// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2020 Linaro Limited * * Author: Daniel Lezcano * * The DTPM CPU is based on the energy model. It hooks the CPU in the * DTPM tree which in turns update the power number by propagating the * power number from the CPU energy model information to the parents. * * The association between the power and the performance state, allows * to set the power of the CPU at the OPP granularity. * * The CPU hotplug is supported and the power numbers will be updated * if a CPU is hot plugged / unplugged. */ #include #include #include #include #include #include #include #include static struct dtpm *__parent; static DEFINE_PER_CPU(struct dtpm *, dtpm_per_cpu); struct dtpm_cpu { struct freq_qos_request qos_req; int cpu; }; /* * When a new CPU is inserted at hotplug or boot time, add the power * contribution and update the dtpm tree. */ static int power_add(struct dtpm *dtpm, struct em_perf_domain *em) { u64 power_min, power_max; power_min = em->table[0].power; power_min *= MICROWATT_PER_MILLIWATT; power_min += dtpm->power_min; power_max = em->table[em->nr_perf_states - 1].power; power_max *= MICROWATT_PER_MILLIWATT; power_max += dtpm->power_max; return dtpm_update_power(dtpm, power_min, power_max); } /* * When a CPU is unplugged, remove its power contribution from the * dtpm tree. */ static int power_sub(struct dtpm *dtpm, struct em_perf_domain *em) { u64 power_min, power_max; power_min = em->table[0].power; power_min *= MICROWATT_PER_MILLIWATT; power_min = dtpm->power_min - power_min; power_max = em->table[em->nr_perf_states - 1].power; power_max *= MICROWATT_PER_MILLIWATT; power_max = dtpm->power_max - power_max; return dtpm_update_power(dtpm, power_min, power_max); } static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit) { struct dtpm_cpu *dtpm_cpu = dtpm->private; struct em_perf_domain *pd; struct cpumask cpus; unsigned long freq; u64 power; int i, nr_cpus; pd = em_cpu_get(dtpm_cpu->cpu); cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus)); nr_cpus = cpumask_weight(&cpus); for (i = 0; i < pd->nr_perf_states; i++) { power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus; if (power > power_limit) break; } freq = pd->table[i - 1].frequency; freq_qos_update_request(&dtpm_cpu->qos_req, freq); power_limit = pd->table[i - 1].power * MICROWATT_PER_MILLIWATT * nr_cpus; return power_limit; } static u64 get_pd_power_uw(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = dtpm->private; struct em_perf_domain *pd; struct cpumask cpus; unsigned long freq; int i, nr_cpus; pd = em_cpu_get(dtpm_cpu->cpu); freq = cpufreq_quick_get(dtpm_cpu->cpu); cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus)); nr_cpus = cpumask_weight(&cpus); for (i = 0; i < pd->nr_perf_states; i++) { if (pd->table[i].frequency < freq) continue; return pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus; } return 0; } static void pd_release(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = dtpm->private; if (freq_qos_request_active(&dtpm_cpu->qos_req)) freq_qos_remove_request(&dtpm_cpu->qos_req); kfree(dtpm_cpu); } static struct dtpm_ops dtpm_ops = { .set_power_uw = set_pd_power_limit, .get_power_uw = get_pd_power_uw, .release = pd_release, }; static int cpuhp_dtpm_cpu_offline(unsigned int cpu) { struct cpufreq_policy *policy; struct em_perf_domain *pd; struct dtpm *dtpm; policy = cpufreq_cpu_get(cpu); if (!policy) return 0; pd = em_cpu_get(cpu); if (!pd) return -EINVAL; dtpm = per_cpu(dtpm_per_cpu, cpu); power_sub(dtpm, pd); if (cpumask_weight(policy->cpus) != 1) return 0; for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = NULL; dtpm_unregister(dtpm); return 0; } static int cpuhp_dtpm_cpu_online(unsigned int cpu) { struct dtpm *dtpm; struct dtpm_cpu *dtpm_cpu; struct cpufreq_policy *policy; struct em_perf_domain *pd; char name[CPUFREQ_NAME_LEN]; int ret = -ENOMEM; policy = cpufreq_cpu_get(cpu); if (!policy) return 0; pd = em_cpu_get(cpu); if (!pd) return -EINVAL; dtpm = per_cpu(dtpm_per_cpu, cpu); if (dtpm) return power_add(dtpm, pd); dtpm = dtpm_alloc(&dtpm_ops); if (!dtpm) return -EINVAL; dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL); if (!dtpm_cpu) goto out_kfree_dtpm; dtpm->private = dtpm_cpu; dtpm_cpu->cpu = cpu; for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = dtpm; sprintf(name, "cpu%d", dtpm_cpu->cpu); ret = dtpm_register(name, dtpm, __parent); if (ret) goto out_kfree_dtpm_cpu; ret = power_add(dtpm, pd); if (ret) goto out_dtpm_unregister; ret = freq_qos_add_request(&policy->constraints, &dtpm_cpu->qos_req, FREQ_QOS_MAX, pd->table[pd->nr_perf_states - 1].frequency); if (ret) goto out_power_sub; return 0; out_power_sub: power_sub(dtpm, pd); out_dtpm_unregister: dtpm_unregister(dtpm); dtpm_cpu = NULL; dtpm = NULL; out_kfree_dtpm_cpu: for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = NULL; kfree(dtpm_cpu); out_kfree_dtpm: kfree(dtpm); return ret; } int dtpm_register_cpu(struct dtpm *parent) { __parent = parent; return cpuhp_setup_state(CPUHP_AP_DTPM_CPU_ONLINE, "dtpm_cpu:online", cpuhp_dtpm_cpu_online, cpuhp_dtpm_cpu_offline); }