/* Copyright (C) 2010 Willow Garage Copyright (C) 2004 - 2010 Ivo van Doorn This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00usb Abstract: rt2x00 generic usb device routines. */ #include #include #include #include #include #include "rt2x00.h" #include "rt2x00usb.h" /* * Interfacing with the HW. */ int rt2x00usb_vendor_request(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, const u16 value, void *buffer, const u16 buffer_length, const int timeout) { struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); int status; unsigned int i; unsigned int pipe = (requesttype == USB_VENDOR_REQUEST_IN) ? usb_rcvctrlpipe(usb_dev, 0) : usb_sndctrlpipe(usb_dev, 0); if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return -ENODEV; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { status = usb_control_msg(usb_dev, pipe, request, requesttype, value, offset, buffer, buffer_length, timeout); if (status >= 0) return 0; /* * Check for errors * -ENODEV: Device has disappeared, no point continuing. * All other errors: Try again. */ else if (status == -ENODEV) { clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); break; } } ERROR(rt2x00dev, "Vendor Request 0x%02x failed for offset 0x%04x with error %d.\n", request, offset, status); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request); int rt2x00usb_vendor_req_buff_lock(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, void *buffer, const u16 buffer_length, const int timeout) { int status; BUG_ON(!mutex_is_locked(&rt2x00dev->csr_mutex)); /* * Check for Cache availability. */ if (unlikely(!rt2x00dev->csr.cache || buffer_length > CSR_CACHE_SIZE)) { ERROR(rt2x00dev, "CSR cache not available.\n"); return -ENOMEM; } if (requesttype == USB_VENDOR_REQUEST_OUT) memcpy(rt2x00dev->csr.cache, buffer, buffer_length); status = rt2x00usb_vendor_request(rt2x00dev, request, requesttype, offset, 0, rt2x00dev->csr.cache, buffer_length, timeout); if (!status && requesttype == USB_VENDOR_REQUEST_IN) memcpy(buffer, rt2x00dev->csr.cache, buffer_length); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_req_buff_lock); int rt2x00usb_vendor_request_buff(struct rt2x00_dev *rt2x00dev, const u8 request, const u8 requesttype, const u16 offset, void *buffer, const u16 buffer_length, const int timeout) { int status = 0; unsigned char *tb; u16 off, len, bsize; mutex_lock(&rt2x00dev->csr_mutex); tb = (char *)buffer; off = offset; len = buffer_length; while (len && !status) { bsize = min_t(u16, CSR_CACHE_SIZE, len); status = rt2x00usb_vendor_req_buff_lock(rt2x00dev, request, requesttype, off, tb, bsize, timeout); tb += bsize; len -= bsize; off += bsize; } mutex_unlock(&rt2x00dev->csr_mutex); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_vendor_request_buff); int rt2x00usb_regbusy_read(struct rt2x00_dev *rt2x00dev, const unsigned int offset, const struct rt2x00_field32 field, u32 *reg) { unsigned int i; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return -ENODEV; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2x00usb_register_read_lock(rt2x00dev, offset, reg); if (!rt2x00_get_field32(*reg, field)) return 1; udelay(REGISTER_BUSY_DELAY); } ERROR(rt2x00dev, "Indirect register access failed: " "offset=0x%.08x, value=0x%.08x\n", offset, *reg); *reg = ~0; return 0; } EXPORT_SYMBOL_GPL(rt2x00usb_regbusy_read); struct rt2x00_async_read_data { __le32 reg; struct usb_ctrlrequest cr; struct rt2x00_dev *rt2x00dev; bool (*callback)(struct rt2x00_dev *, int, u32); }; static void rt2x00usb_register_read_async_cb(struct urb *urb) { struct rt2x00_async_read_data *rd = urb->context; if (rd->callback(rd->rt2x00dev, urb->status, le32_to_cpu(rd->reg))) { if (usb_submit_urb(urb, GFP_ATOMIC) < 0) kfree(rd); } else kfree(rd); } void rt2x00usb_register_read_async(struct rt2x00_dev *rt2x00dev, const unsigned int offset, bool (*callback)(struct rt2x00_dev*, int, u32)) { struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); struct urb *urb; struct rt2x00_async_read_data *rd; rd = kmalloc(sizeof(*rd), GFP_ATOMIC); if (!rd) return; urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) { kfree(rd); return; } rd->rt2x00dev = rt2x00dev; rd->callback = callback; rd->cr.bRequestType = USB_VENDOR_REQUEST_IN; rd->cr.bRequest = USB_MULTI_READ; rd->cr.wValue = 0; rd->cr.wIndex = cpu_to_le16(offset); rd->cr.wLength = cpu_to_le16(sizeof(u32)); usb_fill_control_urb(urb, usb_dev, usb_rcvctrlpipe(usb_dev, 0), (unsigned char *)(&rd->cr), &rd->reg, sizeof(rd->reg), rt2x00usb_register_read_async_cb, rd); if (usb_submit_urb(urb, GFP_ATOMIC) < 0) kfree(rd); usb_free_urb(urb); } EXPORT_SYMBOL_GPL(rt2x00usb_register_read_async); /* * TX data handlers. */ static void rt2x00usb_work_txdone_entry(struct queue_entry *entry) { /* * If the transfer to hardware succeeded, it does not mean the * frame was send out correctly. It only means the frame * was successfully pushed to the hardware, we have no * way to determine the transmission status right now. * (Only indirectly by looking at the failed TX counters * in the register). */ if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE); else rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN); } static void rt2x00usb_work_txdone(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, txdone_work); struct data_queue *queue; struct queue_entry *entry; tx_queue_for_each(rt2x00dev, queue) { while (!rt2x00queue_empty(queue)) { entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) || !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags)) break; rt2x00usb_work_txdone_entry(entry); } } } static void rt2x00usb_interrupt_txdone(struct urb *urb) { struct queue_entry *entry = (struct queue_entry *)urb->context; struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; if (!test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) return; if (rt2x00dev->ops->lib->tx_dma_done) rt2x00dev->ops->lib->tx_dma_done(entry); /* * Report the frame as DMA done */ rt2x00lib_dmadone(entry); /* * Check if the frame was correctly uploaded */ if (urb->status) set_bit(ENTRY_DATA_IO_FAILED, &entry->flags); /* * Schedule the delayed work for reading the TX status * from the device. */ if (!test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags) || !kfifo_is_empty(&rt2x00dev->txstatus_fifo)) queue_work(rt2x00dev->workqueue, &rt2x00dev->txdone_work); } static bool rt2x00usb_kick_tx_entry(struct queue_entry *entry, void* data) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); struct queue_entry_priv_usb *entry_priv = entry->priv_data; u32 length; int status; if (!test_and_clear_bit(ENTRY_DATA_PENDING, &entry->flags) || test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags)) return false; /* * USB devices cannot blindly pass the skb->len as the * length of the data to usb_fill_bulk_urb. Pass the skb * to the driver to determine what the length should be. */ length = rt2x00dev->ops->lib->get_tx_data_len(entry); usb_fill_bulk_urb(entry_priv->urb, usb_dev, usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint), entry->skb->data, length, rt2x00usb_interrupt_txdone, entry); status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC); if (status) { if (status == -ENODEV) clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); set_bit(ENTRY_DATA_IO_FAILED, &entry->flags); rt2x00lib_dmadone(entry); } return false; } /* * RX data handlers. */ static void rt2x00usb_work_rxdone(struct work_struct *work) { struct rt2x00_dev *rt2x00dev = container_of(work, struct rt2x00_dev, rxdone_work); struct queue_entry *entry; struct skb_frame_desc *skbdesc; u8 rxd[32]; while (!rt2x00queue_empty(rt2x00dev->rx)) { entry = rt2x00queue_get_entry(rt2x00dev->rx, Q_INDEX_DONE); if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) || !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags)) break; /* * Fill in desc fields of the skb descriptor */ skbdesc = get_skb_frame_desc(entry->skb); skbdesc->desc = rxd; skbdesc->desc_len = entry->queue->desc_size; /* * Send the frame to rt2x00lib for further processing. */ rt2x00lib_rxdone(entry); } } static void rt2x00usb_interrupt_rxdone(struct urb *urb) { struct queue_entry *entry = (struct queue_entry *)urb->context; struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; if (!test_and_clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) return; /* * Report the frame as DMA done */ rt2x00lib_dmadone(entry); /* * Check if the received data is simply too small * to be actually valid, or if the urb is signaling * a problem. */ if (urb->actual_length < entry->queue->desc_size || urb->status) set_bit(ENTRY_DATA_IO_FAILED, &entry->flags); /* * Schedule the delayed work for reading the RX status * from the device. */ queue_work(rt2x00dev->workqueue, &rt2x00dev->rxdone_work); } static bool rt2x00usb_kick_rx_entry(struct queue_entry *entry, void* data) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); struct queue_entry_priv_usb *entry_priv = entry->priv_data; int status; if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) || test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags)) return false; rt2x00lib_dmastart(entry); usb_fill_bulk_urb(entry_priv->urb, usb_dev, usb_rcvbulkpipe(usb_dev, entry->queue->usb_endpoint), entry->skb->data, entry->skb->len, rt2x00usb_interrupt_rxdone, entry); status = usb_submit_urb(entry_priv->urb, GFP_ATOMIC); if (status) { if (status == -ENODEV) clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); set_bit(ENTRY_DATA_IO_FAILED, &entry->flags); rt2x00lib_dmadone(entry); } return false; } void rt2x00usb_kick_queue(struct data_queue *queue) { switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: if (!rt2x00queue_empty(queue)) rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL, rt2x00usb_kick_tx_entry); break; case QID_RX: if (!rt2x00queue_full(queue)) rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL, rt2x00usb_kick_rx_entry); break; default: break; } } EXPORT_SYMBOL_GPL(rt2x00usb_kick_queue); static bool rt2x00usb_flush_entry(struct queue_entry *entry, void* data) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct queue_entry_priv_usb *entry_priv = entry->priv_data; struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; if (!test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) return false; usb_kill_urb(entry_priv->urb); /* * Kill guardian urb (if required by driver). */ if ((entry->queue->qid == QID_BEACON) && (test_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags))) usb_kill_urb(bcn_priv->guardian_urb); return false; } void rt2x00usb_flush_queue(struct data_queue *queue, bool drop) { struct work_struct *completion; unsigned int i; if (drop) rt2x00queue_for_each_entry(queue, Q_INDEX_DONE, Q_INDEX, NULL, rt2x00usb_flush_entry); /* * Obtain the queue completion handler */ switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: completion = &queue->rt2x00dev->txdone_work; break; case QID_RX: completion = &queue->rt2x00dev->rxdone_work; break; default: return; } for (i = 0; i < 10; i++) { /* * Check if the driver is already done, otherwise we * have to sleep a little while to give the driver/hw * the oppurtunity to complete interrupt process itself. */ if (rt2x00queue_empty(queue)) break; /* * Schedule the completion handler manually, when this * worker function runs, it should cleanup the queue. */ queue_work(queue->rt2x00dev->workqueue, completion); /* * Wait for a little while to give the driver * the oppurtunity to recover itself. */ msleep(10); } } EXPORT_SYMBOL_GPL(rt2x00usb_flush_queue); static void rt2x00usb_watchdog_tx_dma(struct data_queue *queue) { WARNING(queue->rt2x00dev, "TX queue %d DMA timed out," " invoke forced forced reset\n", queue->qid); rt2x00queue_flush_queue(queue, true); } static void rt2x00usb_watchdog_tx_status(struct data_queue *queue) { WARNING(queue->rt2x00dev, "TX queue %d status timed out," " invoke forced tx handler\n", queue->qid); queue_work(queue->rt2x00dev->workqueue, &queue->rt2x00dev->txdone_work); } static int rt2x00usb_status_timeout(struct data_queue *queue) { struct queue_entry *entry; entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); return rt2x00queue_status_timeout(entry); } static int rt2x00usb_dma_timeout(struct data_queue *queue) { struct queue_entry *entry; entry = rt2x00queue_get_entry(queue, Q_INDEX_DMA_DONE); return rt2x00queue_dma_timeout(entry); } void rt2x00usb_watchdog(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; tx_queue_for_each(rt2x00dev, queue) { if (!rt2x00queue_empty(queue)) { if (rt2x00usb_dma_timeout(queue)) rt2x00usb_watchdog_tx_dma(queue); if (rt2x00usb_status_timeout(queue)) rt2x00usb_watchdog_tx_status(queue); } } } EXPORT_SYMBOL_GPL(rt2x00usb_watchdog); /* * Radio handlers */ void rt2x00usb_disable_radio(struct rt2x00_dev *rt2x00dev) { rt2x00usb_vendor_request_sw(rt2x00dev, USB_RX_CONTROL, 0, 0, REGISTER_TIMEOUT); } EXPORT_SYMBOL_GPL(rt2x00usb_disable_radio); /* * Device initialization handlers. */ void rt2x00usb_clear_entry(struct queue_entry *entry) { entry->flags = 0; if (entry->queue->qid == QID_RX) rt2x00usb_kick_rx_entry(entry, NULL); } EXPORT_SYMBOL_GPL(rt2x00usb_clear_entry); static void rt2x00usb_assign_endpoint(struct data_queue *queue, struct usb_endpoint_descriptor *ep_desc) { struct usb_device *usb_dev = to_usb_device_intf(queue->rt2x00dev->dev); int pipe; queue->usb_endpoint = usb_endpoint_num(ep_desc); if (queue->qid == QID_RX) { pipe = usb_rcvbulkpipe(usb_dev, queue->usb_endpoint); queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe, 0); } else { pipe = usb_sndbulkpipe(usb_dev, queue->usb_endpoint); queue->usb_maxpacket = usb_maxpacket(usb_dev, pipe, 1); } if (!queue->usb_maxpacket) queue->usb_maxpacket = 1; } static int rt2x00usb_find_endpoints(struct rt2x00_dev *rt2x00dev) { struct usb_interface *intf = to_usb_interface(rt2x00dev->dev); struct usb_host_interface *intf_desc = intf->cur_altsetting; struct usb_endpoint_descriptor *ep_desc; struct data_queue *queue = rt2x00dev->tx; struct usb_endpoint_descriptor *tx_ep_desc = NULL; unsigned int i; /* * Walk through all available endpoints to search for "bulk in" * and "bulk out" endpoints. When we find such endpoints collect * the information we need from the descriptor and assign it * to the queue. */ for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) { ep_desc = &intf_desc->endpoint[i].desc; if (usb_endpoint_is_bulk_in(ep_desc)) { rt2x00usb_assign_endpoint(rt2x00dev->rx, ep_desc); } else if (usb_endpoint_is_bulk_out(ep_desc) && (queue != queue_end(rt2x00dev))) { rt2x00usb_assign_endpoint(queue, ep_desc); queue = queue_next(queue); tx_ep_desc = ep_desc; } } /* * At least 1 endpoint for RX and 1 endpoint for TX must be available. */ if (!rt2x00dev->rx->usb_endpoint || !rt2x00dev->tx->usb_endpoint) { ERROR(rt2x00dev, "Bulk-in/Bulk-out endpoints not found\n"); return -EPIPE; } /* * It might be possible not all queues have a dedicated endpoint. * Loop through all TX queues and copy the endpoint information * which we have gathered from already assigned endpoints. */ txall_queue_for_each(rt2x00dev, queue) { if (!queue->usb_endpoint) rt2x00usb_assign_endpoint(queue, tx_ep_desc); } return 0; } static int rt2x00usb_alloc_entries(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry_priv_usb *entry_priv; struct queue_entry_priv_usb_bcn *bcn_priv; unsigned int i; for (i = 0; i < queue->limit; i++) { entry_priv = queue->entries[i].priv_data; entry_priv->urb = usb_alloc_urb(0, GFP_KERNEL); if (!entry_priv->urb) return -ENOMEM; } /* * If this is not the beacon queue or * no guardian byte was required for the beacon, * then we are done. */ if (queue->qid != QID_BEACON || !test_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags)) return 0; for (i = 0; i < queue->limit; i++) { bcn_priv = queue->entries[i].priv_data; bcn_priv->guardian_urb = usb_alloc_urb(0, GFP_KERNEL); if (!bcn_priv->guardian_urb) return -ENOMEM; } return 0; } static void rt2x00usb_free_entries(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry_priv_usb *entry_priv; struct queue_entry_priv_usb_bcn *bcn_priv; unsigned int i; if (!queue->entries) return; for (i = 0; i < queue->limit; i++) { entry_priv = queue->entries[i].priv_data; usb_kill_urb(entry_priv->urb); usb_free_urb(entry_priv->urb); } /* * If this is not the beacon queue or * no guardian byte was required for the beacon, * then we are done. */ if (queue->qid != QID_BEACON || !test_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags)) return; for (i = 0; i < queue->limit; i++) { bcn_priv = queue->entries[i].priv_data; usb_kill_urb(bcn_priv->guardian_urb); usb_free_urb(bcn_priv->guardian_urb); } } int rt2x00usb_initialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; int status; /* * Find endpoints for each queue */ status = rt2x00usb_find_endpoints(rt2x00dev); if (status) goto exit; /* * Allocate DMA */ queue_for_each(rt2x00dev, queue) { status = rt2x00usb_alloc_entries(queue); if (status) goto exit; } return 0; exit: rt2x00usb_uninitialize(rt2x00dev); return status; } EXPORT_SYMBOL_GPL(rt2x00usb_initialize); void rt2x00usb_uninitialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; queue_for_each(rt2x00dev, queue) rt2x00usb_free_entries(queue); } EXPORT_SYMBOL_GPL(rt2x00usb_uninitialize); /* * USB driver handlers. */ static void rt2x00usb_free_reg(struct rt2x00_dev *rt2x00dev) { kfree(rt2x00dev->rf); rt2x00dev->rf = NULL; kfree(rt2x00dev->eeprom); rt2x00dev->eeprom = NULL; kfree(rt2x00dev->csr.cache); rt2x00dev->csr.cache = NULL; } static int rt2x00usb_alloc_reg(struct rt2x00_dev *rt2x00dev) { rt2x00dev->csr.cache = kzalloc(CSR_CACHE_SIZE, GFP_KERNEL); if (!rt2x00dev->csr.cache) goto exit; rt2x00dev->eeprom = kzalloc(rt2x00dev->ops->eeprom_size, GFP_KERNEL); if (!rt2x00dev->eeprom) goto exit; rt2x00dev->rf = kzalloc(rt2x00dev->ops->rf_size, GFP_KERNEL); if (!rt2x00dev->rf) goto exit; return 0; exit: ERROR_PROBE("Failed to allocate registers.\n"); rt2x00usb_free_reg(rt2x00dev); return -ENOMEM; } int rt2x00usb_probe(struct usb_interface *usb_intf, const struct rt2x00_ops *ops) { struct usb_device *usb_dev = interface_to_usbdev(usb_intf); struct ieee80211_hw *hw; struct rt2x00_dev *rt2x00dev; int retval; usb_dev = usb_get_dev(usb_dev); usb_reset_device(usb_dev); hw = ieee80211_alloc_hw(sizeof(struct rt2x00_dev), ops->hw); if (!hw) { ERROR_PROBE("Failed to allocate hardware.\n"); retval = -ENOMEM; goto exit_put_device; } usb_set_intfdata(usb_intf, hw); rt2x00dev = hw->priv; rt2x00dev->dev = &usb_intf->dev; rt2x00dev->ops = ops; rt2x00dev->hw = hw; rt2x00_set_chip_intf(rt2x00dev, RT2X00_CHIP_INTF_USB); INIT_WORK(&rt2x00dev->rxdone_work, rt2x00usb_work_rxdone); INIT_WORK(&rt2x00dev->txdone_work, rt2x00usb_work_txdone); init_timer(&rt2x00dev->txstatus_timer); retval = rt2x00usb_alloc_reg(rt2x00dev); if (retval) goto exit_free_device; retval = rt2x00lib_probe_dev(rt2x00dev); if (retval) goto exit_free_reg; return 0; exit_free_reg: rt2x00usb_free_reg(rt2x00dev); exit_free_device: ieee80211_free_hw(hw); exit_put_device: usb_put_dev(usb_dev); usb_set_intfdata(usb_intf, NULL); return retval; } EXPORT_SYMBOL_GPL(rt2x00usb_probe); void rt2x00usb_disconnect(struct usb_interface *usb_intf) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; /* * Free all allocated data. */ rt2x00lib_remove_dev(rt2x00dev); rt2x00usb_free_reg(rt2x00dev); ieee80211_free_hw(hw); /* * Free the USB device data. */ usb_set_intfdata(usb_intf, NULL); usb_put_dev(interface_to_usbdev(usb_intf)); } EXPORT_SYMBOL_GPL(rt2x00usb_disconnect); #ifdef CONFIG_PM int rt2x00usb_suspend(struct usb_interface *usb_intf, pm_message_t state) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; int retval; retval = rt2x00lib_suspend(rt2x00dev, state); if (retval) return retval; /* * Decrease usbdev refcount. */ usb_put_dev(interface_to_usbdev(usb_intf)); return 0; } EXPORT_SYMBOL_GPL(rt2x00usb_suspend); int rt2x00usb_resume(struct usb_interface *usb_intf) { struct ieee80211_hw *hw = usb_get_intfdata(usb_intf); struct rt2x00_dev *rt2x00dev = hw->priv; usb_get_dev(interface_to_usbdev(usb_intf)); return rt2x00lib_resume(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00usb_resume); #endif /* CONFIG_PM */ /* * rt2x00usb module information. */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("rt2x00 usb library"); MODULE_LICENSE("GPL");