/* blz2060.c: Driver for Blizzard 2060 SCSI Controller. * * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) * * This driver is based on the CyberStorm driver, hence the occasional * reference to CyberStorm. */ /* TODO: * * 1) Figure out how to make a cleaner merge with the sparc driver with regard * to the caches and the Sparc MMU mapping. * 2) Make as few routines required outside the generic driver. A lot of the * routines in this file used to be inline! */ #include #include #include #include #include #include #include #include #include #include #include #include "scsi.h" #include #include "NCR53C9x.h" #include #include #include #include #include /* The controller registers can be found in the Z2 config area at these * offsets: */ #define BLZ2060_ESP_ADDR 0x1ff00 #define BLZ2060_DMA_ADDR 0x1ffe0 /* The Blizzard 2060 DMA interface * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Only two things can be programmed in the Blizzard DMA: * 1) The data direction is controlled by the status of bit 31 (1 = write) * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 * * Figure out interrupt status by reading the ESP status byte. */ struct blz2060_dma_registers { volatile unsigned char dma_led_ctrl; /* DMA led control [0x000] */ unsigned char dmapad1[0x0f]; volatile unsigned char dma_addr0; /* DMA address (MSB) [0x010] */ unsigned char dmapad2[0x03]; volatile unsigned char dma_addr1; /* DMA address [0x014] */ unsigned char dmapad3[0x03]; volatile unsigned char dma_addr2; /* DMA address [0x018] */ unsigned char dmapad4[0x03]; volatile unsigned char dma_addr3; /* DMA address (LSB) [0x01c] */ }; #define BLZ2060_DMA_WRITE 0x80000000 /* DMA control bits */ #define BLZ2060_DMA_LED 0x02 /* HD led control 1 = off */ static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); static void dma_dump_state(struct NCR_ESP *esp); static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); static void dma_ints_off(struct NCR_ESP *esp); static void dma_ints_on(struct NCR_ESP *esp); static int dma_irq_p(struct NCR_ESP *esp); static void dma_led_off(struct NCR_ESP *esp); static void dma_led_on(struct NCR_ESP *esp); static int dma_ports_p(struct NCR_ESP *esp); static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); static volatile unsigned char cmd_buffer[16]; /* This is where all commands are put * before they are transferred to the ESP chip * via PIO. */ /***************************************************************** Detection */ int __init blz2060_esp_detect(struct scsi_host_template *tpnt) { struct NCR_ESP *esp; struct zorro_dev *z = NULL; unsigned long address; if ((z = zorro_find_device(ZORRO_PROD_PHASE5_BLIZZARD_2060, z))) { unsigned long board = z->resource.start; if (request_mem_region(board+BLZ2060_ESP_ADDR, sizeof(struct ESP_regs), "NCR53C9x")) { esp = esp_allocate(tpnt, (void *)board + BLZ2060_ESP_ADDR, 0); /* Do command transfer with programmed I/O */ esp->do_pio_cmds = 1; /* Required functions */ esp->dma_bytes_sent = &dma_bytes_sent; esp->dma_can_transfer = &dma_can_transfer; esp->dma_dump_state = &dma_dump_state; esp->dma_init_read = &dma_init_read; esp->dma_init_write = &dma_init_write; esp->dma_ints_off = &dma_ints_off; esp->dma_ints_on = &dma_ints_on; esp->dma_irq_p = &dma_irq_p; esp->dma_ports_p = &dma_ports_p; esp->dma_setup = &dma_setup; /* Optional functions */ esp->dma_barrier = 0; esp->dma_drain = 0; esp->dma_invalidate = 0; esp->dma_irq_entry = 0; esp->dma_irq_exit = 0; esp->dma_led_on = &dma_led_on; esp->dma_led_off = &dma_led_off; esp->dma_poll = 0; esp->dma_reset = 0; /* SCSI chip speed */ esp->cfreq = 40000000; /* The DMA registers on the Blizzard are mapped * relative to the device (i.e. in the same Zorro * I/O block). */ address = (unsigned long)ZTWO_VADDR(board); esp->dregs = (void *)(address + BLZ2060_DMA_ADDR); /* ESP register base */ esp->eregs = (struct ESP_regs *)(address + BLZ2060_ESP_ADDR); /* Set the command buffer */ esp->esp_command = cmd_buffer; esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); esp->irq = IRQ_AMIGA_PORTS; request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, "Blizzard 2060 SCSI", esp->ehost); /* Figure out our scsi ID on the bus */ esp->scsi_id = 7; /* We don't have a differential SCSI-bus. */ esp->diff = 0; esp_initialize(esp); printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); esps_running = esps_in_use; return esps_in_use; } } return 0; } /************************************************************* DMA Functions */ static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) { /* Since the Blizzard DMA is fully dedicated to the ESP chip, * the number of bytes sent (to the ESP chip) equals the number * of bytes in the FIFO - there is no buffering in the DMA controller. * XXXX Do I read this right? It is from host to ESP, right? */ return fifo_count; } static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) { /* I don't think there's any limit on the Blizzard DMA. So we use what * the ESP chip can handle (24 bit). */ unsigned long sz = sp->SCp.this_residual; if(sz > 0x1000000) sz = 0x1000000; return sz; } static void dma_dump_state(struct NCR_ESP *esp) { ESPLOG(("intreq:<%04x>, intena:<%04x>\n", amiga_custom.intreqr, amiga_custom.intenar)); } static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) { struct blz2060_dma_registers *dregs = (struct blz2060_dma_registers *) (esp->dregs); cache_clear(addr, length); addr >>= 1; addr &= ~(BLZ2060_DMA_WRITE); dregs->dma_addr3 = (addr ) & 0xff; dregs->dma_addr2 = (addr >> 8) & 0xff; dregs->dma_addr1 = (addr >> 16) & 0xff; dregs->dma_addr0 = (addr >> 24) & 0xff; } static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) { struct blz2060_dma_registers *dregs = (struct blz2060_dma_registers *) (esp->dregs); cache_push(addr, length); addr >>= 1; addr |= BLZ2060_DMA_WRITE; dregs->dma_addr3 = (addr ) & 0xff; dregs->dma_addr2 = (addr >> 8) & 0xff; dregs->dma_addr1 = (addr >> 16) & 0xff; dregs->dma_addr0 = (addr >> 24) & 0xff; } static void dma_ints_off(struct NCR_ESP *esp) { disable_irq(esp->irq); } static void dma_ints_on(struct NCR_ESP *esp) { enable_irq(esp->irq); } static int dma_irq_p(struct NCR_ESP *esp) { return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); } static void dma_led_off(struct NCR_ESP *esp) { ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = BLZ2060_DMA_LED; } static void dma_led_on(struct NCR_ESP *esp) { ((struct blz2060_dma_registers *) (esp->dregs))->dma_led_ctrl = 0; } static int dma_ports_p(struct NCR_ESP *esp) { return ((amiga_custom.intenar) & IF_PORTS); } static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) { /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" * so when (write) is true, it actually means READ! */ if(write){ dma_init_read(esp, addr, count); } else { dma_init_write(esp, addr, count); } } #define HOSTS_C int blz2060_esp_release(struct Scsi_Host *instance) { #ifdef MODULE unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; esp_deallocate((struct NCR_ESP *)instance->hostdata); esp_release(); release_mem_region(address, sizeof(struct ESP_regs)); free_irq(IRQ_AMIGA_PORTS, esp_intr); #endif return 1; } static struct scsi_host_template driver_template = { .proc_name = "esp-blz2060", .proc_info = esp_proc_info, .name = "Blizzard2060 SCSI", .detect = blz2060_esp_detect, .slave_alloc = esp_slave_alloc, .slave_destroy = esp_slave_destroy, .release = blz2060_esp_release, .queuecommand = esp_queue, .eh_abort_handler = esp_abort, .eh_bus_reset_handler = esp_reset, .can_queue = 7, .this_id = 7, .sg_tablesize = SG_ALL, .cmd_per_lun = 1, .use_clustering = ENABLE_CLUSTERING }; #include "scsi_module.c" MODULE_LICENSE("GPL");