/* * drivers/s390/cio/css.c * driver for channel subsystem * $Revision: 1.85 $ * * Copyright (C) 2002 IBM Deutschland Entwicklung GmbH, * IBM Corporation * Author(s): Arnd Bergmann (arndb@de.ibm.com) * Cornelia Huck (cohuck@de.ibm.com) */ #include #include #include #include #include #include #include "css.h" #include "cio.h" #include "cio_debug.h" #include "ioasm.h" #include "chsc.h" unsigned int highest_subchannel; int need_rescan = 0; int css_init_done = 0; struct pgid global_pgid; int css_characteristics_avail = 0; struct device css_bus_device = { .bus_id = "css0", }; static struct subchannel * css_alloc_subchannel(int irq) { struct subchannel *sch; int ret; sch = kmalloc (sizeof (*sch), GFP_KERNEL | GFP_DMA); if (sch == NULL) return ERR_PTR(-ENOMEM); ret = cio_validate_subchannel (sch, irq); if (ret < 0) { kfree(sch); return ERR_PTR(ret); } if (irq > highest_subchannel) highest_subchannel = irq; if (sch->st != SUBCHANNEL_TYPE_IO) { /* For now we ignore all non-io subchannels. */ kfree(sch); return ERR_PTR(-EINVAL); } /* * Set intparm to subchannel address. * This is fine even on 64bit since the subchannel is always located * under 2G. */ sch->schib.pmcw.intparm = (__u32)(unsigned long)sch; ret = cio_modify(sch); if (ret) { kfree(sch); return ERR_PTR(ret); } return sch; } static void css_free_subchannel(struct subchannel *sch) { if (sch) { /* Reset intparm to zeroes. */ sch->schib.pmcw.intparm = 0; cio_modify(sch); kfree(sch); } } static void css_subchannel_release(struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); if (!cio_is_console(sch->irq)) kfree(sch); } extern int css_get_ssd_info(struct subchannel *sch); static int css_register_subchannel(struct subchannel *sch) { int ret; /* Initialize the subchannel structure */ sch->dev.parent = &css_bus_device; sch->dev.bus = &css_bus_type; sch->dev.release = &css_subchannel_release; /* make it known to the system */ ret = device_register(&sch->dev); if (ret) printk (KERN_WARNING "%s: could not register %s\n", __func__, sch->dev.bus_id); else css_get_ssd_info(sch); return ret; } int css_probe_device(int irq) { int ret; struct subchannel *sch; sch = css_alloc_subchannel(irq); if (IS_ERR(sch)) return PTR_ERR(sch); ret = css_register_subchannel(sch); if (ret) css_free_subchannel(sch); return ret; } static int check_subchannel(struct device * dev, void * data) { struct subchannel *sch; int irq = (unsigned long)data; sch = to_subchannel(dev); return (sch->irq == irq); } struct subchannel * get_subchannel_by_schid(int irq) { struct device *dev; dev = bus_find_device(&css_bus_type, NULL, (void *)(unsigned long)irq, check_subchannel); return dev ? to_subchannel(dev) : NULL; } static inline int css_get_subchannel_status(struct subchannel *sch, int schid) { struct schib schib; int cc; cc = stsch(schid, &schib); if (cc) return CIO_GONE; if (!schib.pmcw.dnv) return CIO_GONE; if (sch && sch->schib.pmcw.dnv && (schib.pmcw.dev != sch->schib.pmcw.dev)) return CIO_REVALIDATE; if (sch && !sch->lpm) return CIO_NO_PATH; return CIO_OPER; } static int css_evaluate_subchannel(int irq, int slow) { int event, ret, disc; struct subchannel *sch; unsigned long flags; sch = get_subchannel_by_schid(irq); disc = sch ? device_is_disconnected(sch) : 0; if (disc && slow) { if (sch) put_device(&sch->dev); return 0; /* Already processed. */ } /* * We've got a machine check, so running I/O won't get an interrupt. * Kill any pending timers. */ if (sch) device_kill_pending_timer(sch); if (!disc && !slow) { if (sch) put_device(&sch->dev); return -EAGAIN; /* Will be done on the slow path. */ } event = css_get_subchannel_status(sch, irq); CIO_MSG_EVENT(4, "Evaluating schid %04x, event %d, %s, %s path.\n", irq, event, sch?(disc?"disconnected":"normal"):"unknown", slow?"slow":"fast"); switch (event) { case CIO_NO_PATH: case CIO_GONE: if (!sch) { /* Never used this subchannel. Ignore. */ ret = 0; break; } if (disc && (event == CIO_NO_PATH)) { /* * Uargh, hack again. Because we don't get a machine * check on configure on, our path bookkeeping can * be out of date here (it's fine while we only do * logical varying or get chsc machine checks). We * need to force reprobing or we might miss devices * coming operational again. It won't do harm in real * no path situations. */ spin_lock_irqsave(&sch->lock, flags); device_trigger_reprobe(sch); spin_unlock_irqrestore(&sch->lock, flags); ret = 0; break; } if (sch->driver && sch->driver->notify && sch->driver->notify(&sch->dev, event)) { cio_disable_subchannel(sch); device_set_disconnected(sch); ret = 0; break; } /* * Unregister subchannel. * The device will be killed automatically. */ cio_disable_subchannel(sch); device_unregister(&sch->dev); /* Reset intparm to zeroes. */ sch->schib.pmcw.intparm = 0; cio_modify(sch); put_device(&sch->dev); ret = 0; break; case CIO_REVALIDATE: /* * Revalidation machine check. Sick. * We don't notify the driver since we have to throw the device * away in any case. */ if (!disc) { device_unregister(&sch->dev); /* Reset intparm to zeroes. */ sch->schib.pmcw.intparm = 0; cio_modify(sch); put_device(&sch->dev); ret = css_probe_device(irq); } else { /* * We can't immediately deregister the disconnected * device since it might block. */ spin_lock_irqsave(&sch->lock, flags); device_trigger_reprobe(sch); spin_unlock_irqrestore(&sch->lock, flags); ret = 0; } break; case CIO_OPER: if (disc) { spin_lock_irqsave(&sch->lock, flags); /* Get device operational again. */ device_trigger_reprobe(sch); spin_unlock_irqrestore(&sch->lock, flags); } ret = sch ? 0 : css_probe_device(irq); break; default: BUG(); ret = 0; } return ret; } static void css_rescan_devices(void) { int irq, ret; for (irq = 0; irq < __MAX_SUBCHANNELS; irq++) { ret = css_evaluate_subchannel(irq, 1); /* No more memory. It doesn't make sense to continue. No * panic because this can happen in midflight and just * because we can't use a new device is no reason to crash * the system. */ if (ret == -ENOMEM) break; /* -ENXIO indicates that there are no more subchannels. */ if (ret == -ENXIO) break; } } struct slow_subchannel { struct list_head slow_list; unsigned long schid; }; static LIST_HEAD(slow_subchannels_head); static DEFINE_SPINLOCK(slow_subchannel_lock); static void css_trigger_slow_path(void) { CIO_TRACE_EVENT(4, "slowpath"); if (need_rescan) { need_rescan = 0; css_rescan_devices(); return; } spin_lock_irq(&slow_subchannel_lock); while (!list_empty(&slow_subchannels_head)) { struct slow_subchannel *slow_sch = list_entry(slow_subchannels_head.next, struct slow_subchannel, slow_list); list_del_init(slow_subchannels_head.next); spin_unlock_irq(&slow_subchannel_lock); css_evaluate_subchannel(slow_sch->schid, 1); spin_lock_irq(&slow_subchannel_lock); kfree(slow_sch); } spin_unlock_irq(&slow_subchannel_lock); } typedef void (*workfunc)(void *); DECLARE_WORK(slow_path_work, (workfunc)css_trigger_slow_path, NULL); struct workqueue_struct *slow_path_wq; /* * Rescan for new devices. FIXME: This is slow. * This function is called when we have lost CRWs due to overflows and we have * to do subchannel housekeeping. */ void css_reiterate_subchannels(void) { css_clear_subchannel_slow_list(); need_rescan = 1; } /* * Called from the machine check handler for subchannel report words. */ int css_process_crw(int irq) { int ret; CIO_CRW_EVENT(2, "source is subchannel %04X\n", irq); if (need_rescan) /* We need to iterate all subchannels anyway. */ return -EAGAIN; /* * Since we are always presented with IPI in the CRW, we have to * use stsch() to find out if the subchannel in question has come * or gone. */ ret = css_evaluate_subchannel(irq, 0); if (ret == -EAGAIN) { if (css_enqueue_subchannel_slow(irq)) { css_clear_subchannel_slow_list(); need_rescan = 1; } } return ret; } static void __init css_generate_pgid(void) { /* Let's build our path group ID here. */ if (css_characteristics_avail && css_general_characteristics.mcss) global_pgid.cpu_addr = 0x8000; else { #ifdef CONFIG_SMP global_pgid.cpu_addr = hard_smp_processor_id(); #else global_pgid.cpu_addr = 0; #endif } global_pgid.cpu_id = ((cpuid_t *) __LC_CPUID)->ident; global_pgid.cpu_model = ((cpuid_t *) __LC_CPUID)->machine; global_pgid.tod_high = (__u32) (get_clock() >> 32); } /* * Now that the driver core is running, we can setup our channel subsystem. * The struct subchannel's are created during probing (except for the * static console subchannel). */ static int __init init_channel_subsystem (void) { int ret, irq; if (chsc_determine_css_characteristics() == 0) css_characteristics_avail = 1; css_generate_pgid(); if ((ret = bus_register(&css_bus_type))) goto out; if ((ret = device_register (&css_bus_device))) goto out_bus; css_init_done = 1; ctl_set_bit(6, 28); for (irq = 0; irq < __MAX_SUBCHANNELS; irq++) { struct subchannel *sch; if (cio_is_console(irq)) sch = cio_get_console_subchannel(); else { sch = css_alloc_subchannel(irq); if (IS_ERR(sch)) ret = PTR_ERR(sch); else ret = 0; if (ret == -ENOMEM) panic("Out of memory in " "init_channel_subsystem\n"); /* -ENXIO: no more subchannels. */ if (ret == -ENXIO) break; if (ret) continue; } /* * We register ALL valid subchannels in ioinfo, even those * that have been present before init_channel_subsystem. * These subchannels can't have been registered yet (kmalloc * not working) so we do it now. This is true e.g. for the * console subchannel. */ css_register_subchannel(sch); } return 0; out_bus: bus_unregister(&css_bus_type); out: return ret; } /* * find a driver for a subchannel. They identify by the subchannel * type with the exception that the console subchannel driver has its own * subchannel type although the device is an i/o subchannel */ static int css_bus_match (struct device *dev, struct device_driver *drv) { struct subchannel *sch = container_of (dev, struct subchannel, dev); struct css_driver *driver = container_of (drv, struct css_driver, drv); if (sch->st == driver->subchannel_type) return 1; return 0; } struct bus_type css_bus_type = { .name = "css", .match = &css_bus_match, }; subsys_initcall(init_channel_subsystem); /* * Register root devices for some drivers. The release function must not be * in the device drivers, so we do it here. */ static void s390_root_dev_release(struct device *dev) { kfree(dev); } struct device * s390_root_dev_register(const char *name) { struct device *dev; int ret; if (!strlen(name)) return ERR_PTR(-EINVAL); dev = kmalloc(sizeof(struct device), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); memset(dev, 0, sizeof(struct device)); strncpy(dev->bus_id, name, min(strlen(name), (size_t)BUS_ID_SIZE)); dev->release = s390_root_dev_release; ret = device_register(dev); if (ret) { kfree(dev); return ERR_PTR(ret); } return dev; } void s390_root_dev_unregister(struct device *dev) { if (dev) device_unregister(dev); } int css_enqueue_subchannel_slow(unsigned long schid) { struct slow_subchannel *new_slow_sch; unsigned long flags; new_slow_sch = kmalloc(sizeof(struct slow_subchannel), GFP_ATOMIC); if (!new_slow_sch) return -ENOMEM; memset(new_slow_sch, 0, sizeof(struct slow_subchannel)); new_slow_sch->schid = schid; spin_lock_irqsave(&slow_subchannel_lock, flags); list_add_tail(&new_slow_sch->slow_list, &slow_subchannels_head); spin_unlock_irqrestore(&slow_subchannel_lock, flags); return 0; } void css_clear_subchannel_slow_list(void) { unsigned long flags; spin_lock_irqsave(&slow_subchannel_lock, flags); while (!list_empty(&slow_subchannels_head)) { struct slow_subchannel *slow_sch = list_entry(slow_subchannels_head.next, struct slow_subchannel, slow_list); list_del_init(slow_subchannels_head.next); kfree(slow_sch); } spin_unlock_irqrestore(&slow_subchannel_lock, flags); } int css_slow_subchannels_exist(void) { return (!list_empty(&slow_subchannels_head)); } MODULE_LICENSE("GPL"); EXPORT_SYMBOL(css_bus_type); EXPORT_SYMBOL(s390_root_dev_register); EXPORT_SYMBOL(s390_root_dev_unregister); EXPORT_SYMBOL_GPL(css_characteristics_avail);