// SPDX-License-Identifier: GPL-2.0-only /* * i.MX6 OCOTP fusebox driver * * Copyright (c) 2015 Pengutronix, Philipp Zabel * * Copyright 2019 NXP * * Based on the barebox ocotp driver, * Copyright (c) 2010 Baruch Siach , * Orex Computed Radiography * * Write support based on the fsl_otp driver, * Copyright (C) 2010-2013 Freescale Semiconductor, Inc */ #include #include #include #include #include #include #include #include #include #include #define IMX_OCOTP_OFFSET_B0W0 0x400 /* Offset from base address of the * OTP Bank0 Word0 */ #define IMX_OCOTP_OFFSET_PER_WORD 0x10 /* Offset between the start addr * of two consecutive OTP words. */ #define IMX_OCOTP_ADDR_CTRL 0x0000 #define IMX_OCOTP_ADDR_CTRL_SET 0x0004 #define IMX_OCOTP_ADDR_CTRL_CLR 0x0008 #define IMX_OCOTP_ADDR_TIMING 0x0010 #define IMX_OCOTP_ADDR_DATA0 0x0020 #define IMX_OCOTP_ADDR_DATA1 0x0030 #define IMX_OCOTP_ADDR_DATA2 0x0040 #define IMX_OCOTP_ADDR_DATA3 0x0050 #define IMX_OCOTP_BM_CTRL_ADDR 0x000000FF #define IMX_OCOTP_BM_CTRL_BUSY 0x00000100 #define IMX_OCOTP_BM_CTRL_ERROR 0x00000200 #define IMX_OCOTP_BM_CTRL_REL_SHADOWS 0x00000400 #define IMX_OCOTP_BM_CTRL_ADDR_8MP 0x000001FF #define IMX_OCOTP_BM_CTRL_BUSY_8MP 0x00000200 #define IMX_OCOTP_BM_CTRL_ERROR_8MP 0x00000400 #define IMX_OCOTP_BM_CTRL_REL_SHADOWS_8MP 0x00000800 #define IMX_OCOTP_BM_CTRL_DEFAULT \ { \ .bm_addr = IMX_OCOTP_BM_CTRL_ADDR, \ .bm_busy = IMX_OCOTP_BM_CTRL_BUSY, \ .bm_error = IMX_OCOTP_BM_CTRL_ERROR, \ .bm_rel_shadows = IMX_OCOTP_BM_CTRL_REL_SHADOWS,\ } #define IMX_OCOTP_BM_CTRL_8MP \ { \ .bm_addr = IMX_OCOTP_BM_CTRL_ADDR_8MP, \ .bm_busy = IMX_OCOTP_BM_CTRL_BUSY_8MP, \ .bm_error = IMX_OCOTP_BM_CTRL_ERROR_8MP, \ .bm_rel_shadows = IMX_OCOTP_BM_CTRL_REL_SHADOWS_8MP,\ } #define TIMING_STROBE_PROG_US 10 /* Min time to blow a fuse */ #define TIMING_STROBE_READ_NS 37 /* Min time before read */ #define TIMING_RELAX_NS 17 #define DEF_FSOURCE 1001 /* > 1000 ns */ #define DEF_STROBE_PROG 10000 /* IPG clocks */ #define IMX_OCOTP_WR_UNLOCK 0x3E770000 #define IMX_OCOTP_READ_LOCKED_VAL 0xBADABADA static DEFINE_MUTEX(ocotp_mutex); struct ocotp_priv { struct device *dev; struct clk *clk; void __iomem *base; const struct ocotp_params *params; struct nvmem_config *config; }; struct ocotp_ctrl_reg { u32 bm_addr; u32 bm_busy; u32 bm_error; u32 bm_rel_shadows; }; struct ocotp_params { unsigned int nregs; unsigned int bank_address_words; void (*set_timing)(struct ocotp_priv *priv); struct ocotp_ctrl_reg ctrl; bool reverse_mac_address; }; static int imx_ocotp_wait_for_busy(struct ocotp_priv *priv, u32 flags) { int count; u32 c, mask; u32 bm_ctrl_busy, bm_ctrl_error; void __iomem *base = priv->base; bm_ctrl_busy = priv->params->ctrl.bm_busy; bm_ctrl_error = priv->params->ctrl.bm_error; mask = bm_ctrl_busy | bm_ctrl_error | flags; for (count = 10000; count >= 0; count--) { c = readl(base + IMX_OCOTP_ADDR_CTRL); if (!(c & mask)) break; cpu_relax(); } if (count < 0) { /* HW_OCOTP_CTRL[ERROR] will be set under the following * conditions: * - A write is performed to a shadow register during a shadow * reload (essentially, while HW_OCOTP_CTRL[RELOAD_SHADOWS] is * set. In addition, the contents of the shadow register shall * not be updated. * - A write is performed to a shadow register which has been * locked. * - A read is performed to from a shadow register which has * been read locked. * - A program is performed to a fuse word which has been locked * - A read is performed to from a fuse word which has been read * locked. */ if (c & bm_ctrl_error) return -EPERM; return -ETIMEDOUT; } return 0; } static void imx_ocotp_clr_err_if_set(struct ocotp_priv *priv) { u32 c, bm_ctrl_error; void __iomem *base = priv->base; bm_ctrl_error = priv->params->ctrl.bm_error; c = readl(base + IMX_OCOTP_ADDR_CTRL); if (!(c & bm_ctrl_error)) return; writel(bm_ctrl_error, base + IMX_OCOTP_ADDR_CTRL_CLR); } static int imx_ocotp_read(void *context, unsigned int offset, void *val, size_t bytes) { struct ocotp_priv *priv = context; unsigned int count; u8 *buf, *p; int i, ret; u32 index, num_bytes; index = offset >> 2; num_bytes = round_up((offset % 4) + bytes, 4); count = num_bytes >> 2; if (count > (priv->params->nregs - index)) count = priv->params->nregs - index; p = kzalloc(num_bytes, GFP_KERNEL); if (!p) return -ENOMEM; mutex_lock(&ocotp_mutex); buf = p; ret = clk_prepare_enable(priv->clk); if (ret < 0) { mutex_unlock(&ocotp_mutex); dev_err(priv->dev, "failed to prepare/enable ocotp clk\n"); kfree(p); return ret; } ret = imx_ocotp_wait_for_busy(priv, 0); if (ret < 0) { dev_err(priv->dev, "timeout during read setup\n"); goto read_end; } for (i = index; i < (index + count); i++) { *(u32 *)buf = readl(priv->base + IMX_OCOTP_OFFSET_B0W0 + i * IMX_OCOTP_OFFSET_PER_WORD); /* 47.3.1.2 * For "read locked" registers 0xBADABADA will be returned and * HW_OCOTP_CTRL[ERROR] will be set. It must be cleared by * software before any new write, read or reload access can be * issued */ if (*((u32 *)buf) == IMX_OCOTP_READ_LOCKED_VAL) imx_ocotp_clr_err_if_set(priv); buf += 4; } index = offset % 4; memcpy(val, &p[index], bytes); read_end: clk_disable_unprepare(priv->clk); mutex_unlock(&ocotp_mutex); kfree(p); return ret; } static int imx_ocotp_cell_pp(void *context, const char *id, unsigned int offset, void *data, size_t bytes) { struct ocotp_priv *priv = context; /* Deal with some post processing of nvmem cell data */ if (id && !strcmp(id, "mac-address")) { if (priv->params->reverse_mac_address) { u8 *buf = data; int i; for (i = 0; i < bytes/2; i++) swap(buf[i], buf[bytes - i - 1]); } } return 0; } static void imx_ocotp_set_imx6_timing(struct ocotp_priv *priv) { unsigned long clk_rate; unsigned long strobe_read, relax, strobe_prog; u32 timing; /* 47.3.1.3.1 * Program HW_OCOTP_TIMING[STROBE_PROG] and HW_OCOTP_TIMING[RELAX] * fields with timing values to match the current frequency of the * ipg_clk. OTP writes will work at maximum bus frequencies as long * as the HW_OCOTP_TIMING parameters are set correctly. * * Note: there are minimum timings required to ensure an OTP fuse burns * correctly that are independent of the ipg_clk. Those values are not * formally documented anywhere however, working from the minimum * timings given in u-boot we can say: * * - Minimum STROBE_PROG time is 10 microseconds. Intuitively 10 * microseconds feels about right as representative of a minimum time * to physically burn out a fuse. * * - Minimum STROBE_READ i.e. the time to wait post OTP fuse burn before * performing another read is 37 nanoseconds * * - Minimum RELAX timing is 17 nanoseconds. This final RELAX minimum * timing is not entirely clear the documentation says "This * count value specifies the time to add to all default timing * parameters other than the Tpgm and Trd. It is given in number * of ipg_clk periods." where Tpgm and Trd refer to STROBE_PROG * and STROBE_READ respectively. What the other timing parameters * are though, is not specified. Experience shows a zero RELAX * value will mess up a re-load of the shadow registers post OTP * burn. */ clk_rate = clk_get_rate(priv->clk); relax = DIV_ROUND_UP(clk_rate * TIMING_RELAX_NS, 1000000000) - 1; strobe_read = DIV_ROUND_UP(clk_rate * TIMING_STROBE_READ_NS, 1000000000); strobe_read += 2 * (relax + 1) - 1; strobe_prog = DIV_ROUND_CLOSEST(clk_rate * TIMING_STROBE_PROG_US, 1000000); strobe_prog += 2 * (relax + 1) - 1; timing = readl(priv->base + IMX_OCOTP_ADDR_TIMING) & 0x0FC00000; timing |= strobe_prog & 0x00000FFF; timing |= (relax << 12) & 0x0000F000; timing |= (strobe_read << 16) & 0x003F0000; writel(timing, priv->base + IMX_OCOTP_ADDR_TIMING); } static void imx_ocotp_set_imx7_timing(struct ocotp_priv *priv) { unsigned long clk_rate; u64 fsource, strobe_prog; u32 timing; /* i.MX 7Solo Applications Processor Reference Manual, Rev. 0.1 * 6.4.3.3 */ clk_rate = clk_get_rate(priv->clk); fsource = DIV_ROUND_UP_ULL((u64)clk_rate * DEF_FSOURCE, NSEC_PER_SEC) + 1; strobe_prog = DIV_ROUND_CLOSEST_ULL((u64)clk_rate * DEF_STROBE_PROG, NSEC_PER_SEC) + 1; timing = strobe_prog & 0x00000FFF; timing |= (fsource << 12) & 0x000FF000; writel(timing, priv->base + IMX_OCOTP_ADDR_TIMING); } static int imx_ocotp_write(void *context, unsigned int offset, void *val, size_t bytes) { struct ocotp_priv *priv = context; u32 *buf = val; int ret; u32 ctrl; u8 waddr; u8 word = 0; /* allow only writing one complete OTP word at a time */ if ((bytes != priv->config->word_size) || (offset % priv->config->word_size)) return -EINVAL; mutex_lock(&ocotp_mutex); ret = clk_prepare_enable(priv->clk); if (ret < 0) { mutex_unlock(&ocotp_mutex); dev_err(priv->dev, "failed to prepare/enable ocotp clk\n"); return ret; } /* Setup the write timing values */ priv->params->set_timing(priv); /* 47.3.1.3.2 * Check that HW_OCOTP_CTRL[BUSY] and HW_OCOTP_CTRL[ERROR] are clear. * Overlapped accesses are not supported by the controller. Any pending * write or reload must be completed before a write access can be * requested. */ ret = imx_ocotp_wait_for_busy(priv, 0); if (ret < 0) { dev_err(priv->dev, "timeout during timing setup\n"); goto write_end; } /* 47.3.1.3.3 * Write the requested address to HW_OCOTP_CTRL[ADDR] and program the * unlock code into HW_OCOTP_CTRL[WR_UNLOCK]. This must be programmed * for each write access. The lock code is documented in the register * description. Both the unlock code and address can be written in the * same operation. */ if (priv->params->bank_address_words != 0) { /* * In banked/i.MX7 mode the OTP register bank goes into waddr * see i.MX 7Solo Applications Processor Reference Manual, Rev. * 0.1 section 6.4.3.1 */ offset = offset / priv->config->word_size; waddr = offset / priv->params->bank_address_words; word = offset & (priv->params->bank_address_words - 1); } else { /* * Non-banked i.MX6 mode. * OTP write/read address specifies one of 128 word address * locations */ waddr = offset / 4; } ctrl = readl(priv->base + IMX_OCOTP_ADDR_CTRL); ctrl &= ~priv->params->ctrl.bm_addr; ctrl |= waddr & priv->params->ctrl.bm_addr; ctrl |= IMX_OCOTP_WR_UNLOCK; writel(ctrl, priv->base + IMX_OCOTP_ADDR_CTRL); /* 47.3.1.3.4 * Write the data to the HW_OCOTP_DATA register. This will automatically * set HW_OCOTP_CTRL[BUSY] and clear HW_OCOTP_CTRL[WR_UNLOCK]. To * protect programming same OTP bit twice, before program OCOTP will * automatically read fuse value in OTP and use read value to mask * program data. The controller will use masked program data to program * a 32-bit word in the OTP per the address in HW_OCOTP_CTRL[ADDR]. Bit * fields with 1's will result in that OTP bit being programmed. Bit * fields with 0's will be ignored. At the same time that the write is * accepted, the controller makes an internal copy of * HW_OCOTP_CTRL[ADDR] which cannot be updated until the next write * sequence is initiated. This copy guarantees that erroneous writes to * HW_OCOTP_CTRL[ADDR] will not affect an active write operation. It * should also be noted that during the programming HW_OCOTP_DATA will * shift right (with zero fill). This shifting is required to program * the OTP serially. During the write operation, HW_OCOTP_DATA cannot be * modified. * Note: on i.MX7 there are four data fields to write for banked write * with the fuse blowing operation only taking place after data0 * has been written. This is why data0 must always be the last * register written. */ if (priv->params->bank_address_words != 0) { /* Banked/i.MX7 mode */ switch (word) { case 0: writel(0, priv->base + IMX_OCOTP_ADDR_DATA1); writel(0, priv->base + IMX_OCOTP_ADDR_DATA2); writel(0, priv->base + IMX_OCOTP_ADDR_DATA3); writel(*buf, priv->base + IMX_OCOTP_ADDR_DATA0); break; case 1: writel(*buf, priv->base + IMX_OCOTP_ADDR_DATA1); writel(0, priv->base + IMX_OCOTP_ADDR_DATA2); writel(0, priv->base + IMX_OCOTP_ADDR_DATA3); writel(0, priv->base + IMX_OCOTP_ADDR_DATA0); break; case 2: writel(0, priv->base + IMX_OCOTP_ADDR_DATA1); writel(*buf, priv->base + IMX_OCOTP_ADDR_DATA2); writel(0, priv->base + IMX_OCOTP_ADDR_DATA3); writel(0, priv->base + IMX_OCOTP_ADDR_DATA0); break; case 3: writel(0, priv->base + IMX_OCOTP_ADDR_DATA1); writel(0, priv->base + IMX_OCOTP_ADDR_DATA2); writel(*buf, priv->base + IMX_OCOTP_ADDR_DATA3); writel(0, priv->base + IMX_OCOTP_ADDR_DATA0); break; } } else { /* Non-banked i.MX6 mode */ writel(*buf, priv->base + IMX_OCOTP_ADDR_DATA0); } /* 47.4.1.4.5 * Once complete, the controller will clear BUSY. A write request to a * protected or locked region will result in no OTP access and no * setting of HW_OCOTP_CTRL[BUSY]. In addition HW_OCOTP_CTRL[ERROR] will * be set. It must be cleared by software before any new write access * can be issued. */ ret = imx_ocotp_wait_for_busy(priv, 0); if (ret < 0) { if (ret == -EPERM) { dev_err(priv->dev, "failed write to locked region"); imx_ocotp_clr_err_if_set(priv); } else { dev_err(priv->dev, "timeout during data write\n"); } goto write_end; } /* 47.3.1.4 * Write Postamble: Due to internal electrical characteristics of the * OTP during writes, all OTP operations following a write must be * separated by 2 us after the clearing of HW_OCOTP_CTRL_BUSY following * the write. */ udelay(2); /* reload all shadow registers */ writel(priv->params->ctrl.bm_rel_shadows, priv->base + IMX_OCOTP_ADDR_CTRL_SET); ret = imx_ocotp_wait_for_busy(priv, priv->params->ctrl.bm_rel_shadows); if (ret < 0) dev_err(priv->dev, "timeout during shadow register reload\n"); write_end: clk_disable_unprepare(priv->clk); mutex_unlock(&ocotp_mutex); return ret < 0 ? ret : bytes; } static struct nvmem_config imx_ocotp_nvmem_config = { .name = "imx-ocotp", .read_only = false, .word_size = 4, .stride = 1, .reg_read = imx_ocotp_read, .reg_write = imx_ocotp_write, .cell_post_process = imx_ocotp_cell_pp, }; static const struct ocotp_params imx6q_params = { .nregs = 128, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx6sl_params = { .nregs = 64, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx6sll_params = { .nregs = 128, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx6sx_params = { .nregs = 128, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx6ul_params = { .nregs = 128, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx6ull_params = { .nregs = 64, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx7d_params = { .nregs = 64, .bank_address_words = 4, .set_timing = imx_ocotp_set_imx7_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx7ulp_params = { .nregs = 256, .bank_address_words = 0, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, }; static const struct ocotp_params imx8mq_params = { .nregs = 256, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, .reverse_mac_address = true, }; static const struct ocotp_params imx8mm_params = { .nregs = 256, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, .reverse_mac_address = true, }; static const struct ocotp_params imx8mn_params = { .nregs = 256, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_DEFAULT, .reverse_mac_address = true, }; static const struct ocotp_params imx8mp_params = { .nregs = 384, .bank_address_words = 0, .set_timing = imx_ocotp_set_imx6_timing, .ctrl = IMX_OCOTP_BM_CTRL_8MP, .reverse_mac_address = true, }; static const struct of_device_id imx_ocotp_dt_ids[] = { { .compatible = "fsl,imx6q-ocotp", .data = &imx6q_params }, { .compatible = "fsl,imx6sl-ocotp", .data = &imx6sl_params }, { .compatible = "fsl,imx6sx-ocotp", .data = &imx6sx_params }, { .compatible = "fsl,imx6ul-ocotp", .data = &imx6ul_params }, { .compatible = "fsl,imx6ull-ocotp", .data = &imx6ull_params }, { .compatible = "fsl,imx7d-ocotp", .data = &imx7d_params }, { .compatible = "fsl,imx6sll-ocotp", .data = &imx6sll_params }, { .compatible = "fsl,imx7ulp-ocotp", .data = &imx7ulp_params }, { .compatible = "fsl,imx8mq-ocotp", .data = &imx8mq_params }, { .compatible = "fsl,imx8mm-ocotp", .data = &imx8mm_params }, { .compatible = "fsl,imx8mn-ocotp", .data = &imx8mn_params }, { .compatible = "fsl,imx8mp-ocotp", .data = &imx8mp_params }, { }, }; MODULE_DEVICE_TABLE(of, imx_ocotp_dt_ids); static int imx_ocotp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct ocotp_priv *priv; struct nvmem_device *nvmem; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->clk = devm_clk_get(dev, NULL); if (IS_ERR(priv->clk)) return PTR_ERR(priv->clk); priv->params = of_device_get_match_data(&pdev->dev); imx_ocotp_nvmem_config.size = 4 * priv->params->nregs; imx_ocotp_nvmem_config.dev = dev; imx_ocotp_nvmem_config.priv = priv; priv->config = &imx_ocotp_nvmem_config; clk_prepare_enable(priv->clk); imx_ocotp_clr_err_if_set(priv); clk_disable_unprepare(priv->clk); nvmem = devm_nvmem_register(dev, &imx_ocotp_nvmem_config); return PTR_ERR_OR_ZERO(nvmem); } static struct platform_driver imx_ocotp_driver = { .probe = imx_ocotp_probe, .driver = { .name = "imx_ocotp", .of_match_table = imx_ocotp_dt_ids, }, }; module_platform_driver(imx_ocotp_driver); MODULE_AUTHOR("Philipp Zabel "); MODULE_DESCRIPTION("i.MX6/i.MX7 OCOTP fuse box driver"); MODULE_LICENSE("GPL v2");