/* * Copyright IBM Corp. 2016 * Author(s): Martin Schwidefsky * * Adjunct processor bus, queue related code. */ #define KMSG_COMPONENT "ap" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include #include #include #include "ap_bus.h" #include "ap_asm.h" /** * ap_queue_enable_interruption(): Enable interruption on an AP queue. * @qid: The AP queue number * @ind: the notification indicator byte * * Enables interruption on AP queue via ap_aqic(). Based on the return * value it waits a while and tests the AP queue if interrupts * have been switched on using ap_test_queue(). */ static int ap_queue_enable_interruption(struct ap_queue *aq, void *ind) { struct ap_queue_status status; status = ap_aqic(aq->qid, ind); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_OTHERWISE_CHANGED: return 0; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: pr_err("Registering adapter interrupts for AP device %02x.%04x failed\n", AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EOPNOTSUPP; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_BUSY: default: return -EBUSY; } } /** * __ap_send(): Send message to adjunct processor queue. * @qid: The AP queue number * @psmid: The program supplied message identifier * @msg: The message text * @length: The message length * @special: Special Bit * * Returns AP queue status structure. * Condition code 1 on NQAP can't happen because the L bit is 1. * Condition code 2 on NQAP also means the send is incomplete, * because a segment boundary was reached. The NQAP is repeated. */ static inline struct ap_queue_status __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length, unsigned int special) { if (special == 1) qid |= 0x400000UL; return ap_nqap(qid, psmid, msg, length); } int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length) { struct ap_queue_status status; status = __ap_send(qid, psmid, msg, length, 0); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_Q_FULL: case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; case AP_RESPONSE_REQ_FAC_NOT_INST: return -EINVAL; default: /* Device is gone. */ return -ENODEV; } } EXPORT_SYMBOL(ap_send); int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length) { struct ap_queue_status status; if (msg == NULL) return -EINVAL; status = ap_dqap(qid, psmid, msg, length); switch (status.response_code) { case AP_RESPONSE_NORMAL: return 0; case AP_RESPONSE_NO_PENDING_REPLY: if (status.queue_empty) return -ENOENT; return -EBUSY; case AP_RESPONSE_RESET_IN_PROGRESS: return -EBUSY; default: return -ENODEV; } } EXPORT_SYMBOL(ap_recv); /* State machine definitions and helpers */ static enum ap_wait ap_sm_nop(struct ap_queue *aq) { return AP_WAIT_NONE; } /** * ap_sm_recv(): Receive pending reply messages from an AP queue but do * not change the state of the device. * @aq: pointer to the AP queue * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static struct ap_queue_status ap_sm_recv(struct ap_queue *aq) { struct ap_queue_status status; struct ap_message *ap_msg; status = ap_dqap(aq->qid, &aq->reply->psmid, aq->reply->message, aq->reply->length); switch (status.response_code) { case AP_RESPONSE_NORMAL: aq->queue_count--; if (aq->queue_count > 0) mod_timer(&aq->timeout, jiffies + aq->request_timeout); list_for_each_entry(ap_msg, &aq->pendingq, list) { if (ap_msg->psmid != aq->reply->psmid) continue; list_del_init(&ap_msg->list); aq->pendingq_count--; ap_msg->receive(aq, ap_msg, aq->reply); break; } case AP_RESPONSE_NO_PENDING_REPLY: if (!status.queue_empty || aq->queue_count <= 0) break; /* The card shouldn't forget requests but who knows. */ aq->queue_count = 0; list_splice_init(&aq->pendingq, &aq->requestq); aq->requestq_count += aq->pendingq_count; aq->pendingq_count = 0; break; default: break; } return status; } /** * ap_sm_read(): Receive pending reply messages from an AP queue. * @aq: pointer to the AP queue * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_read(struct ap_queue *aq) { struct ap_queue_status status; if (!aq->reply) return AP_WAIT_NONE; status = ap_sm_recv(aq); switch (status.response_code) { case AP_RESPONSE_NORMAL: if (aq->queue_count > 0) { aq->state = AP_STATE_WORKING; return AP_WAIT_AGAIN; } aq->state = AP_STATE_IDLE; return AP_WAIT_NONE; case AP_RESPONSE_NO_PENDING_REPLY: if (aq->queue_count > 0) return AP_WAIT_INTERRUPT; aq->state = AP_STATE_IDLE; return AP_WAIT_NONE; default: aq->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_suspend_read(): Receive pending reply messages from an AP queue * without changing the device state in between. In suspend mode we don't * allow sending new requests, therefore just fetch pending replies. * @aq: pointer to the AP queue * * Returns AP_WAIT_NONE or AP_WAIT_AGAIN */ static enum ap_wait ap_sm_suspend_read(struct ap_queue *aq) { struct ap_queue_status status; if (!aq->reply) return AP_WAIT_NONE; status = ap_sm_recv(aq); switch (status.response_code) { case AP_RESPONSE_NORMAL: if (aq->queue_count > 0) return AP_WAIT_AGAIN; /* fall through */ default: return AP_WAIT_NONE; } } /** * ap_sm_write(): Send messages from the request queue to an AP queue. * @aq: pointer to the AP queue * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_write(struct ap_queue *aq) { struct ap_queue_status status; struct ap_message *ap_msg; if (aq->requestq_count <= 0) return AP_WAIT_NONE; /* Start the next request on the queue. */ ap_msg = list_entry(aq->requestq.next, struct ap_message, list); status = __ap_send(aq->qid, ap_msg->psmid, ap_msg->message, ap_msg->length, ap_msg->special); switch (status.response_code) { case AP_RESPONSE_NORMAL: aq->queue_count++; if (aq->queue_count == 1) mod_timer(&aq->timeout, jiffies + aq->request_timeout); list_move_tail(&ap_msg->list, &aq->pendingq); aq->requestq_count--; aq->pendingq_count++; if (aq->queue_count < aq->card->queue_depth) { aq->state = AP_STATE_WORKING; return AP_WAIT_AGAIN; } /* fall through */ case AP_RESPONSE_Q_FULL: aq->state = AP_STATE_QUEUE_FULL; return AP_WAIT_INTERRUPT; case AP_RESPONSE_RESET_IN_PROGRESS: aq->state = AP_STATE_RESET_WAIT; return AP_WAIT_TIMEOUT; case AP_RESPONSE_MESSAGE_TOO_BIG: case AP_RESPONSE_REQ_FAC_NOT_INST: list_del_init(&ap_msg->list); aq->requestq_count--; ap_msg->rc = -EINVAL; ap_msg->receive(aq, ap_msg, NULL); return AP_WAIT_AGAIN; default: aq->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_read_write(): Send and receive messages to/from an AP queue. * @aq: pointer to the AP queue * * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT */ static enum ap_wait ap_sm_read_write(struct ap_queue *aq) { return min(ap_sm_read(aq), ap_sm_write(aq)); } /** * ap_sm_reset(): Reset an AP queue. * @qid: The AP queue number * * Submit the Reset command to an AP queue. */ static enum ap_wait ap_sm_reset(struct ap_queue *aq) { struct ap_queue_status status; status = ap_rapq(aq->qid); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: aq->state = AP_STATE_RESET_WAIT; aq->interrupt = AP_INTR_DISABLED; return AP_WAIT_TIMEOUT; case AP_RESPONSE_BUSY: return AP_WAIT_TIMEOUT; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: aq->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_reset_wait(): Test queue for completion of the reset operation * @aq: pointer to the AP queue * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_wait ap_sm_reset_wait(struct ap_queue *aq) { struct ap_queue_status status; void *lsi_ptr; if (aq->queue_count > 0 && aq->reply) /* Try to read a completed message and get the status */ status = ap_sm_recv(aq); else /* Get the status with TAPQ */ status = ap_tapq(aq->qid, NULL); switch (status.response_code) { case AP_RESPONSE_NORMAL: lsi_ptr = ap_airq_ptr(); if (lsi_ptr && ap_queue_enable_interruption(aq, lsi_ptr) == 0) aq->state = AP_STATE_SETIRQ_WAIT; else aq->state = (aq->queue_count > 0) ? AP_STATE_WORKING : AP_STATE_IDLE; return AP_WAIT_AGAIN; case AP_RESPONSE_BUSY: case AP_RESPONSE_RESET_IN_PROGRESS: return AP_WAIT_TIMEOUT; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: aq->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /** * ap_sm_setirq_wait(): Test queue for completion of the irq enablement * @aq: pointer to the AP queue * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_wait ap_sm_setirq_wait(struct ap_queue *aq) { struct ap_queue_status status; if (aq->queue_count > 0 && aq->reply) /* Try to read a completed message and get the status */ status = ap_sm_recv(aq); else /* Get the status with TAPQ */ status = ap_tapq(aq->qid, NULL); if (status.int_enabled == 1) { /* Irqs are now enabled */ aq->interrupt = AP_INTR_ENABLED; aq->state = (aq->queue_count > 0) ? AP_STATE_WORKING : AP_STATE_IDLE; } switch (status.response_code) { case AP_RESPONSE_NORMAL: if (aq->queue_count > 0) return AP_WAIT_AGAIN; /* fallthrough */ case AP_RESPONSE_NO_PENDING_REPLY: return AP_WAIT_TIMEOUT; default: aq->state = AP_STATE_BORKED; return AP_WAIT_NONE; } } /* * AP state machine jump table */ static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = { [AP_STATE_RESET_START] = { [AP_EVENT_POLL] = ap_sm_reset, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_RESET_WAIT] = { [AP_EVENT_POLL] = ap_sm_reset_wait, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_SETIRQ_WAIT] = { [AP_EVENT_POLL] = ap_sm_setirq_wait, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_IDLE] = { [AP_EVENT_POLL] = ap_sm_write, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_WORKING] = { [AP_EVENT_POLL] = ap_sm_read_write, [AP_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_STATE_QUEUE_FULL] = { [AP_EVENT_POLL] = ap_sm_read, [AP_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_STATE_SUSPEND_WAIT] = { [AP_EVENT_POLL] = ap_sm_suspend_read, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_STATE_BORKED] = { [AP_EVENT_POLL] = ap_sm_nop, [AP_EVENT_TIMEOUT] = ap_sm_nop, }, }; enum ap_wait ap_sm_event(struct ap_queue *aq, enum ap_event event) { return ap_jumptable[aq->state][event](aq); } enum ap_wait ap_sm_event_loop(struct ap_queue *aq, enum ap_event event) { enum ap_wait wait; while ((wait = ap_sm_event(aq, event)) == AP_WAIT_AGAIN) ; return wait; } /* * Power management for queue devices */ void ap_queue_suspend(struct ap_device *ap_dev) { struct ap_queue *aq = to_ap_queue(&ap_dev->device); /* Poll on the device until all requests are finished. */ spin_lock_bh(&aq->lock); aq->state = AP_STATE_SUSPEND_WAIT; while (ap_sm_event(aq, AP_EVENT_POLL) != AP_WAIT_NONE) ; aq->state = AP_STATE_BORKED; spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_queue_suspend); void ap_queue_resume(struct ap_device *ap_dev) { } EXPORT_SYMBOL(ap_queue_resume); /* * AP queue related attributes. */ static ssize_t ap_request_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); unsigned int req_cnt; spin_lock_bh(&aq->lock); req_cnt = aq->total_request_count; spin_unlock_bh(&aq->lock); return snprintf(buf, PAGE_SIZE, "%d\n", req_cnt); } static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL); static ssize_t ap_requestq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); unsigned int reqq_cnt = 0; spin_lock_bh(&aq->lock); reqq_cnt = aq->requestq_count; spin_unlock_bh(&aq->lock); return snprintf(buf, PAGE_SIZE, "%d\n", reqq_cnt); } static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL); static ssize_t ap_pendingq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); unsigned int penq_cnt = 0; spin_lock_bh(&aq->lock); penq_cnt = aq->pendingq_count; spin_unlock_bh(&aq->lock); return snprintf(buf, PAGE_SIZE, "%d\n", penq_cnt); } static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL); static ssize_t ap_reset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc = 0; spin_lock_bh(&aq->lock); switch (aq->state) { case AP_STATE_RESET_START: case AP_STATE_RESET_WAIT: rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n"); break; case AP_STATE_WORKING: case AP_STATE_QUEUE_FULL: rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n"); break; default: rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n"); } spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL); static ssize_t ap_interrupt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc = 0; spin_lock_bh(&aq->lock); if (aq->state == AP_STATE_SETIRQ_WAIT) rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n"); else if (aq->interrupt == AP_INTR_ENABLED) rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n"); else rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n"); spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL); static struct attribute *ap_queue_dev_attrs[] = { &dev_attr_request_count.attr, &dev_attr_requestq_count.attr, &dev_attr_pendingq_count.attr, &dev_attr_reset.attr, &dev_attr_interrupt.attr, NULL }; static struct attribute_group ap_queue_dev_attr_group = { .attrs = ap_queue_dev_attrs }; static const struct attribute_group *ap_queue_dev_attr_groups[] = { &ap_queue_dev_attr_group, NULL }; struct device_type ap_queue_type = { .name = "ap_queue", .groups = ap_queue_dev_attr_groups, }; static void ap_queue_device_release(struct device *dev) { kfree(to_ap_queue(dev)); } struct ap_queue *ap_queue_create(ap_qid_t qid, int device_type) { struct ap_queue *aq; aq = kzalloc(sizeof(*aq), GFP_KERNEL); if (!aq) return NULL; aq->ap_dev.device.release = ap_queue_device_release; aq->ap_dev.device.type = &ap_queue_type; aq->ap_dev.device_type = device_type; /* CEX6 toleration: map to CEX5 */ if (device_type == AP_DEVICE_TYPE_CEX6) aq->ap_dev.device_type = AP_DEVICE_TYPE_CEX5; aq->qid = qid; aq->state = AP_STATE_RESET_START; aq->interrupt = AP_INTR_DISABLED; spin_lock_init(&aq->lock); INIT_LIST_HEAD(&aq->pendingq); INIT_LIST_HEAD(&aq->requestq); setup_timer(&aq->timeout, ap_request_timeout, (unsigned long) aq); return aq; } void ap_queue_init_reply(struct ap_queue *aq, struct ap_message *reply) { aq->reply = reply; spin_lock_bh(&aq->lock); ap_wait(ap_sm_event(aq, AP_EVENT_POLL)); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_queue_init_reply); /** * ap_queue_message(): Queue a request to an AP device. * @aq: The AP device to queue the message to * @ap_msg: The message that is to be added */ void ap_queue_message(struct ap_queue *aq, struct ap_message *ap_msg) { /* For asynchronous message handling a valid receive-callback * is required. */ BUG_ON(!ap_msg->receive); spin_lock_bh(&aq->lock); /* Queue the message. */ list_add_tail(&ap_msg->list, &aq->requestq); aq->requestq_count++; aq->total_request_count++; atomic_inc(&aq->card->total_request_count); /* Send/receive as many request from the queue as possible. */ ap_wait(ap_sm_event_loop(aq, AP_EVENT_POLL)); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_queue_message); /** * ap_cancel_message(): Cancel a crypto request. * @aq: The AP device that has the message queued * @ap_msg: The message that is to be removed * * Cancel a crypto request. This is done by removing the request * from the device pending or request queue. Note that the * request stays on the AP queue. When it finishes the message * reply will be discarded because the psmid can't be found. */ void ap_cancel_message(struct ap_queue *aq, struct ap_message *ap_msg) { struct ap_message *tmp; spin_lock_bh(&aq->lock); if (!list_empty(&ap_msg->list)) { list_for_each_entry(tmp, &aq->pendingq, list) if (tmp->psmid == ap_msg->psmid) { aq->pendingq_count--; goto found; } aq->requestq_count--; found: list_del_init(&ap_msg->list); } spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_cancel_message); /** * __ap_flush_queue(): Flush requests. * @aq: Pointer to the AP queue * * Flush all requests from the request/pending queue of an AP device. */ static void __ap_flush_queue(struct ap_queue *aq) { struct ap_message *ap_msg, *next; list_for_each_entry_safe(ap_msg, next, &aq->pendingq, list) { list_del_init(&ap_msg->list); aq->pendingq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(aq, ap_msg, NULL); } list_for_each_entry_safe(ap_msg, next, &aq->requestq, list) { list_del_init(&ap_msg->list); aq->requestq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(aq, ap_msg, NULL); } } void ap_flush_queue(struct ap_queue *aq) { spin_lock_bh(&aq->lock); __ap_flush_queue(aq); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_flush_queue); void ap_queue_remove(struct ap_queue *aq) { ap_flush_queue(aq); del_timer_sync(&aq->timeout); } EXPORT_SYMBOL(ap_queue_remove);