// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Authors: Ludovic Barre for STMicroelectronics. * Fabien Dessenne for STMicroelectronics. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "remoteproc_internal.h" #define HOLD_BOOT 0 #define RELEASE_BOOT 1 #define MBOX_NB_VQ 2 #define MBOX_NB_MBX 4 #define STM32_SMC_RCC 0x82001000 #define STM32_SMC_REG_WRITE 0x1 #define STM32_MBX_VQ0 "vq0" #define STM32_MBX_VQ0_ID 0 #define STM32_MBX_VQ1 "vq1" #define STM32_MBX_VQ1_ID 1 #define STM32_MBX_SHUTDOWN "shutdown" #define STM32_MBX_DETACH "detach" #define RSC_TBL_SIZE 1024 #define M4_STATE_OFF 0 #define M4_STATE_INI 1 #define M4_STATE_CRUN 2 #define M4_STATE_CSTOP 3 #define M4_STATE_STANDBY 4 #define M4_STATE_CRASH 5 struct stm32_syscon { struct regmap *map; u32 reg; u32 mask; }; struct stm32_rproc_mem { char name[20]; void __iomem *cpu_addr; phys_addr_t bus_addr; u32 dev_addr; size_t size; }; struct stm32_rproc_mem_ranges { u32 dev_addr; u32 bus_addr; u32 size; }; struct stm32_mbox { const unsigned char name[10]; struct mbox_chan *chan; struct mbox_client client; struct work_struct vq_work; int vq_id; }; struct stm32_rproc { struct reset_control *rst; struct stm32_syscon hold_boot; struct stm32_syscon pdds; struct stm32_syscon m4_state; struct stm32_syscon rsctbl; int wdg_irq; u32 nb_rmems; struct stm32_rproc_mem *rmems; struct stm32_mbox mb[MBOX_NB_MBX]; struct workqueue_struct *workqueue; bool secured_soc; void __iomem *rsc_va; }; static int stm32_rproc_pa_to_da(struct rproc *rproc, phys_addr_t pa, u64 *da) { unsigned int i; struct stm32_rproc *ddata = rproc->priv; struct stm32_rproc_mem *p_mem; for (i = 0; i < ddata->nb_rmems; i++) { p_mem = &ddata->rmems[i]; if (pa < p_mem->bus_addr || pa >= p_mem->bus_addr + p_mem->size) continue; *da = pa - p_mem->bus_addr + p_mem->dev_addr; dev_dbg(rproc->dev.parent, "pa %pa to da %llx\n", &pa, *da); return 0; } return -EINVAL; } static int stm32_rproc_mem_alloc(struct rproc *rproc, struct rproc_mem_entry *mem) { struct device *dev = rproc->dev.parent; void *va; dev_dbg(dev, "map memory: %pa+%x\n", &mem->dma, mem->len); va = ioremap_wc(mem->dma, mem->len); if (IS_ERR_OR_NULL(va)) { dev_err(dev, "Unable to map memory region: %pa+%x\n", &mem->dma, mem->len); return -ENOMEM; } /* Update memory entry va */ mem->va = va; return 0; } static int stm32_rproc_mem_release(struct rproc *rproc, struct rproc_mem_entry *mem) { dev_dbg(rproc->dev.parent, "unmap memory: %pa\n", &mem->dma); iounmap(mem->va); return 0; } static int stm32_rproc_of_memory_translations(struct platform_device *pdev, struct stm32_rproc *ddata) { struct device *parent, *dev = &pdev->dev; struct device_node *np; struct stm32_rproc_mem *p_mems; struct stm32_rproc_mem_ranges *mem_range; int cnt, array_size, i, ret = 0; parent = dev->parent; np = parent->of_node; cnt = of_property_count_elems_of_size(np, "dma-ranges", sizeof(*mem_range)); if (cnt <= 0) { dev_err(dev, "%s: dma-ranges property not defined\n", __func__); return -EINVAL; } p_mems = devm_kcalloc(dev, cnt, sizeof(*p_mems), GFP_KERNEL); if (!p_mems) return -ENOMEM; mem_range = kcalloc(cnt, sizeof(*mem_range), GFP_KERNEL); if (!mem_range) return -ENOMEM; array_size = cnt * sizeof(struct stm32_rproc_mem_ranges) / sizeof(u32); ret = of_property_read_u32_array(np, "dma-ranges", (u32 *)mem_range, array_size); if (ret) { dev_err(dev, "error while get dma-ranges property: %x\n", ret); goto free_mem; } for (i = 0; i < cnt; i++) { p_mems[i].bus_addr = mem_range[i].bus_addr; p_mems[i].dev_addr = mem_range[i].dev_addr; p_mems[i].size = mem_range[i].size; dev_dbg(dev, "memory range[%i]: da %#x, pa %pa, size %#zx:\n", i, p_mems[i].dev_addr, &p_mems[i].bus_addr, p_mems[i].size); } ddata->rmems = p_mems; ddata->nb_rmems = cnt; free_mem: kfree(mem_range); return ret; } static int stm32_rproc_mbox_idx(struct rproc *rproc, const unsigned char *name) { struct stm32_rproc *ddata = rproc->priv; int i; for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) { if (!strncmp(ddata->mb[i].name, name, strlen(name))) return i; } dev_err(&rproc->dev, "mailbox %s not found\n", name); return -EINVAL; } static int stm32_rproc_prepare(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct device_node *np = dev->of_node; struct of_phandle_iterator it; struct rproc_mem_entry *mem; struct reserved_mem *rmem; u64 da; int index = 0; /* Register associated reserved memory regions */ of_phandle_iterator_init(&it, np, "memory-region", NULL, 0); while (of_phandle_iterator_next(&it) == 0) { rmem = of_reserved_mem_lookup(it.node); if (!rmem) { dev_err(dev, "unable to acquire memory-region\n"); return -EINVAL; } if (stm32_rproc_pa_to_da(rproc, rmem->base, &da) < 0) { dev_err(dev, "memory region not valid %pa\n", &rmem->base); return -EINVAL; } /* No need to map vdev buffer */ if (strcmp(it.node->name, "vdev0buffer")) { /* Register memory region */ mem = rproc_mem_entry_init(dev, NULL, (dma_addr_t)rmem->base, rmem->size, da, stm32_rproc_mem_alloc, stm32_rproc_mem_release, it.node->name); if (mem) rproc_coredump_add_segment(rproc, da, rmem->size); } else { /* Register reserved memory for vdev buffer alloc */ mem = rproc_of_resm_mem_entry_init(dev, index, rmem->size, rmem->base, it.node->name); } if (!mem) return -ENOMEM; rproc_add_carveout(rproc, mem); index++; } return 0; } static int stm32_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { if (rproc_elf_load_rsc_table(rproc, fw)) dev_warn(&rproc->dev, "no resource table found for this firmware\n"); return 0; } static irqreturn_t stm32_rproc_wdg(int irq, void *data) { struct platform_device *pdev = data; struct rproc *rproc = platform_get_drvdata(pdev); rproc_report_crash(rproc, RPROC_WATCHDOG); return IRQ_HANDLED; } static void stm32_rproc_mb_vq_work(struct work_struct *work) { struct stm32_mbox *mb = container_of(work, struct stm32_mbox, vq_work); struct rproc *rproc = dev_get_drvdata(mb->client.dev); if (rproc_vq_interrupt(rproc, mb->vq_id) == IRQ_NONE) dev_dbg(&rproc->dev, "no message found in vq%d\n", mb->vq_id); } static void stm32_rproc_mb_callback(struct mbox_client *cl, void *data) { struct rproc *rproc = dev_get_drvdata(cl->dev); struct stm32_mbox *mb = container_of(cl, struct stm32_mbox, client); struct stm32_rproc *ddata = rproc->priv; queue_work(ddata->workqueue, &mb->vq_work); } static void stm32_rproc_free_mbox(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; unsigned int i; for (i = 0; i < ARRAY_SIZE(ddata->mb); i++) { if (ddata->mb[i].chan) mbox_free_channel(ddata->mb[i].chan); ddata->mb[i].chan = NULL; } } static const struct stm32_mbox stm32_rproc_mbox[MBOX_NB_MBX] = { { .name = STM32_MBX_VQ0, .vq_id = STM32_MBX_VQ0_ID, .client = { .rx_callback = stm32_rproc_mb_callback, .tx_block = false, }, }, { .name = STM32_MBX_VQ1, .vq_id = STM32_MBX_VQ1_ID, .client = { .rx_callback = stm32_rproc_mb_callback, .tx_block = false, }, }, { .name = STM32_MBX_SHUTDOWN, .vq_id = -1, .client = { .tx_block = true, .tx_done = NULL, .tx_tout = 500, /* 500 ms time out */ }, }, { .name = STM32_MBX_DETACH, .vq_id = -1, .client = { .tx_block = true, .tx_done = NULL, .tx_tout = 200, /* 200 ms time out to detach should be fair enough */ }, } }; static int stm32_rproc_request_mbox(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = &rproc->dev; unsigned int i; int j; const unsigned char *name; struct mbox_client *cl; /* Initialise mailbox structure table */ memcpy(ddata->mb, stm32_rproc_mbox, sizeof(stm32_rproc_mbox)); for (i = 0; i < MBOX_NB_MBX; i++) { name = ddata->mb[i].name; cl = &ddata->mb[i].client; cl->dev = dev->parent; ddata->mb[i].chan = mbox_request_channel_byname(cl, name); if (IS_ERR(ddata->mb[i].chan)) { if (PTR_ERR(ddata->mb[i].chan) == -EPROBE_DEFER) { dev_err_probe(dev->parent, PTR_ERR(ddata->mb[i].chan), "failed to request mailbox %s\n", name); goto err_probe; } dev_warn(dev, "cannot get %s mbox\n", name); ddata->mb[i].chan = NULL; } if (ddata->mb[i].vq_id >= 0) { INIT_WORK(&ddata->mb[i].vq_work, stm32_rproc_mb_vq_work); } } return 0; err_probe: for (j = i - 1; j >= 0; j--) if (ddata->mb[j].chan) mbox_free_channel(ddata->mb[j].chan); return -EPROBE_DEFER; } static int stm32_rproc_set_hold_boot(struct rproc *rproc, bool hold) { struct stm32_rproc *ddata = rproc->priv; struct stm32_syscon hold_boot = ddata->hold_boot; struct arm_smccc_res smc_res; int val, err; val = hold ? HOLD_BOOT : RELEASE_BOOT; if (IS_ENABLED(CONFIG_HAVE_ARM_SMCCC) && ddata->secured_soc) { arm_smccc_smc(STM32_SMC_RCC, STM32_SMC_REG_WRITE, hold_boot.reg, val, 0, 0, 0, 0, &smc_res); err = smc_res.a0; } else { err = regmap_update_bits(hold_boot.map, hold_boot.reg, hold_boot.mask, val); } if (err) dev_err(&rproc->dev, "failed to set hold boot\n"); return err; } static void stm32_rproc_add_coredump_trace(struct rproc *rproc) { struct rproc_debug_trace *trace; struct rproc_dump_segment *segment; bool already_added; list_for_each_entry(trace, &rproc->traces, node) { already_added = false; list_for_each_entry(segment, &rproc->dump_segments, node) { if (segment->da == trace->trace_mem.da) { already_added = true; break; } } if (!already_added) rproc_coredump_add_segment(rproc, trace->trace_mem.da, trace->trace_mem.len); } } static int stm32_rproc_start(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err; stm32_rproc_add_coredump_trace(rproc); /* clear remote proc Deep Sleep */ if (ddata->pdds.map) { err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg, ddata->pdds.mask, 0); if (err) { dev_err(&rproc->dev, "failed to clear pdds\n"); return err; } } err = stm32_rproc_set_hold_boot(rproc, false); if (err) return err; return stm32_rproc_set_hold_boot(rproc, true); } static int stm32_rproc_attach(struct rproc *rproc) { stm32_rproc_add_coredump_trace(rproc); return stm32_rproc_set_hold_boot(rproc, true); } static int stm32_rproc_detach(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err, idx; /* Inform the remote processor of the detach */ idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_DETACH); if (idx >= 0 && ddata->mb[idx].chan) { err = mbox_send_message(ddata->mb[idx].chan, "stop"); if (err < 0) dev_warn(&rproc->dev, "warning: remote FW detach without ack\n"); } /* Allow remote processor to auto-reboot */ return stm32_rproc_set_hold_boot(rproc, false); } static int stm32_rproc_stop(struct rproc *rproc) { struct stm32_rproc *ddata = rproc->priv; int err, idx; /* request shutdown of the remote processor */ if (rproc->state != RPROC_OFFLINE) { idx = stm32_rproc_mbox_idx(rproc, STM32_MBX_SHUTDOWN); if (idx >= 0 && ddata->mb[idx].chan) { err = mbox_send_message(ddata->mb[idx].chan, "detach"); if (err < 0) dev_warn(&rproc->dev, "warning: remote FW shutdown without ack\n"); } } err = stm32_rproc_set_hold_boot(rproc, true); if (err) return err; err = reset_control_assert(ddata->rst); if (err) { dev_err(&rproc->dev, "failed to assert the reset\n"); return err; } /* to allow platform Standby power mode, set remote proc Deep Sleep */ if (ddata->pdds.map) { err = regmap_update_bits(ddata->pdds.map, ddata->pdds.reg, ddata->pdds.mask, 1); if (err) { dev_err(&rproc->dev, "failed to set pdds\n"); return err; } } /* update coprocessor state to OFF if available */ if (ddata->m4_state.map) { err = regmap_update_bits(ddata->m4_state.map, ddata->m4_state.reg, ddata->m4_state.mask, M4_STATE_OFF); if (err) { dev_err(&rproc->dev, "failed to set copro state\n"); return err; } } return 0; } static void stm32_rproc_kick(struct rproc *rproc, int vqid) { struct stm32_rproc *ddata = rproc->priv; unsigned int i; int err; if (WARN_ON(vqid >= MBOX_NB_VQ)) return; for (i = 0; i < MBOX_NB_MBX; i++) { if (vqid != ddata->mb[i].vq_id) continue; if (!ddata->mb[i].chan) return; err = mbox_send_message(ddata->mb[i].chan, "kick"); if (err < 0) dev_err(&rproc->dev, "%s: failed (%s, err:%d)\n", __func__, ddata->mb[i].name, err); return; } } static int stm32_rproc_da_to_pa(struct rproc *rproc, u64 da, phys_addr_t *pa) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = rproc->dev.parent; struct stm32_rproc_mem *p_mem; unsigned int i; for (i = 0; i < ddata->nb_rmems; i++) { p_mem = &ddata->rmems[i]; if (da < p_mem->dev_addr || da >= p_mem->dev_addr + p_mem->size) continue; *pa = da - p_mem->dev_addr + p_mem->bus_addr; dev_dbg(dev, "da %llx to pa %pap\n", da, pa); return 0; } dev_err(dev, "can't translate da %llx\n", da); return -EINVAL; } static struct resource_table * stm32_rproc_get_loaded_rsc_table(struct rproc *rproc, size_t *table_sz) { struct stm32_rproc *ddata = rproc->priv; struct device *dev = rproc->dev.parent; phys_addr_t rsc_pa; u32 rsc_da; int err; /* The resource table has already been mapped, nothing to do */ if (ddata->rsc_va) goto done; err = regmap_read(ddata->rsctbl.map, ddata->rsctbl.reg, &rsc_da); if (err) { dev_err(dev, "failed to read rsc tbl addr\n"); return ERR_PTR(-EINVAL); } if (!rsc_da) /* no rsc table */ return ERR_PTR(-ENOENT); err = stm32_rproc_da_to_pa(rproc, rsc_da, &rsc_pa); if (err) return ERR_PTR(err); ddata->rsc_va = devm_ioremap_wc(dev, rsc_pa, RSC_TBL_SIZE); if (IS_ERR_OR_NULL(ddata->rsc_va)) { dev_err(dev, "Unable to map memory region: %pa+%zx\n", &rsc_pa, RSC_TBL_SIZE); ddata->rsc_va = NULL; return ERR_PTR(-ENOMEM); } done: /* * Assuming the resource table fits in 1kB is fair. * Notice for the detach, that this 1 kB memory area has to be reserved in the coprocessor * firmware for the resource table. On detach, the remoteproc core re-initializes this * entire area by overwriting it with the initial values stored in rproc->clean_table. */ *table_sz = RSC_TBL_SIZE; return (struct resource_table *)ddata->rsc_va; } static const struct rproc_ops st_rproc_ops = { .prepare = stm32_rproc_prepare, .start = stm32_rproc_start, .stop = stm32_rproc_stop, .attach = stm32_rproc_attach, .detach = stm32_rproc_detach, .kick = stm32_rproc_kick, .load = rproc_elf_load_segments, .parse_fw = stm32_rproc_parse_fw, .find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table, .get_loaded_rsc_table = stm32_rproc_get_loaded_rsc_table, .sanity_check = rproc_elf_sanity_check, .get_boot_addr = rproc_elf_get_boot_addr, }; static const struct of_device_id stm32_rproc_match[] = { { .compatible = "st,stm32mp1-m4" }, {}, }; MODULE_DEVICE_TABLE(of, stm32_rproc_match); static int stm32_rproc_get_syscon(struct device_node *np, const char *prop, struct stm32_syscon *syscon) { int err = 0; syscon->map = syscon_regmap_lookup_by_phandle(np, prop); if (IS_ERR(syscon->map)) { err = PTR_ERR(syscon->map); syscon->map = NULL; goto out; } err = of_property_read_u32_index(np, prop, 1, &syscon->reg); if (err) goto out; err = of_property_read_u32_index(np, prop, 2, &syscon->mask); out: return err; } static int stm32_rproc_parse_dt(struct platform_device *pdev, struct stm32_rproc *ddata, bool *auto_boot) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct stm32_syscon tz; unsigned int tzen; int err, irq; irq = platform_get_irq(pdev, 0); if (irq == -EPROBE_DEFER) return dev_err_probe(dev, irq, "failed to get interrupt\n"); if (irq > 0) { err = devm_request_irq(dev, irq, stm32_rproc_wdg, 0, dev_name(dev), pdev); if (err) return dev_err_probe(dev, err, "failed to request wdg irq\n"); ddata->wdg_irq = irq; if (of_property_read_bool(np, "wakeup-source")) { device_init_wakeup(dev, true); dev_pm_set_wake_irq(dev, irq); } dev_info(dev, "wdg irq registered\n"); } ddata->rst = devm_reset_control_get_by_index(dev, 0); if (IS_ERR(ddata->rst)) return dev_err_probe(dev, PTR_ERR(ddata->rst), "failed to get mcu_reset\n"); /* * if platform is secured the hold boot bit must be written by * smc call and read normally. * if not secure the hold boot bit could be read/write normally */ err = stm32_rproc_get_syscon(np, "st,syscfg-tz", &tz); if (err) { dev_err(dev, "failed to get tz syscfg\n"); return err; } err = regmap_read(tz.map, tz.reg, &tzen); if (err) { dev_err(dev, "failed to read tzen\n"); return err; } ddata->secured_soc = tzen & tz.mask; err = stm32_rproc_get_syscon(np, "st,syscfg-holdboot", &ddata->hold_boot); if (err) { dev_err(dev, "failed to get hold boot\n"); return err; } err = stm32_rproc_get_syscon(np, "st,syscfg-pdds", &ddata->pdds); if (err) dev_info(dev, "failed to get pdds\n"); *auto_boot = of_property_read_bool(np, "st,auto-boot"); /* * See if we can check the M4 status, i.e if it was started * from the boot loader or not. */ err = stm32_rproc_get_syscon(np, "st,syscfg-m4-state", &ddata->m4_state); if (err) { /* remember this */ ddata->m4_state.map = NULL; /* no coprocessor state syscon (optional) */ dev_warn(dev, "m4 state not supported\n"); /* no need to go further */ return 0; } /* See if we can get the resource table */ err = stm32_rproc_get_syscon(np, "st,syscfg-rsc-tbl", &ddata->rsctbl); if (err) { /* no rsc table syscon (optional) */ dev_warn(dev, "rsc tbl syscon not supported\n"); } return 0; } static int stm32_rproc_get_m4_status(struct stm32_rproc *ddata, unsigned int *state) { /* See stm32_rproc_parse_dt() */ if (!ddata->m4_state.map) { /* * We couldn't get the coprocessor's state, assume * it is not running. */ *state = M4_STATE_OFF; return 0; } return regmap_read(ddata->m4_state.map, ddata->m4_state.reg, state); } static int stm32_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_rproc *ddata; struct device_node *np = dev->of_node; struct rproc *rproc; unsigned int state; int ret; ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) return ret; rproc = rproc_alloc(dev, np->name, &st_rproc_ops, NULL, sizeof(*ddata)); if (!rproc) return -ENOMEM; ddata = rproc->priv; rproc_coredump_set_elf_info(rproc, ELFCLASS32, EM_NONE); ret = stm32_rproc_parse_dt(pdev, ddata, &rproc->auto_boot); if (ret) goto free_rproc; ret = stm32_rproc_of_memory_translations(pdev, ddata); if (ret) goto free_rproc; ret = stm32_rproc_get_m4_status(ddata, &state); if (ret) goto free_rproc; if (state == M4_STATE_CRUN) rproc->state = RPROC_DETACHED; rproc->has_iommu = false; ddata->workqueue = create_workqueue(dev_name(dev)); if (!ddata->workqueue) { dev_err(dev, "cannot create workqueue\n"); ret = -ENOMEM; goto free_resources; } platform_set_drvdata(pdev, rproc); ret = stm32_rproc_request_mbox(rproc); if (ret) goto free_wkq; ret = rproc_add(rproc); if (ret) goto free_mb; return 0; free_mb: stm32_rproc_free_mbox(rproc); free_wkq: destroy_workqueue(ddata->workqueue); free_resources: rproc_resource_cleanup(rproc); free_rproc: if (device_may_wakeup(dev)) { dev_pm_clear_wake_irq(dev); device_init_wakeup(dev, false); } rproc_free(rproc); return ret; } static int stm32_rproc_remove(struct platform_device *pdev) { struct rproc *rproc = platform_get_drvdata(pdev); struct stm32_rproc *ddata = rproc->priv; struct device *dev = &pdev->dev; if (atomic_read(&rproc->power) > 0) rproc_shutdown(rproc); rproc_del(rproc); stm32_rproc_free_mbox(rproc); destroy_workqueue(ddata->workqueue); if (device_may_wakeup(dev)) { dev_pm_clear_wake_irq(dev); device_init_wakeup(dev, false); } rproc_free(rproc); return 0; } static int __maybe_unused stm32_rproc_suspend(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct stm32_rproc *ddata = rproc->priv; if (device_may_wakeup(dev)) return enable_irq_wake(ddata->wdg_irq); return 0; } static int __maybe_unused stm32_rproc_resume(struct device *dev) { struct rproc *rproc = dev_get_drvdata(dev); struct stm32_rproc *ddata = rproc->priv; if (device_may_wakeup(dev)) return disable_irq_wake(ddata->wdg_irq); return 0; } static SIMPLE_DEV_PM_OPS(stm32_rproc_pm_ops, stm32_rproc_suspend, stm32_rproc_resume); static struct platform_driver stm32_rproc_driver = { .probe = stm32_rproc_probe, .remove = stm32_rproc_remove, .driver = { .name = "stm32-rproc", .pm = &stm32_rproc_pm_ops, .of_match_table = of_match_ptr(stm32_rproc_match), }, }; module_platform_driver(stm32_rproc_driver); MODULE_DESCRIPTION("STM32 Remote Processor Control Driver"); MODULE_AUTHOR("Ludovic Barre "); MODULE_AUTHOR("Fabien Dessenne "); MODULE_LICENSE("GPL v2");