/* * zfcp device driver * * Setup and helper functions to access QDIO. * * Copyright IBM Corporation 2002, 2009 */ #define KMSG_COMPONENT "zfcp" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include "zfcp_ext.h" #include "zfcp_qdio.h" #define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer)) static int zfcp_qdio_buffers_enqueue(struct qdio_buffer **sbal) { int pos; for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos += QBUFF_PER_PAGE) { sbal[pos] = (struct qdio_buffer *) get_zeroed_page(GFP_KERNEL); if (!sbal[pos]) return -ENOMEM; } for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos++) if (pos % QBUFF_PER_PAGE) sbal[pos] = sbal[pos - 1] + 1; return 0; } static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *id) { struct zfcp_adapter *adapter = qdio->adapter; dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n"); zfcp_erp_adapter_reopen(adapter, ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED | ZFCP_STATUS_COMMON_ERP_FAILED, id, NULL); } static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt) { int i, sbal_idx; for (i = first; i < first + cnt; i++) { sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q; memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer)); } } /* this needs to be called prior to updating the queue fill level */ static inline void zfcp_qdio_account(struct zfcp_qdio *qdio) { unsigned long long now, span; int free, used; spin_lock(&qdio->stat_lock); now = get_clock_monotonic(); span = (now - qdio->req_q_time) >> 12; free = atomic_read(&qdio->req_q.count); used = QDIO_MAX_BUFFERS_PER_Q - free; qdio->req_q_util += used * span; qdio->req_q_time = now; spin_unlock(&qdio->stat_lock); } static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err, int queue_no, int first, int count, unsigned long parm) { struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm; struct zfcp_qdio_queue *queue = &qdio->req_q; if (unlikely(qdio_err)) { zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first, count); zfcp_qdio_handler_error(qdio, "qdireq1"); return; } /* cleanup all SBALs being program-owned now */ zfcp_qdio_zero_sbals(queue->sbal, first, count); zfcp_qdio_account(qdio); atomic_add(count, &queue->count); wake_up(&qdio->req_q_wq); } static void zfcp_qdio_resp_put_back(struct zfcp_qdio *qdio, int processed) { struct zfcp_qdio_queue *queue = &qdio->resp_q; struct ccw_device *cdev = qdio->adapter->ccw_device; u8 count, start = queue->first; unsigned int retval; count = atomic_read(&queue->count) + processed; retval = do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, start, count); if (unlikely(retval)) { atomic_set(&queue->count, count); zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdrpb_1", NULL); } else { queue->first += count; queue->first %= QDIO_MAX_BUFFERS_PER_Q; atomic_set(&queue->count, 0); } } static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err, int queue_no, int first, int count, unsigned long parm) { struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm; int sbal_idx, sbal_no; if (unlikely(qdio_err)) { zfcp_dbf_hba_qdio(qdio->adapter->dbf, qdio_err, first, count); zfcp_qdio_handler_error(qdio, "qdires1"); return; } /* * go through all SBALs from input queue currently * returned by QDIO layer */ for (sbal_no = 0; sbal_no < count; sbal_no++) { sbal_idx = (first + sbal_no) % QDIO_MAX_BUFFERS_PER_Q; /* go through all SBALEs of SBAL */ zfcp_fsf_reqid_check(qdio, sbal_idx); } /* * put range of SBALs back to response queue * (including SBALs which have already been free before) */ zfcp_qdio_resp_put_back(qdio, count); } static void zfcp_qdio_sbal_limit(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, int max_sbals) { int count = atomic_read(&qdio->req_q.count); count = min(count, max_sbals); q_req->sbal_limit = (q_req->sbal_first + count - 1) % QDIO_MAX_BUFFERS_PER_Q; } static struct qdio_buffer_element * zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, unsigned long sbtype) { struct qdio_buffer_element *sbale; /* set last entry flag in current SBALE of current SBAL */ sbale = zfcp_qdio_sbale_curr(qdio, q_req); sbale->flags |= SBAL_FLAGS_LAST_ENTRY; /* don't exceed last allowed SBAL */ if (q_req->sbal_last == q_req->sbal_limit) return NULL; /* set chaining flag in first SBALE of current SBAL */ sbale = zfcp_qdio_sbale_req(qdio, q_req); sbale->flags |= SBAL_FLAGS0_MORE_SBALS; /* calculate index of next SBAL */ q_req->sbal_last++; q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q; /* keep this requests number of SBALs up-to-date */ q_req->sbal_number++; /* start at first SBALE of new SBAL */ q_req->sbale_curr = 0; /* set storage-block type for new SBAL */ sbale = zfcp_qdio_sbale_curr(qdio, q_req); sbale->flags |= sbtype; return sbale; } static struct qdio_buffer_element * zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, unsigned int sbtype) { if (q_req->sbale_curr == ZFCP_LAST_SBALE_PER_SBAL) return zfcp_qdio_sbal_chain(qdio, q_req, sbtype); q_req->sbale_curr++; return zfcp_qdio_sbale_curr(qdio, q_req); } static void zfcp_qdio_undo_sbals(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req) { struct qdio_buffer **sbal = qdio->req_q.sbal; int first = q_req->sbal_first; int last = q_req->sbal_last; int count = (last - first + QDIO_MAX_BUFFERS_PER_Q) % QDIO_MAX_BUFFERS_PER_Q + 1; zfcp_qdio_zero_sbals(sbal, first, count); } static int zfcp_qdio_fill_sbals(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, unsigned int sbtype, void *start_addr, unsigned int total_length) { struct qdio_buffer_element *sbale; unsigned long remaining, length; void *addr; /* split segment up */ for (addr = start_addr, remaining = total_length; remaining > 0; addr += length, remaining -= length) { sbale = zfcp_qdio_sbale_next(qdio, q_req, sbtype); if (!sbale) { atomic_inc(&qdio->req_q_full); zfcp_qdio_undo_sbals(qdio, q_req); return -EINVAL; } /* new piece must not exceed next page boundary */ length = min(remaining, (PAGE_SIZE - ((unsigned long)addr & (PAGE_SIZE - 1)))); sbale->addr = addr; sbale->length = length; } return 0; } /** * zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list * @fsf_req: request to be processed * @sbtype: SBALE flags * @sg: scatter-gather list * @max_sbals: upper bound for number of SBALs to be used * Returns: number of bytes, or error (negativ) */ int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req, unsigned long sbtype, struct scatterlist *sg, int max_sbals) { struct qdio_buffer_element *sbale; int retval, bytes = 0; /* figure out last allowed SBAL */ zfcp_qdio_sbal_limit(qdio, q_req, max_sbals); /* set storage-block type for this request */ sbale = zfcp_qdio_sbale_req(qdio, q_req); sbale->flags |= sbtype; for (; sg; sg = sg_next(sg)) { retval = zfcp_qdio_fill_sbals(qdio, q_req, sbtype, sg_virt(sg), sg->length); if (retval < 0) return retval; bytes += sg->length; } /* assume that no other SBALEs are to follow in the same SBAL */ sbale = zfcp_qdio_sbale_curr(qdio, q_req); sbale->flags |= SBAL_FLAGS_LAST_ENTRY; return bytes; } /** * zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO * @qdio: pointer to struct zfcp_qdio * @q_req: pointer to struct zfcp_qdio_req * Returns: 0 on success, error otherwise */ int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req) { struct zfcp_qdio_queue *req_q = &qdio->req_q; int first = q_req->sbal_first; int count = q_req->sbal_number; int retval; unsigned int qdio_flags = QDIO_FLAG_SYNC_OUTPUT; zfcp_qdio_account(qdio); retval = do_QDIO(qdio->adapter->ccw_device, qdio_flags, 0, first, count); if (unlikely(retval)) { zfcp_qdio_zero_sbals(req_q->sbal, first, count); return retval; } /* account for transferred buffers */ atomic_sub(count, &req_q->count); req_q->first += count; req_q->first %= QDIO_MAX_BUFFERS_PER_Q; return 0; } static void zfcp_qdio_setup_init_data(struct qdio_initialize *id, struct zfcp_qdio *qdio) { id->cdev = qdio->adapter->ccw_device; id->q_format = QDIO_ZFCP_QFMT; memcpy(id->adapter_name, dev_name(&id->cdev->dev), 8); ASCEBC(id->adapter_name, 8); id->qib_param_field_format = 0; id->qib_param_field = NULL; id->input_slib_elements = NULL; id->output_slib_elements = NULL; id->no_input_qs = 1; id->no_output_qs = 1; id->input_handler = zfcp_qdio_int_resp; id->output_handler = zfcp_qdio_int_req; id->int_parm = (unsigned long) qdio; id->input_sbal_addr_array = (void **) (qdio->resp_q.sbal); id->output_sbal_addr_array = (void **) (qdio->req_q.sbal); } /** * zfcp_qdio_allocate - allocate queue memory and initialize QDIO data * @adapter: pointer to struct zfcp_adapter * Returns: -ENOMEM on memory allocation error or return value from * qdio_allocate */ static int zfcp_qdio_allocate(struct zfcp_qdio *qdio) { struct qdio_initialize init_data; if (zfcp_qdio_buffers_enqueue(qdio->req_q.sbal) || zfcp_qdio_buffers_enqueue(qdio->resp_q.sbal)) return -ENOMEM; zfcp_qdio_setup_init_data(&init_data, qdio); return qdio_allocate(&init_data); } /** * zfcp_close_qdio - close qdio queues for an adapter * @qdio: pointer to structure zfcp_qdio */ void zfcp_qdio_close(struct zfcp_qdio *qdio) { struct zfcp_qdio_queue *req_q; int first, count; if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)) return; /* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */ req_q = &qdio->req_q; spin_lock_bh(&qdio->req_q_lock); atomic_clear_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &qdio->adapter->status); spin_unlock_bh(&qdio->req_q_lock); qdio_shutdown(qdio->adapter->ccw_device, QDIO_FLAG_CLEANUP_USING_CLEAR); /* cleanup used outbound sbals */ count = atomic_read(&req_q->count); if (count < QDIO_MAX_BUFFERS_PER_Q) { first = (req_q->first + count) % QDIO_MAX_BUFFERS_PER_Q; count = QDIO_MAX_BUFFERS_PER_Q - count; zfcp_qdio_zero_sbals(req_q->sbal, first, count); } req_q->first = 0; atomic_set(&req_q->count, 0); qdio->resp_q.first = 0; atomic_set(&qdio->resp_q.count, 0); } /** * zfcp_qdio_open - prepare and initialize response queue * @qdio: pointer to struct zfcp_qdio * Returns: 0 on success, otherwise -EIO */ int zfcp_qdio_open(struct zfcp_qdio *qdio) { struct qdio_buffer_element *sbale; struct qdio_initialize init_data; struct ccw_device *cdev = qdio->adapter->ccw_device; int cc; if (atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP) return -EIO; zfcp_qdio_setup_init_data(&init_data, qdio); if (qdio_establish(&init_data)) goto failed_establish; if (qdio_activate(cdev)) goto failed_qdio; for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) { sbale = &(qdio->resp_q.sbal[cc]->element[0]); sbale->length = 0; sbale->flags = SBAL_FLAGS_LAST_ENTRY; sbale->addr = NULL; } if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0, QDIO_MAX_BUFFERS_PER_Q)) goto failed_qdio; /* set index of first avalable SBALS / number of available SBALS */ qdio->req_q.first = 0; atomic_set(&qdio->req_q.count, QDIO_MAX_BUFFERS_PER_Q); return 0; failed_qdio: qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR); failed_establish: dev_err(&cdev->dev, "Setting up the QDIO connection to the FCP adapter failed\n"); return -EIO; } void zfcp_qdio_destroy(struct zfcp_qdio *qdio) { struct qdio_buffer **sbal_req, **sbal_resp; int p; if (!qdio) return; if (qdio->adapter->ccw_device) qdio_free(qdio->adapter->ccw_device); sbal_req = qdio->req_q.sbal; sbal_resp = qdio->resp_q.sbal; for (p = 0; p < QDIO_MAX_BUFFERS_PER_Q; p += QBUFF_PER_PAGE) { free_page((unsigned long) sbal_req[p]); free_page((unsigned long) sbal_resp[p]); } kfree(qdio); } int zfcp_qdio_setup(struct zfcp_adapter *adapter) { struct zfcp_qdio *qdio; qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL); if (!qdio) return -ENOMEM; qdio->adapter = adapter; if (zfcp_qdio_allocate(qdio)) { zfcp_qdio_destroy(qdio); return -ENOMEM; } spin_lock_init(&qdio->req_q_lock); spin_lock_init(&qdio->stat_lock); adapter->qdio = qdio; return 0; }