// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017,2018 NXP * Copyright 2019 Purism SPC */ #include #include #include #include #include #include #include #include #include #include #include /* DPHY registers */ #define DPHY_PD_DPHY 0x00 #define DPHY_M_PRG_HS_PREPARE 0x04 #define DPHY_MC_PRG_HS_PREPARE 0x08 #define DPHY_M_PRG_HS_ZERO 0x0c #define DPHY_MC_PRG_HS_ZERO 0x10 #define DPHY_M_PRG_HS_TRAIL 0x14 #define DPHY_MC_PRG_HS_TRAIL 0x18 #define DPHY_PD_PLL 0x1c #define DPHY_TST 0x20 #define DPHY_CN 0x24 #define DPHY_CM 0x28 #define DPHY_CO 0x2c #define DPHY_LOCK 0x30 #define DPHY_LOCK_BYP 0x34 #define DPHY_REG_BYPASS_PLL 0x4C #define MBPS(x) ((x) * 1000000) #define DATA_RATE_MAX_SPEED MBPS(1500) #define DATA_RATE_MIN_SPEED MBPS(80) #define PLL_LOCK_SLEEP 10 #define PLL_LOCK_TIMEOUT 1000 #define CN_BUF 0xcb7a89c0 #define CO_BUF 0x63 #define CM(x) ( \ ((x) < 32) ? 0xe0 | ((x) - 16) : \ ((x) < 64) ? 0xc0 | ((x) - 32) : \ ((x) < 128) ? 0x80 | ((x) - 64) : \ ((x) - 128)) #define CN(x) (((x) == 1) ? 0x1f : (((CN_BUF) >> ((x) - 1)) & 0x1f)) #define CO(x) ((CO_BUF) >> (8 - (x)) & 0x03) /* PHY power on is active low */ #define PWR_ON 0 #define PWR_OFF 1 enum mixel_dphy_devtype { MIXEL_IMX8MQ, }; struct mixel_dphy_devdata { u8 reg_tx_rcal; u8 reg_auto_pd_en; u8 reg_rxlprp; u8 reg_rxcdrp; u8 reg_rxhs_settle; }; static const struct mixel_dphy_devdata mixel_dphy_devdata[] = { [MIXEL_IMX8MQ] = { .reg_tx_rcal = 0x38, .reg_auto_pd_en = 0x3c, .reg_rxlprp = 0x40, .reg_rxcdrp = 0x44, .reg_rxhs_settle = 0x48, }, }; struct mixel_dphy_cfg { /* DPHY PLL parameters */ u32 cm; u32 cn; u32 co; /* DPHY register values */ u8 mc_prg_hs_prepare; u8 m_prg_hs_prepare; u8 mc_prg_hs_zero; u8 m_prg_hs_zero; u8 mc_prg_hs_trail; u8 m_prg_hs_trail; u8 rxhs_settle; }; struct mixel_dphy_priv { struct mixel_dphy_cfg cfg; struct regmap *regmap; struct clk *phy_ref_clk; const struct mixel_dphy_devdata *devdata; }; static const struct regmap_config mixel_dphy_regmap_config = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = DPHY_REG_BYPASS_PLL, .name = "mipi-dphy", }; static int phy_write(struct phy *phy, u32 value, unsigned int reg) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = regmap_write(priv->regmap, reg, value); if (ret < 0) dev_err(&phy->dev, "Failed to write DPHY reg %d: %d\n", reg, ret); return ret; } /* * Find a ratio close to the desired one using continued fraction * approximation ending either at exact match or maximum allowed * nominator, denominator. */ static void get_best_ratio(u32 *pnum, u32 *pdenom, u32 max_n, u32 max_d) { u32 a = *pnum; u32 b = *pdenom; u32 c; u32 n[] = {0, 1}; u32 d[] = {1, 0}; u32 whole; unsigned int i = 1; while (b) { i ^= 1; whole = a / b; n[i] += (n[i ^ 1] * whole); d[i] += (d[i ^ 1] * whole); if ((n[i] > max_n) || (d[i] > max_d)) { i ^= 1; break; } c = a - (b * whole); a = b; b = c; } *pnum = n[i]; *pdenom = d[i]; } static int mixel_dphy_config_from_opts(struct phy *phy, struct phy_configure_opts_mipi_dphy *dphy_opts, struct mixel_dphy_cfg *cfg) { struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent); unsigned long ref_clk = clk_get_rate(priv->phy_ref_clk); u32 lp_t, numerator, denominator; unsigned long long tmp; u32 n; int i; if (dphy_opts->hs_clk_rate > DATA_RATE_MAX_SPEED || dphy_opts->hs_clk_rate < DATA_RATE_MIN_SPEED) return -EINVAL; numerator = dphy_opts->hs_clk_rate; denominator = ref_clk; get_best_ratio(&numerator, &denominator, 255, 256); if (!numerator || !denominator) { dev_err(&phy->dev, "Invalid %d/%d for %ld/%ld\n", numerator, denominator, dphy_opts->hs_clk_rate, ref_clk); return -EINVAL; } while ((numerator < 16) && (denominator <= 128)) { numerator <<= 1; denominator <<= 1; } /* * CM ranges between 16 and 255 * CN ranges between 1 and 32 * CO is power of 2: 1, 2, 4, 8 */ i = __ffs(denominator); if (i > 3) i = 3; cfg->cn = denominator >> i; cfg->co = 1 << i; cfg->cm = numerator; if (cfg->cm < 16 || cfg->cm > 255 || cfg->cn < 1 || cfg->cn > 32 || cfg->co < 1 || cfg->co > 8) { dev_err(&phy->dev, "Invalid CM/CN/CO values: %u/%u/%u\n", cfg->cm, cfg->cn, cfg->co); dev_err(&phy->dev, "for hs_clk/ref_clk=%ld/%ld ~ %d/%d\n", dphy_opts->hs_clk_rate, ref_clk, numerator, denominator); return -EINVAL; } dev_dbg(&phy->dev, "hs_clk/ref_clk=%ld/%ld ~ %d/%d\n", dphy_opts->hs_clk_rate, ref_clk, numerator, denominator); /* LP clock period */ tmp = 1000000000000LL; do_div(tmp, dphy_opts->lp_clk_rate); /* ps */ if (tmp > ULONG_MAX) return -EINVAL; lp_t = tmp; dev_dbg(&phy->dev, "LP clock %lu, period: %u ps\n", dphy_opts->lp_clk_rate, lp_t); /* hs_prepare: in lp clock periods */ if (2 * dphy_opts->hs_prepare > 5 * lp_t) { dev_err(&phy->dev, "hs_prepare (%u) > 2.5 * lp clock period (%u)\n", dphy_opts->hs_prepare, lp_t); return -EINVAL; } /* 00: lp_t, 01: 1.5 * lp_t, 10: 2 * lp_t, 11: 2.5 * lp_t */ if (dphy_opts->hs_prepare < lp_t) { n = 0; } else { tmp = 2 * (dphy_opts->hs_prepare - lp_t); do_div(tmp, lp_t); n = tmp; } cfg->m_prg_hs_prepare = n; /* clk_prepare: in lp clock periods */ if (2 * dphy_opts->clk_prepare > 3 * lp_t) { dev_err(&phy->dev, "clk_prepare (%u) > 1.5 * lp clock period (%u)\n", dphy_opts->clk_prepare, lp_t); return -EINVAL; } /* 00: lp_t, 01: 1.5 * lp_t */ cfg->mc_prg_hs_prepare = dphy_opts->clk_prepare > lp_t ? 1 : 0; /* hs_zero: formula from NXP BSP */ n = (144 * (dphy_opts->hs_clk_rate / 1000000) - 47500) / 10000; cfg->m_prg_hs_zero = n < 1 ? 1 : n; /* clk_zero: formula from NXP BSP */ n = (34 * (dphy_opts->hs_clk_rate / 1000000) - 2500) / 1000; cfg->mc_prg_hs_zero = n < 1 ? 1 : n; /* clk_trail, hs_trail: formula from NXP BSP */ n = (103 * (dphy_opts->hs_clk_rate / 1000000) + 10000) / 10000; if (n > 15) n = 15; if (n < 1) n = 1; cfg->m_prg_hs_trail = n; cfg->mc_prg_hs_trail = n; /* rxhs_settle: formula from NXP BSP */ if (dphy_opts->hs_clk_rate < MBPS(80)) cfg->rxhs_settle = 0x0d; else if (dphy_opts->hs_clk_rate < MBPS(90)) cfg->rxhs_settle = 0x0c; else if (dphy_opts->hs_clk_rate < MBPS(125)) cfg->rxhs_settle = 0x0b; else if (dphy_opts->hs_clk_rate < MBPS(150)) cfg->rxhs_settle = 0x0a; else if (dphy_opts->hs_clk_rate < MBPS(225)) cfg->rxhs_settle = 0x09; else if (dphy_opts->hs_clk_rate < MBPS(500)) cfg->rxhs_settle = 0x08; else cfg->rxhs_settle = 0x07; dev_dbg(&phy->dev, "phy_config: %u %u %u %u %u %u %u\n", cfg->m_prg_hs_prepare, cfg->mc_prg_hs_prepare, cfg->m_prg_hs_zero, cfg->mc_prg_hs_zero, cfg->m_prg_hs_trail, cfg->mc_prg_hs_trail, cfg->rxhs_settle); return 0; } static void mixel_phy_set_hs_timings(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); phy_write(phy, priv->cfg.m_prg_hs_prepare, DPHY_M_PRG_HS_PREPARE); phy_write(phy, priv->cfg.mc_prg_hs_prepare, DPHY_MC_PRG_HS_PREPARE); phy_write(phy, priv->cfg.m_prg_hs_zero, DPHY_M_PRG_HS_ZERO); phy_write(phy, priv->cfg.mc_prg_hs_zero, DPHY_MC_PRG_HS_ZERO); phy_write(phy, priv->cfg.m_prg_hs_trail, DPHY_M_PRG_HS_TRAIL); phy_write(phy, priv->cfg.mc_prg_hs_trail, DPHY_MC_PRG_HS_TRAIL); phy_write(phy, priv->cfg.rxhs_settle, priv->devdata->reg_rxhs_settle); } static int mixel_dphy_set_pll_params(struct phy *phy) { struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent); if (priv->cfg.cm < 16 || priv->cfg.cm > 255 || priv->cfg.cn < 1 || priv->cfg.cn > 32 || priv->cfg.co < 1 || priv->cfg.co > 8) { dev_err(&phy->dev, "Invalid CM/CN/CO values! (%u/%u/%u)\n", priv->cfg.cm, priv->cfg.cn, priv->cfg.co); return -EINVAL; } dev_dbg(&phy->dev, "Using CM:%u CN:%u CO:%u\n", priv->cfg.cm, priv->cfg.cn, priv->cfg.co); phy_write(phy, CM(priv->cfg.cm), DPHY_CM); phy_write(phy, CN(priv->cfg.cn), DPHY_CN); phy_write(phy, CO(priv->cfg.co), DPHY_CO); return 0; } static int mixel_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); struct mixel_dphy_cfg cfg = { 0 }; int ret; ret = mixel_dphy_config_from_opts(phy, &opts->mipi_dphy, &cfg); if (ret) return ret; /* Update the configuration */ memcpy(&priv->cfg, &cfg, sizeof(struct mixel_dphy_cfg)); phy_write(phy, 0x00, DPHY_LOCK_BYP); phy_write(phy, 0x01, priv->devdata->reg_tx_rcal); phy_write(phy, 0x00, priv->devdata->reg_auto_pd_en); phy_write(phy, 0x02, priv->devdata->reg_rxlprp); phy_write(phy, 0x02, priv->devdata->reg_rxcdrp); phy_write(phy, 0x25, DPHY_TST); mixel_phy_set_hs_timings(phy); ret = mixel_dphy_set_pll_params(phy); if (ret < 0) return ret; return 0; } static int mixel_dphy_validate(struct phy *phy, enum phy_mode mode, int submode, union phy_configure_opts *opts) { struct mixel_dphy_cfg cfg = { 0 }; if (mode != PHY_MODE_MIPI_DPHY) return -EINVAL; return mixel_dphy_config_from_opts(phy, &opts->mipi_dphy, &cfg); } static int mixel_dphy_init(struct phy *phy) { phy_write(phy, PWR_OFF, DPHY_PD_PLL); phy_write(phy, PWR_OFF, DPHY_PD_DPHY); return 0; } static int mixel_dphy_exit(struct phy *phy) { phy_write(phy, 0, DPHY_CM); phy_write(phy, 0, DPHY_CN); phy_write(phy, 0, DPHY_CO); return 0; } static int mixel_dphy_power_on(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); u32 locked; int ret; ret = clk_prepare_enable(priv->phy_ref_clk); if (ret < 0) return ret; phy_write(phy, PWR_ON, DPHY_PD_PLL); ret = regmap_read_poll_timeout(priv->regmap, DPHY_LOCK, locked, locked, PLL_LOCK_SLEEP, PLL_LOCK_TIMEOUT); if (ret < 0) { dev_err(&phy->dev, "Could not get DPHY lock (%d)!\n", ret); goto clock_disable; } phy_write(phy, PWR_ON, DPHY_PD_DPHY); return 0; clock_disable: clk_disable_unprepare(priv->phy_ref_clk); return ret; } static int mixel_dphy_power_off(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); phy_write(phy, PWR_OFF, DPHY_PD_PLL); phy_write(phy, PWR_OFF, DPHY_PD_DPHY); clk_disable_unprepare(priv->phy_ref_clk); return 0; } static const struct phy_ops mixel_dphy_phy_ops = { .init = mixel_dphy_init, .exit = mixel_dphy_exit, .power_on = mixel_dphy_power_on, .power_off = mixel_dphy_power_off, .configure = mixel_dphy_configure, .validate = mixel_dphy_validate, .owner = THIS_MODULE, }; static const struct of_device_id mixel_dphy_of_match[] = { { .compatible = "fsl,imx8mq-mipi-dphy", .data = &mixel_dphy_devdata[MIXEL_IMX8MQ] }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mixel_dphy_of_match); static int mixel_dphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct phy_provider *phy_provider; struct mixel_dphy_priv *priv; struct resource *res; struct phy *phy; void __iomem *base; if (!np) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->devdata = of_device_get_match_data(&pdev->dev); if (!priv->devdata) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(&pdev->dev, base, &mixel_dphy_regmap_config); if (IS_ERR(priv->regmap)) { dev_err(dev, "Couldn't create the DPHY regmap\n"); return PTR_ERR(priv->regmap); } priv->phy_ref_clk = devm_clk_get(&pdev->dev, "phy_ref"); if (IS_ERR(priv->phy_ref_clk)) { dev_err(dev, "No phy_ref clock found\n"); return PTR_ERR(priv->phy_ref_clk); } dev_dbg(dev, "phy_ref clock rate: %lu\n", clk_get_rate(priv->phy_ref_clk)); dev_set_drvdata(dev, priv); phy = devm_phy_create(dev, np, &mixel_dphy_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "Failed to create phy %ld\n", PTR_ERR(phy)); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver mixel_dphy_driver = { .probe = mixel_dphy_probe, .driver = { .name = "mixel-mipi-dphy", .of_match_table = mixel_dphy_of_match, } }; module_platform_driver(mixel_dphy_driver); MODULE_AUTHOR("NXP Semiconductor"); MODULE_DESCRIPTION("Mixel MIPI-DSI PHY driver"); MODULE_LICENSE("GPL");