// SPDX-License-Identifier: GPL-2.0 /* * PCI VPD support * * Copyright (C) 2010 Broadcom Corporation. */ #include #include #include #include #include #include "pci.h" #define PCI_VPD_LRDT_TAG_SIZE 3 #define PCI_VPD_SRDT_LEN_MASK 0x07 #define PCI_VPD_SRDT_TAG_SIZE 1 #define PCI_VPD_STIN_END 0x0f #define PCI_VPD_INFO_FLD_HDR_SIZE 3 static u16 pci_vpd_lrdt_size(const u8 *lrdt) { return get_unaligned_le16(lrdt + 1); } static u8 pci_vpd_srdt_tag(const u8 *srdt) { return *srdt >> 3; } static u8 pci_vpd_srdt_size(const u8 *srdt) { return *srdt & PCI_VPD_SRDT_LEN_MASK; } static u8 pci_vpd_info_field_size(const u8 *info_field) { return info_field[2]; } /* VPD access through PCI 2.2+ VPD capability */ static struct pci_dev *pci_get_func0_dev(struct pci_dev *dev) { return pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn), 0)); } #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1) #define PCI_VPD_SZ_INVALID UINT_MAX /** * pci_vpd_size - determine actual size of Vital Product Data * @dev: pci device struct */ static size_t pci_vpd_size(struct pci_dev *dev) { size_t off = 0, size; unsigned char tag, header[1+2]; /* 1 byte tag, 2 bytes length */ while (pci_read_vpd_any(dev, off, 1, header) == 1) { size = 0; if (off == 0 && (header[0] == 0x00 || header[0] == 0xff)) goto error; if (header[0] & PCI_VPD_LRDT) { /* Large Resource Data Type Tag */ if (pci_read_vpd_any(dev, off + 1, 2, &header[1]) != 2) { pci_warn(dev, "failed VPD read at offset %zu\n", off + 1); return off ?: PCI_VPD_SZ_INVALID; } size = pci_vpd_lrdt_size(header); if (off + size > PCI_VPD_MAX_SIZE) goto error; off += PCI_VPD_LRDT_TAG_SIZE + size; } else { /* Short Resource Data Type Tag */ tag = pci_vpd_srdt_tag(header); size = pci_vpd_srdt_size(header); if (off + size > PCI_VPD_MAX_SIZE) goto error; off += PCI_VPD_SRDT_TAG_SIZE + size; if (tag == PCI_VPD_STIN_END) /* End tag descriptor */ return off; } } return off; error: pci_info(dev, "invalid VPD tag %#04x (size %zu) at offset %zu%s\n", header[0], size, off, off == 0 ? "; assume missing optional EEPROM" : ""); return off ?: PCI_VPD_SZ_INVALID; } static bool pci_vpd_available(struct pci_dev *dev, bool check_size) { struct pci_vpd *vpd = &dev->vpd; if (!vpd->cap) return false; if (vpd->len == 0 && check_size) { vpd->len = pci_vpd_size(dev); if (vpd->len == PCI_VPD_SZ_INVALID) { vpd->cap = 0; return false; } } return true; } /* * Wait for last operation to complete. * This code has to spin since there is no other notification from the PCI * hardware. Since the VPD is often implemented by serial attachment to an * EEPROM, it may take many milliseconds to complete. * @set: if true wait for flag to be set, else wait for it to be cleared * * Returns 0 on success, negative values indicate error. */ static int pci_vpd_wait(struct pci_dev *dev, bool set) { struct pci_vpd *vpd = &dev->vpd; unsigned long timeout = jiffies + msecs_to_jiffies(125); unsigned long max_sleep = 16; u16 status; int ret; do { ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR, &status); if (ret < 0) return ret; if (!!(status & PCI_VPD_ADDR_F) == set) return 0; if (time_after(jiffies, timeout)) break; usleep_range(10, max_sleep); if (max_sleep < 1024) max_sleep *= 2; } while (true); pci_warn(dev, "VPD access failed. This is likely a firmware bug on this device. Contact the card vendor for a firmware update\n"); return -ETIMEDOUT; } static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count, void *arg, bool check_size) { struct pci_vpd *vpd = &dev->vpd; unsigned int max_len; int ret = 0; loff_t end = pos + count; u8 *buf = arg; if (!pci_vpd_available(dev, check_size)) return -ENODEV; if (pos < 0) return -EINVAL; max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE; if (pos >= max_len) return 0; if (end > max_len) { end = max_len; count = end - pos; } if (mutex_lock_killable(&vpd->lock)) return -EINTR; while (pos < end) { u32 val; unsigned int i, skip; if (fatal_signal_pending(current)) { ret = -EINTR; break; } ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos & ~3); if (ret < 0) break; ret = pci_vpd_wait(dev, true); if (ret < 0) break; ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val); if (ret < 0) break; skip = pos & 3; for (i = 0; i < sizeof(u32); i++) { if (i >= skip) { *buf++ = val; if (++pos == end) break; } val >>= 8; } } mutex_unlock(&vpd->lock); return ret ? ret : count; } static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count, const void *arg, bool check_size) { struct pci_vpd *vpd = &dev->vpd; unsigned int max_len; const u8 *buf = arg; loff_t end = pos + count; int ret = 0; if (!pci_vpd_available(dev, check_size)) return -ENODEV; if (pos < 0 || (pos & 3) || (count & 3)) return -EINVAL; max_len = check_size ? vpd->len : PCI_VPD_MAX_SIZE; if (end > max_len) return -EINVAL; if (mutex_lock_killable(&vpd->lock)) return -EINTR; while (pos < end) { ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, get_unaligned_le32(buf)); if (ret < 0) break; ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR, pos | PCI_VPD_ADDR_F); if (ret < 0) break; ret = pci_vpd_wait(dev, false); if (ret < 0) break; buf += sizeof(u32); pos += sizeof(u32); } mutex_unlock(&vpd->lock); return ret ? ret : count; } void pci_vpd_init(struct pci_dev *dev) { if (dev->vpd.len == PCI_VPD_SZ_INVALID) return; dev->vpd.cap = pci_find_capability(dev, PCI_CAP_ID_VPD); mutex_init(&dev->vpd.lock); } static ssize_t vpd_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); return pci_read_vpd(dev, off, count, buf); } static ssize_t vpd_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct pci_dev *dev = to_pci_dev(kobj_to_dev(kobj)); return pci_write_vpd(dev, off, count, buf); } static BIN_ATTR(vpd, 0600, vpd_read, vpd_write, 0); static struct bin_attribute *vpd_attrs[] = { &bin_attr_vpd, NULL, }; static umode_t vpd_attr_is_visible(struct kobject *kobj, struct bin_attribute *a, int n) { struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); if (!pdev->vpd.cap) return 0; return a->attr.mode; } const struct attribute_group pci_dev_vpd_attr_group = { .bin_attrs = vpd_attrs, .is_bin_visible = vpd_attr_is_visible, }; void *pci_vpd_alloc(struct pci_dev *dev, unsigned int *size) { unsigned int len; void *buf; int cnt; if (!pci_vpd_available(dev, true)) return ERR_PTR(-ENODEV); len = dev->vpd.len; buf = kmalloc(len, GFP_KERNEL); if (!buf) return ERR_PTR(-ENOMEM); cnt = pci_read_vpd(dev, 0, len, buf); if (cnt != len) { kfree(buf); return ERR_PTR(-EIO); } if (size) *size = len; return buf; } EXPORT_SYMBOL_GPL(pci_vpd_alloc); static int pci_vpd_find_tag(const u8 *buf, unsigned int len, u8 rdt, unsigned int *size) { int i = 0; /* look for LRDT tags only, end tag is the only SRDT tag */ while (i + PCI_VPD_LRDT_TAG_SIZE <= len && buf[i] & PCI_VPD_LRDT) { unsigned int lrdt_len = pci_vpd_lrdt_size(buf + i); u8 tag = buf[i]; i += PCI_VPD_LRDT_TAG_SIZE; if (tag == rdt) { if (i + lrdt_len > len) lrdt_len = len - i; if (size) *size = lrdt_len; return i; } i += lrdt_len; } return -ENOENT; } int pci_vpd_find_id_string(const u8 *buf, unsigned int len, unsigned int *size) { return pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_ID_STRING, size); } EXPORT_SYMBOL_GPL(pci_vpd_find_id_string); static int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off, unsigned int len, const char *kw) { int i; for (i = off; i + PCI_VPD_INFO_FLD_HDR_SIZE <= off + len;) { if (buf[i + 0] == kw[0] && buf[i + 1] == kw[1]) return i; i += PCI_VPD_INFO_FLD_HDR_SIZE + pci_vpd_info_field_size(&buf[i]); } return -ENOENT; } static ssize_t __pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf, bool check_size) { ssize_t ret; if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { dev = pci_get_func0_dev(dev); if (!dev) return -ENODEV; ret = pci_vpd_read(dev, pos, count, buf, check_size); pci_dev_put(dev); return ret; } return pci_vpd_read(dev, pos, count, buf, check_size); } /** * pci_read_vpd - Read one entry from Vital Product Data * @dev: PCI device struct * @pos: offset in VPD space * @count: number of bytes to read * @buf: pointer to where to store result */ ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf) { return __pci_read_vpd(dev, pos, count, buf, true); } EXPORT_SYMBOL(pci_read_vpd); /* Same, but allow to access any address */ ssize_t pci_read_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, void *buf) { return __pci_read_vpd(dev, pos, count, buf, false); } EXPORT_SYMBOL(pci_read_vpd_any); static ssize_t __pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf, bool check_size) { ssize_t ret; if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0) { dev = pci_get_func0_dev(dev); if (!dev) return -ENODEV; ret = pci_vpd_write(dev, pos, count, buf, check_size); pci_dev_put(dev); return ret; } return pci_vpd_write(dev, pos, count, buf, check_size); } /** * pci_write_vpd - Write entry to Vital Product Data * @dev: PCI device struct * @pos: offset in VPD space * @count: number of bytes to write * @buf: buffer containing write data */ ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) { return __pci_write_vpd(dev, pos, count, buf, true); } EXPORT_SYMBOL(pci_write_vpd); /* Same, but allow to access any address */ ssize_t pci_write_vpd_any(struct pci_dev *dev, loff_t pos, size_t count, const void *buf) { return __pci_write_vpd(dev, pos, count, buf, false); } EXPORT_SYMBOL(pci_write_vpd_any); int pci_vpd_find_ro_info_keyword(const void *buf, unsigned int len, const char *kw, unsigned int *size) { int ro_start, infokw_start; unsigned int ro_len, infokw_size; ro_start = pci_vpd_find_tag(buf, len, PCI_VPD_LRDT_RO_DATA, &ro_len); if (ro_start < 0) return ro_start; infokw_start = pci_vpd_find_info_keyword(buf, ro_start, ro_len, kw); if (infokw_start < 0) return infokw_start; infokw_size = pci_vpd_info_field_size(buf + infokw_start); infokw_start += PCI_VPD_INFO_FLD_HDR_SIZE; if (infokw_start + infokw_size > len) return -EINVAL; if (size) *size = infokw_size; return infokw_start; } EXPORT_SYMBOL_GPL(pci_vpd_find_ro_info_keyword); int pci_vpd_check_csum(const void *buf, unsigned int len) { const u8 *vpd = buf; unsigned int size; u8 csum = 0; int rv_start; rv_start = pci_vpd_find_ro_info_keyword(buf, len, PCI_VPD_RO_KEYWORD_CHKSUM, &size); if (rv_start == -ENOENT) /* no checksum in VPD */ return 1; else if (rv_start < 0) return rv_start; if (!size) return -EINVAL; while (rv_start >= 0) csum += vpd[rv_start--]; return csum ? -EILSEQ : 0; } EXPORT_SYMBOL_GPL(pci_vpd_check_csum); #ifdef CONFIG_PCI_QUIRKS /* * Quirk non-zero PCI functions to route VPD access through function 0 for * devices that share VPD resources between functions. The functions are * expected to be identical devices. */ static void quirk_f0_vpd_link(struct pci_dev *dev) { struct pci_dev *f0; if (!PCI_FUNC(dev->devfn)) return; f0 = pci_get_func0_dev(dev); if (!f0) return; if (f0->vpd.cap && dev->class == f0->class && dev->vendor == f0->vendor && dev->device == f0->device) dev->dev_flags |= PCI_DEV_FLAGS_VPD_REF_F0; pci_dev_put(f0); } DECLARE_PCI_FIXUP_CLASS_EARLY(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET, 8, quirk_f0_vpd_link); /* * If a device follows the VPD format spec, the PCI core will not read or * write past the VPD End Tag. But some vendors do not follow the VPD * format spec, so we can't tell how much data is safe to access. Devices * may behave unpredictably if we access too much. Blacklist these devices * so we don't touch VPD at all. */ static void quirk_blacklist_vpd(struct pci_dev *dev) { dev->vpd.len = PCI_VPD_SZ_INVALID; pci_warn(dev, FW_BUG "disabling VPD access (can't determine size of non-standard VPD format)\n"); } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0060, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x007c, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0413, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0078, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0079, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0073, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x0071, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005b, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x002f, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005d, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_LSI_LOGIC, 0x005f, quirk_blacklist_vpd); DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_ATTANSIC, PCI_ANY_ID, quirk_blacklist_vpd); /* * The Amazon Annapurna Labs 0x0031 device id is reused for other non Root Port * device types, so the quirk is registered for the PCI_CLASS_BRIDGE_PCI class. */ DECLARE_PCI_FIXUP_CLASS_HEADER(PCI_VENDOR_ID_AMAZON_ANNAPURNA_LABS, 0x0031, PCI_CLASS_BRIDGE_PCI, 8, quirk_blacklist_vpd); static void quirk_chelsio_extend_vpd(struct pci_dev *dev) { int chip = (dev->device & 0xf000) >> 12; int func = (dev->device & 0x0f00) >> 8; int prod = (dev->device & 0x00ff) >> 0; /* * If this is a T3-based adapter, there's a 1KB VPD area at offset * 0xc00 which contains the preferred VPD values. If this is a T4 or * later based adapter, the special VPD is at offset 0x400 for the * Physical Functions (the SR-IOV Virtual Functions have no VPD * Capabilities). The PCI VPD Access core routines will normally * compute the size of the VPD by parsing the VPD Data Structure at * offset 0x000. This will result in silent failures when attempting * to accesses these other VPD areas which are beyond those computed * limits. */ if (chip == 0x0 && prod >= 0x20) dev->vpd.len = 8192; else if (chip >= 0x4 && func < 0x8) dev->vpd.len = 2048; } DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_CHELSIO, PCI_ANY_ID, quirk_chelsio_extend_vpd); #endif