFC00; if (rtlhal->current_bandtype == BAND_ON_5G) val_y += 3; tx1_c = (val_y * oldval_1) >> 8; RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n", val_y, tx1_c); rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, ((tx1_c & 0x3C0) >> 6)); rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000, (tx1_c & 0x3F)); rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30), ((val_y * oldval_1 >> 7) & 0x1)); if (txonly) return; reg = result[final_candidate][6]; rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg); reg = result[final_candidate][7] & 0x3F; rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg); reg = (result[final_candidate][7] >> 6) & 0xF; rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg); } } void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); long result[4][8]; u8 i, final_candidate, indexforchannel; bool patha_ok, pathb_ok; long rege94, rege9c, regea4, regeac, regeb4; long regebc, regec4, regecc, regtmp = 0; bool is12simular, is13simular, is23simular; unsigned long flag = 0; RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK:Start!!!channel %d\n", rtlphy->current_channel); for (i = 0; i < 8; i++) { result[0][i] = 0; result[1][i] = 0; result[2][i] = 0; result[3][i] = 0; } final_candidate = 0xff; patha_ok = false; pathb_ok = false; is12simular = false; is23simular = false; is13simular = false; RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK !!!currentband %d\n", rtlhal->current_bandtype); rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag); for (i = 0; i < 3; i++) { if (rtlhal->current_bandtype == BAND_ON_5G) { _rtl92d_phy_iq_calibrate_5g_normal(hw, result, i); } else if (rtlhal->current_bandtype == BAND_ON_2_4G) { if (IS_92D_SINGLEPHY(rtlhal->version)) _rtl92d_phy_iq_calibrate(hw, result, i, true); else _rtl92d_phy_iq_calibrate(hw, result, i, false); } if (i == 1) { is12simular = _rtl92d_phy_simularity_compare(hw, result, 0, 1); if (is12simular) { final_candidate = 0; break; } } if (i == 2) { is13simular = _rtl92d_phy_simularity_compare(hw, result, 0, 2); if (is13simular) { final_candidate = 0; break; } is23simular = _rtl92d_phy_simularity_compare(hw, result, 1, 2); if (is23simular) { final_candidate = 1; } else { for (i = 0; i < 8; i++) regtmp += result[3][i]; if (regtmp != 0) final_candidate = 3; else final_candidate = 0xFF; } } } rtl92d_release_cckandrw_pagea_ctl(hw, &flag); for (i = 0; i < 4; i++) { rege94 = result[i][0]; rege9c = result[i][1]; regea4 = result[i][2]; regeac = result[i][3]; regeb4 = result[i][4]; regebc = result[i][5]; regec4 = result[i][6]; regecc = result[i][7]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n", rege94, rege9c, regea4, regeac, regeb4, regebc, regec4, regecc); } if (final_candidate != 0xff) { rtlphy->reg_e94 = rege94 = result[final_candidate][0]; rtlphy->reg_e9c = rege9c = result[final_candidate][1]; regea4 = result[final_candidate][2]; regeac = result[final_candidate][3]; rtlphy->reg_eb4 = regeb4 = result[final_candidate][4]; rtlphy->reg_ebc = regebc = result[final_candidate][5]; regec4 = result[final_candidate][6]; regecc = result[final_candidate][7]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK: final_candidate is %x\n", final_candidate); RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n", rege94, rege9c, regea4, regeac, regeb4, regebc, regec4, regecc); patha_ok = pathb_ok = true; } else { rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */ rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */ } if ((rege94 != 0) /*&&(regea4 != 0) */) _rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result, final_candidate, (regea4 == 0)); if (IS_92D_SINGLEPHY(rtlhal->version)) { if ((regeb4 != 0) /*&&(regec4 != 0) */) _rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result, final_candidate, (regec4 == 0)); } if (final_candidate != 0xFF) { indexforchannel = rtl92d_get_rightchnlplace_for_iqk( rtlphy->current_channel); for (i = 0; i < IQK_MATRIX_REG_NUM; i++) rtlphy->iqk_matrix[indexforchannel]. value[0][i] = result[final_candidate][i]; rtlphy->iqk_matrix[indexforchannel].iqk_done = true; RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD, "IQK OK indexforchannel %d\n", indexforchannel); } } void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u8 indexforchannel; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel); /*------Do IQK for normal chip and test chip 5G band------- */ indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel); RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n", indexforchannel, rtlphy->iqk_matrix[indexforchannel].iqk_done); if (0 && !rtlphy->iqk_matrix[indexforchannel].iqk_done && rtlphy->need_iqk) { /* Re Do IQK. */ RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD, "Do IQK Matrix reg for channel:%d....\n", channel); rtl92d_phy_iq_calibrate(hw); } else { /* Just load the value. */ /* 2G band just load once. */ if (((!rtlhal->load_imrandiqk_setting_for2g) && indexforchannel == 0) || indexforchannel > 0) { RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "Just Read IQK Matrix reg for channel:%d....\n", channel); if ((rtlphy->iqk_matrix[indexforchannel]. value[0] != NULL) /*&&(regea4 != 0) */) _rtl92d_phy_patha_fill_iqk_matrix(hw, true, rtlphy->iqk_matrix[ indexforchannel].value, 0, (rtlphy->iqk_matrix[ indexforchannel].value[0][2] == 0)); if (IS_92D_SINGLEPHY(rtlhal->version)) { if ((rtlphy->iqk_matrix[ indexforchannel].value[0][4] != 0) /*&&(regec4 != 0) */) _rtl92d_phy_pathb_fill_iqk_matrix(hw, true, rtlphy->iqk_matrix[ indexforchannel].value, 0, (rtlphy->iqk_matrix[ indexforchannel].value[0][6] == 0)); } } } rtlphy->need_iqk = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n"); } static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2) { u32 ret; if (val1 >= val2) ret = val1 - val2; else ret = val2 - val1; return ret; } static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel) { int i; for (i = 0; i < sizeof(channel5g); i++) if (channel == channel5g[i]) return true; return false; } static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw, u32 *targetchnl, u32 * curvecount_val, bool is5g, u32 *curveindex) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 smallest_abs_val = 0xffffffff, u4tmp; u8 i, j; u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G; for (i = 0; i < chnl_num; i++) { if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1)) continue; curveindex[i] = 0; for (j = 0; j < (CV_CURVE_CNT * 2); j++) { u4tmp = _rtl92d_phy_get_abs(targetchnl[i], curvecount_val[j]); if (u4tmp < smallest_abs_val) { curveindex[i] = j; smallest_abs_val = u4tmp; } } smallest_abs_val = 0xffffffff; RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n", i, curveindex[i]); } } static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw, u8 channel) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 erfpath = rtlpriv->rtlhal.current_bandtype == BAND_ON_5G ? RF90_PATH_A : IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ? RF90_PATH_B : RF90_PATH_A; u32 u4tmp = 0, u4regvalue = 0; bool bneed_powerdown_radio = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath); RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n", rtlpriv->rtlhal.current_bandtype); RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */ u4tmp = curveindex_5g[channel-1]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp); if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY && rtlpriv->rtlhal.interfaceindex == 1) { bneed_powerdown_radio = rtl92d_phy_enable_anotherphy(hw, false); rtlpriv->rtlhal.during_mac1init_radioa = true; /* asume no this case */ if (bneed_powerdown_radio) _rtl92d_phy_enable_rf_env(hw, erfpath, &u4regvalue); } rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp); if (bneed_powerdown_radio) _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue); if (rtlpriv->rtlhal.during_mac1init_radioa) rtl92d_phy_powerdown_anotherphy(hw, false); } else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) { u4tmp = curveindex_2g[channel-1]; RTPRINT(rtlpriv, FINIT, INIT_IQK, "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp); if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY && rtlpriv->rtlhal.interfaceindex == 0) { bneed_powerdown_radio = rtl92d_phy_enable_anotherphy(hw, true); rtlpriv->rtlhal.during_mac0init_radiob = true; if (bneed_powerdown_radio) _rtl92d_phy_enable_rf_env(hw, erfpath, &u4regvalue); } rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp); RTPRINT(rtlpriv, FINIT, INIT_IQK, "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800)); if (bneed_powerdown_radio) _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue); if (rtlpriv->rtlhal.during_mac0init_radiob) rtl92d_phy_powerdown_anotherphy(hw, true); } RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n"); } static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 tmpreg, index, rf_mode[2]; u8 path = is2t ? 2 : 1; u8 i; u32 u4tmp, offset; u32 curvecount_val[CV_CURVE_CNT * 2] = {0}; u16 timeout = 800, timecount = 0; /* Check continuous TX and Packet TX */ tmpreg = rtl_read_byte(rtlpriv, 0xd03); /* if Deal with contisuous TX case, disable all continuous TX */ /* if Deal with Packet TX case, block all queues */ if ((tmpreg & 0x70) != 0) rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F); else rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F); for (index = 0; index < path; index++) { /* 1. Read original RF mode */ offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1; rf_mode[index] = rtl_read_byte(rtlpriv, offset); /* 2. Set RF mode = standby mode */ rtl_set_rfreg(hw, (enum radio_path)index, RF_AC, RFREG_OFFSET_MASK, 0x010000); if (rtlpci->init_ready) { /* switch CV-curve control by LC-calibration */ rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7, BIT(17), 0x0); /* 4. Set LC calibration begin */ rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW, 0x08000, 0x01); } u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6, RFREG_OFFSET_MASK); while ((!(u4tmp & BIT(11))) && timecount <= timeout) { mdelay(50); timecount += 50; u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6, RFREG_OFFSET_MASK); } RTPRINT(rtlpriv, FINIT, INIT_IQK, "PHY_LCK finish delay for %d ms=2\n", timecount); u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, RFREG_OFFSET_MASK); if (index == 0 && rtlhal->interfaceindex == 0) { RTPRINT(rtlpriv, FINIT, INIT_IQK, "path-A / 5G LCK\n"); } else { RTPRINT(rtlpriv, FINIT, INIT_IQK, "path-B / 2.4G LCK\n"); } memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2); /* Set LC calibration off */ rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW, 0x08000, 0x0); RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n"); /* save Curve-counting number */ for (i = 0; i < CV_CURVE_CNT; i++) { u32 readval = 0, readval2 = 0; rtl_set_rfreg(hw, (enum radio_path)index, 0x3F, 0x7f, i); rtl_set_rfreg(hw, (enum radio_path)index, 0x4D, RFREG_OFFSET_MASK, 0x0); readval = rtl_get_rfreg(hw, (enum radio_path)index, 0x4F, RFREG_OFFSET_MASK); curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5; /* reg 0x4f [4:0] */ /* reg 0x50 [19:10] */ readval2 = rtl_get_rfreg(hw, (enum radio_path)index, 0x50, 0xffc00); curvecount_val[2 * i] = (((readval & 0x1F) << 10) | readval2); } if (index == 0 && rtlhal->interfaceindex == 0) _rtl92d_phy_calc_curvindex(hw, targetchnl_5g, curvecount_val, true, curveindex_5g); else _rtl92d_phy_calc_curvindex(hw, targetchnl_2g, curvecount_val, false, curveindex_2g); /* switch CV-curve control mode */ rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7, BIT(17), 0x1); } /* Restore original situation */ for (index = 0; index < path; index++) { offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1; rtl_write_byte(rtlpriv, offset, 0x50); rtl_write_byte(rtlpriv, offset, rf_mode[index]); } if ((tmpreg & 0x70) != 0) rtl_write_byte(rtlpriv, 0xd03, tmpreg); else /*Deal with Packet TX case */ rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00); _rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel); } static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t) { struct rtl_priv *rtlpriv = rtl_priv(hw); RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n"); _rtl92d_phy_lc_calibrate_sw(hw, is2t); } void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); u32 timeout = 2000, timecount = 0; while (rtlpriv->mac80211.act_scanning && timecount < timeout) { udelay(50); timecount += 50; } rtlphy->lck_inprogress = true; RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Start!!! currentband %x delay %d ms\n", rtlhal->current_bandtype, timecount); if (IS_92D_SINGLEPHY(rtlhal->version)) { _rtl92d_phy_lc_calibrate(hw, true); } else { /* For 1T1R */ _rtl92d_phy_lc_calibrate(hw, false); } rtlphy->lck_inprogress = false; RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n"); } void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, s8 delta) { return; } static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable, u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid, u32 para1, u32 para2, u32 msdelay) { struct swchnlcmd *pcmd; if (cmdtable == NULL) { RT_ASSERT(false, "cmdtable cannot be NULL\n"); return false; } if (cmdtableidx >= cmdtablesz) return false; pcmd = cmdtable + cmdtableidx; pcmd->cmdid = cmdid; pcmd->para1 = para1; pcmd->para2 = para2; pcmd->msdelay = msdelay; return true; } void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); u8 i; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "settings regs %d default regs %d\n", (int)(sizeof(rtlphy->iqk_matrix) / sizeof(struct iqk_matrix_regs)), IQK_MATRIX_REG_NUM); /* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */ for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) { rtlphy->iqk_matrix[i].value[0][0] = 0x100; rtlphy->iqk_matrix[i].value[0][2] = 0x100; rtlphy->iqk_matrix[i].value[0][4] = 0x100; rtlphy->iqk_matrix[i].value[0][6] = 0x100; rtlphy->iqk_matrix[i].value[0][1] = 0x0; rtlphy->iqk_matrix[i].value[0][3] = 0x0; rtlphy->iqk_matrix[i].value[0][5] = 0x0; rtlphy->iqk_matrix[i].value[0][7] = 0x0; rtlphy->iqk_matrix[i].iqk_done = false; } } static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw, u8 channel, u8 *stage, u8 *step, u32 *delay) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct swchnlcmd precommoncmd[MAX_PRECMD_CNT]; u32 precommoncmdcnt; struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT]; u32 postcommoncmdcnt; struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT]; u32 rfdependcmdcnt; struct swchnlcmd *currentcmd = NULL; u8 rfpath; u8 num_total_rfpath = rtlphy->num_total_rfpath; precommoncmdcnt = 0; _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0); _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++, MAX_PRECMD_CNT, CMDID_END, 0, 0, 0); postcommoncmdcnt = 0; _rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++, MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0); rfdependcmdcnt = 0; _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG, RF_CHNLBW, channel, 0); _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++, MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0, 0); do { switch (*stage) { case 0: currentcmd = &precommoncmd[*step]; break; case 1: currentcmd = &rfdependcmd[*step]; break; case 2: currentcmd = &postcommoncmd[*step]; break; } if (currentcmd->cmdid == CMDID_END) { if ((*stage) == 2) { return true; } else { (*stage)++; (*step) = 0; continue; } } switch (currentcmd->cmdid) { case CMDID_SET_TXPOWEROWER_LEVEL: rtl92d_phy_set_txpower_level(hw, channel); break; case CMDID_WRITEPORT_ULONG: rtl_write_dword(rtlpriv, currentcmd->para1, currentcmd->para2); break; case CMDID_WRITEPORT_USHORT: rtl_write_word(rtlpriv, currentcmd->para1, (u16)currentcmd->para2); break; case CMDID_WRITEPORT_UCHAR: rtl_write_byte(rtlpriv, currentcmd->para1, (u8)currentcmd->para2); break; case CMDID_RF_WRITEREG: for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) { rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval[rfpath] & 0xffffff00) | currentcmd->para2); if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) { if (currentcmd->para2 > 99) rtlphy->rfreg_chnlval[rfpath] = rtlphy->rfreg_chnlval [rfpath] | (BIT(18)); else rtlphy->rfreg_chnlval[rfpath] = rtlphy->rfreg_chnlval [rfpath] & (~BIT(18)); rtlphy->rfreg_chnlval[rfpath] |= (BIT(16) | BIT(8)); } else { rtlphy->rfreg_chnlval[rfpath] &= ~(BIT(8) | BIT(16) | BIT(18)); } rtl_set_rfreg(hw, (enum radio_path)rfpath, currentcmd->para1, RFREG_OFFSET_MASK, rtlphy->rfreg_chnlval[rfpath]); _rtl92d_phy_reload_imr_setting(hw, channel, rfpath); } _rtl92d_phy_switch_rf_setting(hw, channel); /* do IQK when all parameters are ready */ rtl92d_phy_reload_iqk_setting(hw, channel); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } break; } while (true); (*delay) = currentcmd->msdelay; (*step)++; return false; } u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 delay; u32 timeout = 1000, timecount = 0; u8 channel = rtlphy->current_channel; u32 ret_value; if (rtlphy->sw_chnl_inprogress) return 0; if (rtlphy->set_bwmode_inprogress) return 0; if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) { RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD, "sw_chnl_inprogress false driver sleep or unload\n"); return 0; } while (rtlphy->lck_inprogress && timecount < timeout) { mdelay(50); timecount += 50; } if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY && rtlhal->bandset == BAND_ON_BOTH) { ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER, MASKDWORD); if (rtlphy->current_channel > 14 && !(ret_value & BIT(0))) rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G); else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0))) rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G); } switch (rtlhal->current_bandtype) { case BAND_ON_5G: /* Get first channel error when change between * 5G and 2.4G band. */ if (channel <= 14) return 0; RT_ASSERT((channel > 14), "5G but channel<=14\n"); break; case BAND_ON_2_4G: /* Get first channel error when change between * 5G and 2.4G band. */ if (channel > 14) return 0; RT_ASSERT((channel <= 14), "2G but channel>14\n"); break; default: RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n", rtlpriv->mac80211.mode); break; } rtlphy->sw_chnl_inprogress = true; if (channel == 0) channel = 1; rtlphy->sw_chnl_stage = 0; rtlphy->sw_chnl_step = 0; RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "switch to channel%d\n", rtlphy->current_channel); do { if (!rtlphy->sw_chnl_inprogress) break; if (!_rtl92d_phy_sw_chnl_step_by_step(hw, rtlphy->current_channel, &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) { if (delay > 0) mdelay(delay); else continue; } else { rtlphy->sw_chnl_inprogress = false; } break; } while (true); RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n"); rtlphy->sw_chnl_inprogress = false; return 1; } static void rtl92d_phy_set_io(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct dig_t *de_digtable = &rtlpriv->dm_digtable; struct rtl_phy *rtlphy = &(rtlpriv->phy); RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "--->Cmd(%#x), set_io_inprogress(%d)\n", rtlphy->current_io_type, rtlphy->set_io_inprogress); switch (rtlphy->current_io_type) { case IO_CMD_RESUME_DM_BY_SCAN: de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1; rtl92d_dm_write_dig(hw); rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel); break; case IO_CMD_PAUSE_DM_BY_SCAN: rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue; de_digtable->cur_igvalue = 0x37; rtl92d_dm_write_dig(hw); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } rtlphy->set_io_inprogress = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n", rtlphy->current_io_type); } bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); bool postprocessing = false; RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "-->IO Cmd(%#x), set_io_inprogress(%d)\n", iotype, rtlphy->set_io_inprogress); do { switch (iotype) { case IO_CMD_RESUME_DM_BY_SCAN: RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "[IO CMD] Resume DM after scan\n"); postprocessing = true; break; case IO_CMD_PAUSE_DM_BY_SCAN: RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "[IO CMD] Pause DM before scan\n"); postprocessing = true; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); break; } } while (false); if (postprocessing && !rtlphy->set_io_inprogress) { rtlphy->set_io_inprogress = true; rtlphy->current_io_type = iotype; } else { return false; } rtl92d_phy_set_io(hw); RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype); return true; } static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */ /* b. SPS_CTRL 0x11[7:0] = 0x2b */ if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b); /* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); /* RF_ON_EXCEP(d~g): */ /* d. APSD_CTRL 0x600[7:0] = 0x00 */ rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00); /* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */ /* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); /* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */ rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); } static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 u4btmp; u8 delay = 5; /* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */ rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF); /* b. RF path 0 offset 0x00 = 0x00 disable RF */ rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); /* c. APSD_CTRL 0x600[7:0] = 0x40 */ rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); /* d. APSD_CTRL 0x600[7:0] = 0x00 * APSD_CTRL 0x600[7:0] = 0x00 * RF path 0 offset 0x00 = 0x00 * APSD_CTRL 0x600[7:0] = 0x40 * */ u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK); while (u4btmp != 0 && delay > 0) { rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0); rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00); rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40); u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, RFREG_OFFSET_MASK); delay--; } if (delay == 0) { /* Jump out the LPS turn off sequence to RF_ON_EXCEP */ rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00); RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "Fail !!! Switch RF timeout\n"); return; } /* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */ rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2); /* f. SPS_CTRL 0x11[7:0] = 0x22 */ if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22); /* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */ } bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw, enum rf_pwrstate rfpwr_state) { bool bresult = true; struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u8 i, queue_id; struct rtl8192_tx_ring *ring = NULL; if (rfpwr_state == ppsc->rfpwr_state) return false; switch (rfpwr_state) { case ERFON: if ((ppsc->rfpwr_state == ERFOFF) && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) { bool rtstatus; u32 InitializeCount = 0; do { InitializeCount++; RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic enable\n"); rtstatus = rtl_ps_enable_nic(hw); } while (!rtstatus && (InitializeCount < 10)); RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "awake, sleeped:%d ms state_inap:%x\n", jiffies_to_msecs(jiffies - ppsc->last_sleep_jiffies), rtlpriv->psc.state_inap); ppsc->last_awake_jiffies = jiffies; _rtl92d_phy_set_rfon(hw); } if (mac->link_state == MAC80211_LINKED) rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK); else rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); break; case ERFOFF: if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "IPS Set eRf nic disable\n"); rtl_ps_disable_nic(hw); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); } else { if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK); else rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); } break; case ERFSLEEP: if (ppsc->rfpwr_state == ERFOFF) return false; for (queue_id = 0, i = 0; queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) { ring = &pcipriv->dev.tx_ring[queue_id]; if (skb_queue_len(&ring->queue) == 0 || queue_id == BEACON_QUEUE) { queue_id++; continue; } else if (rtlpci->pdev->current_state != PCI_D0) { RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n", i + 1, queue_id); break; } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n", i + 1, queue_id, skb_queue_len(&ring->queue)); udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_9x) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n", MAX_DOZE_WAITING_TIMES_9x, queue_id, skb_queue_len(&ring->queue)); break; } } RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "Set rfsleep awaked:%d ms\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies)); RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG, "sleep awaked:%d ms state_inap:%x\n", jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies), rtlpriv->psc.state_inap); ppsc->last_sleep_jiffies = jiffies; _rtl92d_phy_set_rfsleep(hw); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); bresult = false; break; } if (bresult) ppsc->rfpwr_state = rfpwr_state; return bresult; } void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 offset = REG_MAC_PHY_CTRL_NORMAL; switch (rtlhal->macphymode) { case DUALMAC_DUALPHY: RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MacPhyMode: DUALMAC_DUALPHY\n"); rtl_write_byte(rtlpriv, offset, 0xF3); break; case SINGLEMAC_SINGLEPHY: RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MacPhyMode: SINGLEMAC_SINGLEPHY\n"); rtl_write_byte(rtlpriv, offset, 0xF4); break; case DUALMAC_SINGLEPHY: RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MacPhyMode: DUALMAC_SINGLEPHY\n"); rtl_write_byte(rtlpriv, offset, 0xF1); break; } } void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); switch (rtlhal->macphymode) { case DUALMAC_SINGLEPHY: rtlphy->rf_type = RF_2T2R; rtlhal->version |= RF_TYPE_2T2R; rtlhal->bandset = BAND_ON_BOTH; rtlhal->current_bandtype = BAND_ON_2_4G; break; case SINGLEMAC_SINGLEPHY: rtlphy->rf_type = RF_2T2R; rtlhal->version |= RF_TYPE_2T2R; rtlhal->bandset = BAND_ON_BOTH; rtlhal->current_bandtype = BAND_ON_2_4G; break; case DUALMAC_DUALPHY: rtlphy->rf_type = RF_1T1R; rtlhal->version &= RF_TYPE_1T1R; /* Now we let MAC0 run on 5G band. */ if (rtlhal->interfaceindex == 0) { rtlhal->bandset = BAND_ON_5G; rtlhal->current_bandtype = BAND_ON_5G; } else { rtlhal->bandset = BAND_ON_2_4G; rtlhal->current_bandtype = BAND_ON_2_4G; } break; default: break; } } u8 rtl92d_get_chnlgroup_fromarray(u8 chnl) { u8 group; u8 channel_info[59] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 149, 151, 153, 155, 157, 159, 161, 163, 165 }; if (channel_info[chnl] <= 3) group = 0; else if (channel_info[chnl] <= 9) group = 1; else if (channel_info[chnl] <= 14) group = 2; else if (channel_info[chnl] <= 44) group = 3; else if (channel_info[chnl] <= 54) group = 4; else if (channel_info[chnl] <= 64) group = 5; else if (channel_info[chnl] <= 112) group = 6; else if (channel_info[chnl] <= 126) group = 7; else if (channel_info[chnl] <= 140) group = 8; else if (channel_info[chnl] <= 153) group = 9; else if (channel_info[chnl] <= 159) group = 10; else group = 11; return group; } void rtl92d_phy_set_poweron(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); unsigned long flags; u8 value8; u16 i; u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1); /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { value8 = rtl_read_byte(rtlpriv, mac_reg); value8 |= BIT(1); rtl_write_byte(rtlpriv, mac_reg, value8); } else { value8 = rtl_read_byte(rtlpriv, mac_reg); value8 &= (~BIT(1)); rtl_write_byte(rtlpriv, mac_reg, value8); } if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) { value8 = rtl_read_byte(rtlpriv, REG_MAC0); rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON); } else { spin_lock_irqsave(&globalmutex_power, flags); if (rtlhal->interfaceindex == 0) { value8 = rtl_read_byte(rtlpriv, REG_MAC0); rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON); } else { value8 = rtl_read_byte(rtlpriv, REG_MAC1); rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON); } value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); spin_unlock_irqrestore(&globalmutex_power, flags); for (i = 0; i < 200; i++) { if ((value8 & BIT(7)) == 0) { break; } else { udelay(500); spin_lock_irqsave(&globalmutex_power, flags); value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); spin_unlock_irqrestore(&globalmutex_power, flags); } } if (i == 200) RT_ASSERT(false, "Another mac power off over time\n"); } } void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); switch (rtlpriv->rtlhal.macphymode) { case DUALMAC_DUALPHY: rtl_write_byte(rtlpriv, REG_DMC, 0x0); rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08); rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff); break; case DUALMAC_SINGLEPHY: rtl_write_byte(rtlpriv, REG_DMC, 0xf8); rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08); rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff); break; case SINGLEMAC_SINGLEPHY: rtl_write_byte(rtlpriv, REG_DMC, 0x0); rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10); rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF); break; default: break; } } void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 rfpath, i; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n"); /* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */ if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* r_select_5G for path_A/B,0x878 */ rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0); if (rtlhal->macphymode != DUALMAC_DUALPHY) { rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0); } /* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */ rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0); /* fc_area 0xd2c */ rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0); /* 5G LAN ON */ rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa); /* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */ rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD, 0x40000100); rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD, 0x40000100); if (rtlhal->macphymode == DUALMAC_DUALPHY) { rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(10) | BIT(6) | BIT(5), ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) | (rtlefuse->eeprom_c9 & BIT(1)) | ((rtlefuse->eeprom_cc & BIT(1)) << 4)); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10) | BIT(6) | BIT(5), ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) | ((rtlefuse->eeprom_c9 & BIT(0)) << 1) | ((rtlefuse->eeprom_cc & BIT(0)) << 5)); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0); } else { rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(26) | BIT(22) | BIT(21) | BIT(10) | BIT(6) | BIT(5), ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) | (rtlefuse->eeprom_c9 & BIT(1)) | ((rtlefuse->eeprom_cc & BIT(1)) << 4) | ((rtlefuse->eeprom_c9 & BIT(7)) << 9) | ((rtlefuse->eeprom_c9 & BIT(5)) << 12) | ((rtlefuse->eeprom_cc & BIT(3)) << 18)); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10) | BIT(6) | BIT(5), ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) | ((rtlefuse->eeprom_c9 & BIT(0)) << 1) | ((rtlefuse->eeprom_cc & BIT(0)) << 5)); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10) | BIT(6) | BIT(5), ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) | ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) | ((rtlefuse->eeprom_cc & BIT(2)) << 3)); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31) | BIT(15), 0); } /* 1.5V_LDO */ } else { /* r_select_5G for path_A/B */ rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1); if (rtlhal->macphymode != DUALMAC_DUALPHY) { rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1); } /* rssi_table_select:index 0 for 2.4G.1~3 for 5G */ rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1); /* fc_area */ rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1); /* 5G LAN ON */ rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0); /* TX BB gain shift,Just for testchip,0xc80,0xc88 */ if (rtlefuse->internal_pa_5g[0]) rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD, 0x2d4000b5); else rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, MASKDWORD, 0x20000080); if (rtlefuse->internal_pa_5g[1]) rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD, 0x2d4000b5); else rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, MASKDWORD, 0x20000080); if (rtlhal->macphymode == DUALMAC_DUALPHY) { rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(10) | BIT(6) | BIT(5), (rtlefuse->eeprom_cc & BIT(5))); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10), ((rtlefuse->eeprom_cc & BIT(4)) >> 4)); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), (rtlefuse->eeprom_cc & BIT(4)) >> 4); } else { rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(26) | BIT(22) | BIT(21) | BIT(10) | BIT(6) | BIT(5), (rtlefuse->eeprom_cc & BIT(5)) | ((rtlefuse->eeprom_cc & BIT(7)) << 14)); rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10), ((rtlefuse->eeprom_cc & BIT(4)) >> 4)); rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10), ((rtlefuse->eeprom_cc & BIT(6)) >> 6)); rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31) | BIT(15), ((rtlefuse->eeprom_cc & BIT(4)) >> 4) | ((rtlefuse->eeprom_cc & BIT(6)) << 10)); } } /* update IQK related settings */ rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, MASKDWORD, 0x40000100); rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, MASKDWORD, 0x40000100); rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00); rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) | BIT(26) | BIT(24), 0x00); rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00); rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00); rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00); /* Update RF */ for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath; rfpath++) { if (rtlhal->current_bandtype == BAND_ON_2_4G) { /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */ rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) | BIT(18), 0); /* RF0x0b[16:14] =3b'111 */ rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B, 0x1c000, 0x07); } else { /* MOD_AG for RF path_A 0x18 BIT8,BIT16 */ rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) | BIT(18), (BIT(16) | BIT(8)) >> 8); } } /* Update for all band. */ /* DMDP */ if (rtlphy->rf_type == RF_1T1R) { /* Use antenna 0,0xc04,0xd04 */ rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x11); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1); /* enable ad/da clock1 for dual-phy reg0x888 */ if (rtlhal->interfaceindex == 0) { rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0x3); } else { rtl92d_phy_enable_anotherphy(hw, false); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "MAC1 use DBI to update 0x888\n"); /* 0x888 */ rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN, rtl92de_read_dword_dbi(hw, RFPGA0_ADDALLOCKEN, BIT(3)) | BIT(12) | BIT(13), BIT(3)); rtl92d_phy_powerdown_anotherphy(hw, false); } } else { /* Single PHY */ /* Use antenna 0 & 1,0xc04,0xd04 */ rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0x33); rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3); /* disable ad/da clock1,0x888 */ rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0); } for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath; rfpath++) { rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C, RFREG_OFFSET_MASK); } for (i = 0; i < 2; i++) RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n", rtlphy->rfreg_chnlval[i]); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n"); } bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 u1btmp; unsigned long flags; if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) { u1btmp = rtl_read_byte(rtlpriv, REG_MAC0); rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON)); return true; } spin_lock_irqsave(&globalmutex_power, flags); if (rtlhal->interfaceindex == 0) { u1btmp = rtl_read_byte(rtlpriv, REG_MAC0); rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON)); u1btmp = rtl_read_byte(rtlpriv, REG_MAC1); u1btmp &= MAC1_ON; } else { u1btmp = rtl_read_byte(rtlpriv, REG_MAC1); rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON)); u1btmp = rtl_read_byte(rtlpriv, REG_MAC0); u1btmp &= MAC0_ON; } if (u1btmp) { spin_unlock_irqrestore(&globalmutex_power, flags); return false; } u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS); u1btmp |= BIT(7); rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp); spin_unlock_irqrestore(&globalmutex_power, flags); return true; }