/* * PCI Express Hot Plug Controller Driver * * Copyright (C) 1995,2001 Compaq Computer Corporation * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001 IBM Corp. * Copyright (C) 2003-2004 Intel Corporation * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Send feedback to , * */ #include #include #include #include #include #include #include #include #include "../pci.h" #include "pciehp.h" #ifndef CONFIG_IA64 #include "../../../arch/i386/pci/pci.h" /* horrible hack showing how processor dependant we are... */ #endif int pciehp_configure_device (struct controller* ctrl, struct pci_func* func) { unsigned char bus; struct pci_bus *child; int num; if (func->pci_dev == NULL) func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function)); /* Still NULL ? Well then scan for it ! */ if (func->pci_dev == NULL) { dbg("%s: pci_dev still null. do pci_scan_slot\n", __FUNCTION__); num = pci_scan_slot(ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function)); if (num) pci_bus_add_devices(ctrl->pci_dev->subordinate); func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function)); if (func->pci_dev == NULL) { dbg("ERROR: pci_dev still null\n"); return 0; } } if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus); child = pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus); pci_do_scan_bus(child); } return 0; } int pciehp_unconfigure_device(struct pci_func* func) { int rc = 0; int j; struct pci_bus *pbus; dbg("%s: bus/dev/func = %x/%x/%x\n", __FUNCTION__, func->bus, func->device, func->function); pbus = func->pci_dev->bus; for (j=0; j<8 ; j++) { struct pci_dev* temp = pci_find_slot(func->bus, (func->device << 3) | j); if (temp) { pci_remove_bus_device(temp); } } /* * Some PCI Express root ports require fixup after hot-plug operation. */ if (pcie_mch_quirk) pci_fixup_device(pci_fixup_final, pbus->self); return rc; } /* * pciehp_set_irq * * @bus_num: bus number of PCI device * @dev_num: device number of PCI device * @slot: pointer to u8 where slot number will be returned */ int pciehp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) { #if defined(CONFIG_X86) && !defined(CONFIG_X86_IO_APIC) && !defined(CONFIG_X86_64) int rc; u16 temp_word; struct pci_dev fakedev; struct pci_bus fakebus; fakedev.devfn = dev_num << 3; fakedev.bus = &fakebus; fakebus.number = bus_num; dbg("%s: dev %d, bus %d, pin %d, num %d\n", __FUNCTION__, dev_num, bus_num, int_pin, irq_num); rc = pcibios_set_irq_routing(&fakedev, int_pin - 0x0a, irq_num); dbg("%s: rc %d\n", __FUNCTION__, rc); if (!rc) return !rc; /* set the Edge Level Control Register (ELCR) */ temp_word = inb(0x4d0); temp_word |= inb(0x4d1) << 8; temp_word |= 0x01 << irq_num; /* This should only be for x86 as it sets the Edge Level Control Register */ outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1); #endif return 0; } /* More PCI configuration routines; this time centered around hotplug controller */ /* * pciehp_save_config * * Reads configuration for all slots in a PCI bus and saves info. * * Note: For non-hot plug busses, the slot # saved is the device # * * returns 0 if success */ int pciehp_save_config(struct controller *ctrl, int busnumber, int num_ctlr_slots, int first_device_num) { int rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; struct pci_func *new_slot; int sub_bus; int max_functions; int function; u8 DevError; int device = 0; int cloop = 0; int stop_it; int index; int is_hot_plug = num_ctlr_slots || first_device_num; struct pci_bus lpci_bus, *pci_bus; int FirstSupported, LastSupported; dbg("%s: Enter\n", __FUNCTION__); memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; dbg("%s: num_ctlr_slots = %d, first_device_num = %d\n", __FUNCTION__, num_ctlr_slots, first_device_num); /* Decide which slots are supported */ if (is_hot_plug) { /********************************* * is_hot_plug is the slot mask *********************************/ FirstSupported = first_device_num; LastSupported = FirstSupported + num_ctlr_slots - 1; } else { FirstSupported = 0; LastSupported = 0x1F; } dbg("FirstSupported = %d, LastSupported = %d\n", FirstSupported, LastSupported); /* Save PCI configuration space for all devices in supported slots */ dbg("%s: pci_bus->number = %x\n", __FUNCTION__, pci_bus->number); pci_bus->number = busnumber; dbg("%s: bus = %x, dev = %x\n", __FUNCTION__, busnumber, device); for (device = FirstSupported; device <= LastSupported; device++) { ID = 0xFFFFFFFF; rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); if (ID != 0xFFFFFFFF) { /* device in slot */ dbg("%s: ID = %x\n", __FUNCTION__, ID); rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); if (rc) return rc; dbg("class_code = %x, header_type = %x\n", class_code, header_type); /* If multi-function device, set max_functions to 8 */ if (header_type & 0x80) max_functions = 8; else max_functions = 1; function = 0; do { DevError = 0; dbg("%s: In do loop\n", __FUNCTION__); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* P-P Bridge */ /* Recurse the subordinate bus * get the subordinate bus number */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); if (rc) { return rc; } else { sub_bus = (int) secondary_bus; /* Save secondary bus cfg spc with this recursive call. */ rc = pciehp_save_config(ctrl, sub_bus, 0, 0); if (rc) return rc; } } index = 0; new_slot = pciehp_slot_find(busnumber, device, index++); dbg("%s: new_slot = %p bus %x dev %x fun %x\n", __FUNCTION__, new_slot, busnumber, device, index-1); while (new_slot && (new_slot->function != (u8) function)) { new_slot = pciehp_slot_find(busnumber, device, index++); dbg("%s: while loop, new_slot = %p bus %x dev %x fun %x\n", __FUNCTION__, new_slot, busnumber, device, index-1); } if (!new_slot) { /* Setup slot structure. */ new_slot = pciehp_slot_create(busnumber); dbg("%s: if, new_slot = %p bus %x dev %x fun %x\n", __FUNCTION__, new_slot, busnumber, device, function); if (new_slot == NULL) return(1); } new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = (u8) function; new_slot->is_a_board = 1; new_slot->switch_save = 0x10; /* In case of unsupported board */ new_slot->status = DevError; new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function); dbg("new_slot->pci_dev = %p\n", new_slot->pci_dev); for (cloop = 0; cloop < 0x20; cloop++) { rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space [cloop])); /* dbg("new_slot->config_space[%x] = %x\n", cloop, new_slot->config_space[cloop]); */ if (rc) return rc; } function++; stop_it = 0; /* this loop skips to the next present function * reading in Class Code and Header type. */ while ((function < max_functions)&&(!stop_it)) { dbg("%s: In while loop \n", __FUNCTION__); rc = pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { /* nothing there. */ function++; dbg("Nothing there\n"); } else { /* Something there */ rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); if (rc) return rc; rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); if (rc) return rc; dbg("class_code = %x, header_type = %x\n", class_code, header_type); stop_it++; } } } while (function < max_functions); /* End of IF (device in slot?) */ } else if (is_hot_plug) { /* Setup slot structure with entry for empty slot */ new_slot = pciehp_slot_create(busnumber); if (new_slot == NULL) { return(1); } dbg("new_slot = %p, bus = %x, dev = %x, fun = %x\n", new_slot, new_slot->bus, new_slot->device, new_slot->function); new_slot->bus = (u8) busnumber; new_slot->device = (u8) device; new_slot->function = 0; new_slot->is_a_board = 0; new_slot->presence_save = 0; new_slot->switch_save = 0; } } /* End of FOR loop */ dbg("%s: Exit\n", __FUNCTION__); return(0); } /* * pciehp_save_slot_config * * Saves configuration info for all PCI devices in a given slot * including subordinate busses. * * returns 0 if success */ int pciehp_save_slot_config(struct controller *ctrl, struct pci_func * new_slot) { int rc; u8 class_code; u8 header_type; u32 ID; u8 secondary_bus; int sub_bus; int max_functions; int function; int cloop = 0; int stop_it; struct pci_bus lpci_bus, *pci_bus; memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; pci_bus->number = new_slot->bus; ID = 0xFFFFFFFF; pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); if (ID != 0xFFFFFFFF) { /* device in slot */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); if (header_type & 0x80) /* Multi-function device */ max_functions = 8; else max_functions = 1; function = 0; do { if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ /* Recurse the subordinate bus */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); sub_bus = (int) secondary_bus; /* Save the config headers for the secondary bus. */ rc = pciehp_save_config(ctrl, sub_bus, 0, 0); if (rc) return rc; } /* End of IF */ new_slot->status = 0; for (cloop = 0; cloop < 0x20; cloop++) { pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space [cloop])); } function++; stop_it = 0; /* this loop skips to the next present function * reading in the Class Code and the Header type. */ while ((function < max_functions) && (!stop_it)) { pci_bus_read_config_dword(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); if (ID == 0xFFFFFFFF) { /* nothing there. */ function++; } else { /* Something there */ pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); pci_bus_read_config_byte(pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); stop_it++; } } } while (function < max_functions); } /* End of IF (device in slot?) */ else { return 2; } return 0; } /* * pciehp_save_used_resources * * Stores used resource information for existing boards. this is * for boards that were in the system when this driver was loaded. * this function is for hot plug ADD * * returns 0 if success * if disable == 1(DISABLE_CARD), * it loops for all functions of the slot and disables them. * else, it just get resources of the function and return. */ int pciehp_save_used_resources(struct controller *ctrl, struct pci_func *func, int disable) { u8 cloop; u8 header_type; u8 secondary_bus; u8 temp_byte; u16 command; u16 save_command; u16 w_base, w_length; u32 temp_register; u32 save_base; u32 base, length; u64 base64 = 0; int index = 0; unsigned int devfn; struct pci_resource *mem_node = NULL; struct pci_resource *p_mem_node = NULL; struct pci_resource *t_mem_node; struct pci_resource *io_node; struct pci_resource *bus_node; struct pci_bus lpci_bus, *pci_bus; memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); pci_bus = &lpci_bus; if (disable) func = pciehp_slot_find(func->bus, func->device, index++); while ((func != NULL) && func->is_a_board) { pci_bus->number = func->bus; devfn = PCI_DEVFN(func->device, func->function); /* Save the command register */ pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command); if (disable) { /* disable card */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); } /* Check for Bridge */ pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ dbg("Save_used_res of PCI bridge b:d=0x%x:%x, sc=0x%x\n", func->bus, func->device, save_command); if (disable) { /* Clear Bridge Control Register */ command = 0x00; pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); } pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); bus_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!bus_node) return -ENOMEM; bus_node->base = (ulong)secondary_bus; bus_node->length = (ulong)(temp_byte - secondary_bus + 1); bus_node->next = func->bus_head; func->bus_head = bus_node; /* Save IO base and Limit registers */ pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &temp_byte); base = temp_byte; pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &temp_byte); length = temp_byte; if ((base <= length) && (!disable || (save_command & PCI_COMMAND_IO))) { io_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = (ulong)(base & PCI_IO_RANGE_MASK) << 8; io_node->length = (ulong)(length - base + 0x10) << 8; io_node->next = func->io_head; func->io_head = io_node; } /* Save memory base and Limit registers */ pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base); pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!mem_node) return -ENOMEM; mem_node->base = (ulong)w_base << 16; mem_node->length = (ulong)(w_length - w_base + 0x10) << 16; mem_node->next = func->mem_head; func->mem_head = mem_node; } /* Save prefetchable memory base and Limit registers */ pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); if ((w_base <= w_length) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { p_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); if (!p_mem_node) return -ENOMEM; p_mem_node->base = (ulong)w_base << 16; p_mem_node->length = (ulong)(w_length - w_base + 0x10) << 16; p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } } else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) { dbg("Save_used_res of PCI adapter b:d=0x%x:%x, sc=0x%x\n", func->bus, func->device, save_command); /* Figure out IO and memory base lengths */ for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) { pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); temp_register = 0xFFFFFFFF; pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); if (!disable) pci_bus_write_config_dword(pci_bus, devfn, cloop, save_base); if (!temp_register) continue; base = temp_register; if ((base & PCI_BASE_ADDRESS_SPACE_IO) && (!disable || (save_command & PCI_COMMAND_IO))) { /* IO base */ /* set temp_register = amount of IO space requested */ base = base & 0xFFFFFFFCL; base = (~base) + 1; io_node = kmalloc(sizeof (struct pci_resource), GFP_KERNEL); if (!io_node) return -ENOMEM; io_node->base = (ulong)save_base & PCI_BASE_ADDRESS_IO_MASK; io_node->length = (ulong)base; dbg("sur adapter: IO bar=0x%x(length=0x%x)\n", io_node->base, io_node->length); io_node->next = func->io_head; func->io_head = io_node; } else { /* map Memory */ int prefetchable = 1; /* struct pci_resources **res_node; */ char *res_type_str = "PMEM"; u32 temp_register2; t_mem_node = kmalloc(sizeof (struct pci_resource), GFP_KERNEL); if (!t_mem_node) return -ENOMEM; if (!(base & PCI_BASE_ADDRESS_MEM_PREFETCH) && (!disable || (save_command & PCI_COMMAND_MEMORY))) { prefetchable = 0; mem_node = t_mem_node; res_type_str++; } else p_mem_node = t_mem_node; base = base & 0xFFFFFFF0L; base = (~base) + 1; switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) { case PCI_BASE_ADDRESS_MEM_TYPE_32: if (prefetchable) { p_mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK; p_mem_node->length = (ulong)base; dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n", res_type_str, p_mem_node->base, p_mem_node->length); p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else { mem_node->base = (ulong)save_base & PCI_BASE_ADDRESS_MEM_MASK; mem_node->length = (ulong)base; dbg("sur adapter: 32 %s bar=0x%x(length=0x%x)\n", res_type_str, mem_node->base, mem_node->length); mem_node->next = func->mem_head; func->mem_head = mem_node; } break; case PCI_BASE_ADDRESS_MEM_TYPE_64: pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2); base64 = temp_register2; base64 = (base64 << 32) | save_base; if (temp_register2) { dbg("sur adapter: 64 %s high dword of base64(0x%x:%x) masked to 0\n", res_type_str, temp_register2, (u32)base64); base64 &= 0x00000000FFFFFFFFL; } if (prefetchable) { p_mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK; p_mem_node->length = base; dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n", res_type_str, p_mem_node->base, p_mem_node->length); p_mem_node->next = func->p_mem_head; func->p_mem_head = p_mem_node; } else { mem_node->base = base64 & PCI_BASE_ADDRESS_MEM_MASK; mem_node->length = base; dbg("sur adapter: 64 %s base=0x%x(len=0x%x)\n", res_type_str, mem_node->base, mem_node->length); mem_node->next = func->mem_head; func->mem_head = mem_node; } cloop += 4; break; default: dbg("asur: reserved BAR type=0x%x\n", temp_register); break; } } } /* End of base register loop */ } else { /* Some other unknown header type */ dbg("Save_used_res of PCI unknown type b:d=0x%x:%x. skip.\n", func->bus, func->device); } /* find the next device in this slot */ if (!disable) break; func = pciehp_slot_find(func->bus, func->device, index++); } return 0; } /** * kfree_resource_list: release memory of all list members * @res: resource list to free */ static inline void return_resource_list(struct pci_resource **func, struct pci_resource **res) { struct pci_resource *node; struct pci_resource *t_node; node = *func; *func = NULL; while (node) { t_node = node->next; return_resource(res, node); node = t_node; } } /* * pciehp_return_board_resources * * this routine returns all resources allocated to a board to * the available pool. * * returns 0 if success */ int pciehp_return_board_resources(struct pci_func * func, struct resource_lists * resources) { int rc; dbg("%s\n", __FUNCTION__); if (!func) return 1; return_resource_list(&(func->io_head),&(resources->io_head)); return_resource_list(&(func->mem_head),&(resources->mem_head)); return_resource_list(&(func->p_mem_head),&(resources->p_mem_head)); return_resource_list(&(func->bus_head),&(resources->bus_head)); rc = pciehp_resource_sort_and_combine(&(resources->mem_head)); rc |= pciehp_resource_sort_and_combine(&(resources->p_mem_head)); rc |= pciehp_resource_sort_and_combine(&(resources->io_head)); rc |= pciehp_resource_sort_and_combine(&(resources->bus_head)); return rc; } /** * kfree_resource_list: release memory of all list members * @res: resource list to free */ static inline void kfree_resource_list(struct pci_resource **r) { struct pci_resource *res, *tres; res = *r; *r = NULL; while (res) { tres = res; res = res->next; kfree(tres); } } /** * pciehp_destroy_resource_list: put node back in the resource list * @resources: list to put nodes back */ void pciehp_destroy_resource_list(struct resource_lists * resources) { kfree_resource_list(&(resources->io_head)); kfree_resource_list(&(resources->mem_head)); kfree_resource_list(&(resources->p_mem_head)); kfree_resource_list(&(resources->bus_head)); } /** * pciehp_destroy_board_resources: put node back in the resource list * @resources: list to put nodes back */ void pciehp_destroy_board_resources(struct pci_func * func) { kfree_resource_list(&(func->io_head)); kfree_resource_list(&(func->mem_head)); kfree_resource_list(&(func->p_mem_head)); kfree_resource_list(&(func->bus_head)); }