// SPDX-License-Identifier: GPL-2.0-only /* * An SPI driver for the Philips PCF2123 RTC * Copyright 2009 Cyber Switching, Inc. * * Author: Chris Verges * Maintainers: http://www.cyberswitching.com * * based on the RS5C348 driver in this same directory. * * Thanks to Christian Pellegrin for * the sysfs contributions to this driver. * * Please note that the CS is active high, so platform data * should look something like: * * static struct spi_board_info ek_spi_devices[] = { * ... * { * .modalias = "rtc-pcf2123", * .chip_select = 1, * .controller_data = (void *)AT91_PIN_PA10, * .max_speed_hz = 1000 * 1000, * .mode = SPI_CS_HIGH, * .bus_num = 0, * }, * ... *}; */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* REGISTERS */ #define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */ #define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */ #define PCF2123_REG_SC (0x02) /* datetime */ #define PCF2123_REG_MN (0x03) #define PCF2123_REG_HR (0x04) #define PCF2123_REG_DM (0x05) #define PCF2123_REG_DW (0x06) #define PCF2123_REG_MO (0x07) #define PCF2123_REG_YR (0x08) #define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */ #define PCF2123_REG_ALRM_HR (0x0a) #define PCF2123_REG_ALRM_DM (0x0b) #define PCF2123_REG_ALRM_DW (0x0c) #define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */ #define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */ #define PCF2123_REG_CTDWN_TMR (0x0f) /* PCF2123_REG_CTRL1 BITS */ #define CTRL1_CLEAR (0) /* Clear */ #define CTRL1_CORR_INT BIT(1) /* Correction irq enable */ #define CTRL1_12_HOUR BIT(2) /* 12 hour time */ #define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */ #define CTRL1_STOP BIT(5) /* Stop the clock */ #define CTRL1_EXT_TEST BIT(7) /* External clock test mode */ /* PCF2123_REG_CTRL2 BITS */ #define CTRL2_TIE BIT(0) /* Countdown timer irq enable */ #define CTRL2_AIE BIT(1) /* Alarm irq enable */ #define CTRL2_TF BIT(2) /* Countdown timer flag */ #define CTRL2_AF BIT(3) /* Alarm flag */ #define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */ #define CTRL2_MSF BIT(5) /* Minute or second irq flag */ #define CTRL2_SI BIT(6) /* Second irq enable */ #define CTRL2_MI BIT(7) /* Minute irq enable */ /* PCF2123_REG_SC BITS */ #define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */ /* PCF2123_REG_ALRM_XX BITS */ #define ALRM_DISABLE BIT(7) /* MN, HR, DM, or DW alarm matching */ /* PCF2123_REG_TMR_CLKOUT BITS */ #define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */ #define CD_TMR_64HZ (1) /* 64 Hz countdown timer */ #define CD_TMR_1HZ (2) /* 1 Hz countdown timer */ #define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */ #define CD_TMR_TE BIT(3) /* Countdown timer enable */ /* PCF2123_REG_OFFSET BITS */ #define OFFSET_SIGN_BIT 6 /* 2's complement sign bit */ #define OFFSET_COARSE BIT(7) /* Coarse mode offset */ #define OFFSET_STEP (2170) /* Offset step in parts per billion */ #define OFFSET_MASK GENMASK(6, 0) /* Offset value */ /* READ/WRITE ADDRESS BITS */ #define PCF2123_WRITE BIT(4) #define PCF2123_READ (BIT(4) | BIT(7)) static struct spi_driver pcf2123_driver; struct pcf2123_data { struct rtc_device *rtc; struct regmap *map; }; static const struct regmap_config pcf2123_regmap_config = { .reg_bits = 8, .val_bits = 8, .read_flag_mask = PCF2123_READ, .write_flag_mask = PCF2123_WRITE, .max_register = PCF2123_REG_CTDWN_TMR, }; static int pcf2123_read_offset(struct device *dev, long *offset) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); int ret, val; unsigned int reg; ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, ®); if (ret) return ret; val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT); if (reg & OFFSET_COARSE) val *= 2; *offset = ((long)val) * OFFSET_STEP; return 0; } /* * The offset register is a 7 bit signed value with a coarse bit in bit 7. * The main difference between the two is normal offset adjusts the first * second of n minutes every other hour, with 61, 62 and 63 being shoved * into the 60th minute. * The coarse adjustment does the same, but every hour. * the two overlap, with every even normal offset value corresponding * to a coarse offset. Based on this algorithm, it seems that despite the * name, coarse offset is a better fit for overlapping values. */ static int pcf2123_set_offset(struct device *dev, long offset) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); s8 reg; if (offset > OFFSET_STEP * 127) reg = 127; else if (offset < OFFSET_STEP * -128) reg = -128; else reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP); /* choose fine offset only for odd values in the normal range */ if (reg & 1 && reg <= 63 && reg >= -64) { /* Normal offset. Clear the coarse bit */ reg &= ~OFFSET_COARSE; } else { /* Coarse offset. Divide by 2 and set the coarse bit */ reg >>= 1; reg |= OFFSET_COARSE; } return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg); } static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); u8 rxbuf[7]; int ret; ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf, sizeof(rxbuf)); if (ret) return ret; if (rxbuf[0] & OSC_HAS_STOPPED) { dev_info(dev, "clock was stopped. Time is not valid\n"); return -EINVAL; } tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F); tm->tm_min = bcd2bin(rxbuf[1] & 0x7F); tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */ tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F); tm->tm_wday = rxbuf[4] & 0x07; tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */ tm->tm_year = bcd2bin(rxbuf[6]) + 100; dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm); return 0; } static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); u8 txbuf[7]; int ret; dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm); /* Stop the counter first */ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP); if (ret) return ret; /* Set the new time */ txbuf[0] = bin2bcd(tm->tm_sec & 0x7F); txbuf[1] = bin2bcd(tm->tm_min & 0x7F); txbuf[2] = bin2bcd(tm->tm_hour & 0x3F); txbuf[3] = bin2bcd(tm->tm_mday & 0x3F); txbuf[4] = tm->tm_wday & 0x07; txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */ txbuf[6] = bin2bcd(tm->tm_year - 100); ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf, sizeof(txbuf)); if (ret) return ret; /* Start the counter */ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR); if (ret) return ret; return 0; } static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, en ? CTRL2_AIE : 0); } static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); u8 rxbuf[4]; int ret; unsigned int val = 0; ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf, sizeof(rxbuf)); if (ret) return ret; alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F); alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F); alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F); alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07); dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time); ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val); if (ret) return ret; alm->enabled = !!(val & CTRL2_AIE); return 0; } static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); u8 txbuf[4]; int ret; dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time); /* Disable alarm interrupt */ ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0); if (ret) return ret; /* Ensure alarm flag is clear */ ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0); if (ret) return ret; /* Set new alarm */ txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F); txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F); txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F); txbuf[3] = ALRM_DISABLE; ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf, sizeof(txbuf)); if (ret) return ret; return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled); } static irqreturn_t pcf2123_rtc_irq(int irq, void *dev) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); unsigned int val = 0; int ret = IRQ_NONE; rtc_lock(pcf2123->rtc); regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val); /* Alarm? */ if (val & CTRL2_AF) { ret = IRQ_HANDLED; /* Clear alarm flag */ regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0); rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF); } rtc_unlock(pcf2123->rtc); return ret; } static int pcf2123_reset(struct device *dev) { struct pcf2123_data *pcf2123 = dev_get_drvdata(dev); int ret; unsigned int val = 0; ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET); if (ret) return ret; /* Stop the counter */ dev_dbg(dev, "stopping RTC\n"); ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP); if (ret) return ret; /* See if the counter was actually stopped */ dev_dbg(dev, "checking for presence of RTC\n"); ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val); if (ret) return ret; dev_dbg(dev, "received data from RTC (0x%08X)\n", val); if (!(val & CTRL1_STOP)) return -ENODEV; /* Start the counter */ ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR); if (ret) return ret; return 0; } static const struct rtc_class_ops pcf2123_rtc_ops = { .read_time = pcf2123_rtc_read_time, .set_time = pcf2123_rtc_set_time, .read_offset = pcf2123_read_offset, .set_offset = pcf2123_set_offset, .read_alarm = pcf2123_rtc_read_alarm, .set_alarm = pcf2123_rtc_set_alarm, .alarm_irq_enable = pcf2123_rtc_alarm_irq_enable, }; static int pcf2123_probe(struct spi_device *spi) { struct rtc_device *rtc; struct rtc_time tm; struct pcf2123_data *pcf2123; int ret = 0; pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data), GFP_KERNEL); if (!pcf2123) return -ENOMEM; dev_set_drvdata(&spi->dev, pcf2123); pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config); if (IS_ERR(pcf2123->map)) { dev_err(&spi->dev, "regmap init failed.\n"); return PTR_ERR(pcf2123->map); } ret = pcf2123_rtc_read_time(&spi->dev, &tm); if (ret < 0) { ret = pcf2123_reset(&spi->dev); if (ret < 0) { dev_err(&spi->dev, "chip not found\n"); return ret; } } dev_info(&spi->dev, "spiclk %u KHz.\n", (spi->max_speed_hz + 500) / 1000); /* Finalize the initialization */ rtc = devm_rtc_allocate_device(&spi->dev); if (IS_ERR(rtc)) return PTR_ERR(rtc); pcf2123->rtc = rtc; /* Register alarm irq */ if (spi->irq > 0) { ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, pcf2123_rtc_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, pcf2123_driver.driver.name, &spi->dev); if (!ret) device_init_wakeup(&spi->dev, true); else dev_err(&spi->dev, "could not request irq.\n"); } /* The PCF2123's alarm only has minute accuracy. Must add timer * support to this driver to generate interrupts more than once * per minute. */ set_bit(RTC_FEATURE_ALARM_RES_MINUTE, rtc->features); clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features); rtc->ops = &pcf2123_rtc_ops; rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; rtc->range_max = RTC_TIMESTAMP_END_2099; rtc->set_start_time = true; ret = devm_rtc_register_device(rtc); if (ret) return ret; return 0; } #ifdef CONFIG_OF static const struct of_device_id pcf2123_dt_ids[] = { { .compatible = "nxp,pcf2123", }, { .compatible = "microcrystal,rv2123", }, /* Deprecated, do not use */ { .compatible = "nxp,rtc-pcf2123", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, pcf2123_dt_ids); #endif static const struct spi_device_id pcf2123_spi_ids[] = { { .name = "pcf2123", }, { .name = "rv2123", }, { .name = "rtc-pcf2123", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(spi, pcf2123_spi_ids); static struct spi_driver pcf2123_driver = { .driver = { .name = "rtc-pcf2123", .of_match_table = of_match_ptr(pcf2123_dt_ids), }, .probe = pcf2123_probe, .id_table = pcf2123_spi_ids, }; module_spi_driver(pcf2123_driver); MODULE_AUTHOR("Chris Verges "); MODULE_DESCRIPTION("NXP PCF2123 RTC driver"); MODULE_LICENSE("GPL");