// SPDX-License-Identifier: GPL-2.0 /* * NVM Express hardware monitoring support * Copyright (c) 2019, Guenter Roeck */ #include #include #include "nvme.h" /* These macros should be moved to linux/temperature.h */ #define MILLICELSIUS_TO_KELVIN(t) DIV_ROUND_CLOSEST((t) + 273150, 1000) #define KELVIN_TO_MILLICELSIUS(t) ((t) * 1000L - 273150) struct nvme_hwmon_data { struct nvme_ctrl *ctrl; struct nvme_smart_log log; struct mutex read_lock; }; static int nvme_get_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under, long *temp) { unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT; u32 status; int ret; if (under) threshold |= NVME_TEMP_THRESH_TYPE_UNDER; ret = nvme_get_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0, &status); if (ret > 0) return -EIO; if (ret < 0) return ret; *temp = KELVIN_TO_MILLICELSIUS(status & NVME_TEMP_THRESH_MASK); return 0; } static int nvme_set_temp_thresh(struct nvme_ctrl *ctrl, int sensor, bool under, long temp) { unsigned int threshold = sensor << NVME_TEMP_THRESH_SELECT_SHIFT; int ret; temp = MILLICELSIUS_TO_KELVIN(temp); threshold |= clamp_val(temp, 0, NVME_TEMP_THRESH_MASK); if (under) threshold |= NVME_TEMP_THRESH_TYPE_UNDER; ret = nvme_set_features(ctrl, NVME_FEAT_TEMP_THRESH, threshold, NULL, 0, NULL); if (ret > 0) return -EIO; return ret; } static int nvme_hwmon_get_smart_log(struct nvme_hwmon_data *data) { int ret; ret = nvme_get_log(data->ctrl, NVME_NSID_ALL, NVME_LOG_SMART, 0, &data->log, sizeof(data->log), 0); return ret <= 0 ? ret : -EIO; } static int nvme_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct nvme_hwmon_data *data = dev_get_drvdata(dev); struct nvme_smart_log *log = &data->log; int temp; int err; /* * First handle attributes which don't require us to read * the smart log. */ switch (attr) { case hwmon_temp_max: return nvme_get_temp_thresh(data->ctrl, channel, false, val); case hwmon_temp_min: return nvme_get_temp_thresh(data->ctrl, channel, true, val); case hwmon_temp_crit: *val = KELVIN_TO_MILLICELSIUS(data->ctrl->cctemp); return 0; default: break; } mutex_lock(&data->read_lock); err = nvme_hwmon_get_smart_log(data); if (err) goto unlock; switch (attr) { case hwmon_temp_input: if (!channel) temp = get_unaligned_le16(log->temperature); else temp = le16_to_cpu(log->temp_sensor[channel - 1]); *val = KELVIN_TO_MILLICELSIUS(temp); break; case hwmon_temp_alarm: *val = !!(log->critical_warning & NVME_SMART_CRIT_TEMPERATURE); break; default: err = -EOPNOTSUPP; break; } unlock: mutex_unlock(&data->read_lock); return err; } static int nvme_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct nvme_hwmon_data *data = dev_get_drvdata(dev); switch (attr) { case hwmon_temp_max: return nvme_set_temp_thresh(data->ctrl, channel, false, val); case hwmon_temp_min: return nvme_set_temp_thresh(data->ctrl, channel, true, val); default: break; } return -EOPNOTSUPP; } static const char * const nvme_hwmon_sensor_names[] = { "Composite", "Sensor 1", "Sensor 2", "Sensor 3", "Sensor 4", "Sensor 5", "Sensor 6", "Sensor 7", "Sensor 8", }; static int nvme_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { *str = nvme_hwmon_sensor_names[channel]; return 0; } static umode_t nvme_hwmon_is_visible(const void *_data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct nvme_hwmon_data *data = _data; switch (attr) { case hwmon_temp_crit: if (!channel && data->ctrl->cctemp) return 0444; break; case hwmon_temp_max: case hwmon_temp_min: if ((!channel && data->ctrl->wctemp) || (channel && data->log.temp_sensor[channel - 1])) { if (data->ctrl->quirks & NVME_QUIRK_NO_TEMP_THRESH_CHANGE) return 0444; return 0644; } break; case hwmon_temp_alarm: if (!channel) return 0444; break; case hwmon_temp_input: case hwmon_temp_label: if (!channel || data->log.temp_sensor[channel - 1]) return 0444; break; default: break; } return 0; } static const struct hwmon_channel_info *nvme_hwmon_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_CRIT | HWMON_T_LABEL | HWMON_T_ALARM, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_LABEL), NULL }; static const struct hwmon_ops nvme_hwmon_ops = { .is_visible = nvme_hwmon_is_visible, .read = nvme_hwmon_read, .read_string = nvme_hwmon_read_string, .write = nvme_hwmon_write, }; static const struct hwmon_chip_info nvme_hwmon_chip_info = { .ops = &nvme_hwmon_ops, .info = nvme_hwmon_info, }; void nvme_hwmon_init(struct nvme_ctrl *ctrl) { struct device *dev = ctrl->dev; struct nvme_hwmon_data *data; struct device *hwmon; int err; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return; data->ctrl = ctrl; mutex_init(&data->read_lock); err = nvme_hwmon_get_smart_log(data); if (err) { dev_warn(dev, "Failed to read smart log (error %d)\n", err); devm_kfree(dev, data); return; } hwmon = devm_hwmon_device_register_with_info(dev, "nvme", data, &nvme_hwmon_chip_info, NULL); if (IS_ERR(hwmon)) { dev_warn(dev, "Failed to instantiate hwmon device\n"); devm_kfree(dev, data); } }