/* * This file is part of the Chelsio FCoE driver for Linux. * * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "csio_hw.h" #include "csio_lnode.h" #include "csio_rnode.h" int csio_dbg_level = 0xFEFF; unsigned int csio_port_mask = 0xf; /* Default FW event queue entries. */ static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE; /* Default MSI param level */ int csio_msi = 2; /* FCoE function instances */ static int dev_num; /* FCoE Adapter types & its description */ static const struct csio_adap_desc csio_t5_fcoe_adapters[] = { {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"}, {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"}, {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"}, {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"}, {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"}, {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"}, {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"}, {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"}, {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"}, {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"}, {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"}, {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"}, {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"}, {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"}, {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"}, {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"}, {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"}, {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"}, {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"}, {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"}, {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"}, {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"} }; static void csio_mgmtm_cleanup(struct csio_mgmtm *); static void csio_hw_mbm_cleanup(struct csio_hw *); /* State machine forward declarations */ static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev); static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev); static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev); static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev); static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev); static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev); static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev); static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev); static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev); static void csio_hw_initialize(struct csio_hw *hw); static void csio_evtq_stop(struct csio_hw *hw); static void csio_evtq_start(struct csio_hw *hw); int csio_is_hw_ready(struct csio_hw *hw) { return csio_match_state(hw, csio_hws_ready); } int csio_is_hw_removing(struct csio_hw *hw) { return csio_match_state(hw, csio_hws_removing); } /* * csio_hw_wait_op_done_val - wait until an operation is completed * @hw: the HW module * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ int csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask, int polarity, int attempts, int delay, uint32_t *valp) { uint32_t val; while (1) { val = csio_rd_reg32(hw, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } /* * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @hw: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr, unsigned int mask, unsigned int val) { csio_wr_reg32(hw, addr, TP_PIO_ADDR_A); val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask; csio_wr_reg32(hw, val, TP_PIO_DATA_A); } void csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask, uint32_t value) { uint32_t val = csio_rd_reg32(hw, reg) & ~mask; csio_wr_reg32(hw, val | value, reg); /* Flush */ csio_rd_reg32(hw, reg); } static int csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf) { return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype, addr, len, buf, 0); } /* * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */ #define EEPROM_MAX_RD_POLL 40 #define EEPROM_MAX_WR_POLL 6 #define EEPROM_STAT_ADDR 0x7bfc #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 1024 #define VPD_INFO_FLD_HDR_SIZE 3 /* * csio_hw_seeprom_read - read a serial EEPROM location * @hw: hw to read * @addr: EEPROM virtual address * @data: where to store the read data * * Read a 32-bit word from a location in serial EEPROM using the card's PCI * VPD capability. Note that this function must be called with a virtual * address. */ static int csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data) { uint16_t val = 0; int attempts = EEPROM_MAX_RD_POLL; uint32_t base = hw->params.pci.vpd_cap_addr; if (addr >= EEPROMVSIZE || (addr & 3)) return -EINVAL; pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr); do { udelay(10); pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val); } while (!(val & PCI_VPD_ADDR_F) && --attempts); if (!(val & PCI_VPD_ADDR_F)) { csio_err(hw, "reading EEPROM address 0x%x failed\n", addr); return -EINVAL; } pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data); *data = le32_to_cpu(*(__le32 *)data); return 0; } /* * Partial EEPROM Vital Product Data structure. Includes only the ID and * VPD-R sections. */ struct t4_vpd_hdr { u8 id_tag; u8 id_len[2]; u8 id_data[ID_LEN]; u8 vpdr_tag; u8 vpdr_len[2]; }; /* * csio_hw_get_vpd_keyword_val - Locates an information field keyword in * the VPD * @v: Pointer to buffered vpd data structure * @kw: The keyword to search for * * Returns the value of the information field keyword or * -EINVAL otherwise. */ static int csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) { int32_t i; int32_t offset , len; const uint8_t *buf = &v->id_tag; const uint8_t *vpdr_len = &v->vpdr_tag; offset = sizeof(struct t4_vpd_hdr); len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8); if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) return -EINVAL; for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) { if (memcmp(buf + i , kw, 2) == 0) { i += VPD_INFO_FLD_HDR_SIZE; return i; } i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; } return -EINVAL; } static int csio_pci_capability(struct pci_dev *pdev, int cap, int *pos) { *pos = pci_find_capability(pdev, cap); if (*pos) return 0; return -1; } /* * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM * @hw: HW module * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM. */ static int csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p) { int i, ret, ec, sn, addr; uint8_t *vpd, csum; const struct t4_vpd_hdr *v; /* To get around compilation warning from strstrip */ char *s; if (csio_is_valid_vpd(hw)) return 0; ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD, &hw->params.pci.vpd_cap_addr); if (ret) return -EINVAL; vpd = kzalloc(VPD_LEN, GFP_ATOMIC); if (vpd == NULL) return -ENOMEM; /* * Card information normally starts at VPD_BASE but early cards had * it at 0. */ ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd)); addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; for (i = 0; i < VPD_LEN; i += 4) { ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i)); if (ret) { kfree(vpd); return ret; } } /* Reset the VPD flag! */ hw->flags &= (~CSIO_HWF_VPD_VALID); v = (const struct t4_vpd_hdr *)vpd; #define FIND_VPD_KW(var, name) do { \ var = csio_hw_get_vpd_keyword_val(v, name); \ if (var < 0) { \ csio_err(hw, "missing VPD keyword " name "\n"); \ kfree(vpd); \ return -EINVAL; \ } \ } while (0) FIND_VPD_KW(i, "RV"); for (csum = 0; i >= 0; i--) csum += vpd[i]; if (csum) { csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum); kfree(vpd); return -EINVAL; } FIND_VPD_KW(ec, "EC"); FIND_VPD_KW(sn, "SN"); #undef FIND_VPD_KW memcpy(p->id, v->id_data, ID_LEN); s = strstrip(p->id); memcpy(p->ec, vpd + ec, EC_LEN); s = strstrip(p->ec); i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); s = strstrip(p->sn); csio_valid_vpd_copied(hw); kfree(vpd); return 0; } /* * csio_hw_sf1_read - read data from the serial flash * @hw: the HW module * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont, int32_t lock, uint32_t *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) return -EBUSY; csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1), SF_OP_A); ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 10, NULL); if (!ret) *valp = csio_rd_reg32(hw, SF_DATA_A); return ret; } /* * csio_hw_sf1_write - write data to the serial flash * @hw: the HW module * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont, int32_t lock, uint32_t val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F) return -EBUSY; csio_wr_reg32(hw, val, SF_DATA_A); csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1) | SF_LOCK_V(lock), SF_OP_A); return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 10, NULL); } /* * csio_hw_flash_wait_op - wait for a flash operation to complete * @hw: the HW module * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay) { int ret; uint32_t status; while (1) { ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS); if (ret != 0) return ret; ret = csio_hw_sf1_read(hw, 1, 0, 1, &status); if (ret != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /* * csio_hw_read_flash - read words from serial flash * @hw: the HW module * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianess. */ static int csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords, uint32_t *data, int32_t byte_oriented) { int ret; if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; ret = csio_hw_sf1_write(hw, 4, 1, 0, addr); if (ret != 0) return ret; ret = csio_hw_sf1_read(hw, 1, 1, 0, data); if (ret != 0) return ret; for ( ; nwords; nwords--, data++) { ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data); if (nwords == 1) csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = (__force __u32) htonl(*data); } return 0; } /* * csio_hw_write_flash - write up to a page of data to the serial flash * @hw: the hw * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. */ static int csio_hw_write_flash(struct csio_hw *hw, uint32_t addr, uint32_t n, const uint8_t *data) { int ret = -EINVAL; uint32_t buf[64]; uint32_t i, c, left, val, offset = addr & 0xff; if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); if (ret != 0) goto unlock; ret = csio_hw_sf1_write(hw, 4, 1, 1, val); if (ret != 0) goto unlock; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; ret = csio_hw_sf1_write(hw, c, c != left, 1, val); if (ret) goto unlock; } ret = csio_hw_flash_wait_op(hw, 8, 1); if (ret) goto unlock; csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); if (ret) return ret; if (memcmp(data - n, (uint8_t *)buf + offset, n)) { csio_err(hw, "failed to correctly write the flash page at %#x\n", addr); return -EINVAL; } return 0; unlock: csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ return ret; } /* * csio_hw_flash_erase_sectors - erase a range of flash sectors * @hw: the HW module * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ static int csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end) { int ret = 0; while (start <= end) { ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); if (ret != 0) goto out; ret = csio_hw_sf1_write(hw, 4, 0, 1, SF_ERASE_SECTOR | (start << 8)); if (ret != 0) goto out; ret = csio_hw_flash_wait_op(hw, 14, 500); if (ret != 0) goto out; start++; } out: if (ret) csio_err(hw, "erase of flash sector %d failed, error %d\n", start, ret); csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ return 0; } static void csio_hw_print_fw_version(struct csio_hw *hw, char *str) { csio_info(hw, "%s: %u.%u.%u.%u\n", str, FW_HDR_FW_VER_MAJOR_G(hw->fwrev), FW_HDR_FW_VER_MINOR_G(hw->fwrev), FW_HDR_FW_VER_MICRO_G(hw->fwrev), FW_HDR_FW_VER_BUILD_G(hw->fwrev)); } /* * csio_hw_get_fw_version - read the firmware version * @hw: HW module * @vers: where to place the version * * Reads the FW version from flash. */ static int csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers) { return csio_hw_read_flash(hw, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /* * csio_hw_get_tp_version - read the TP microcode version * @hw: HW module * @vers: where to place the version * * Reads the TP microcode version from flash. */ static int csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers) { return csio_hw_read_flash(hw, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /* * csio_hw_fw_dload - download firmware. * @hw: HW module * @fw_data: firmware image to write. * @size: image size * * Write the supplied firmware image to the card's serial flash. */ static int csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size) { uint32_t csum; int32_t addr; int ret; uint32_t i; uint8_t first_page[SF_PAGE_SIZE]; const __be32 *p = (const __be32 *)fw_data; struct fw_hdr *hdr = (struct fw_hdr *)fw_data; uint32_t sf_sec_size; if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) { csio_err(hw, "Serial Flash data invalid\n"); return -EINVAL; } if (!size) { csio_err(hw, "FW image has no data\n"); return -EINVAL; } if (size & 511) { csio_err(hw, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if (ntohs(hdr->len512) * 512 != size) { csio_err(hw, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > FLASH_FW_MAX_SIZE) { csio_err(hw, "FW image too large, max is %u bytes\n", FLASH_FW_MAX_SIZE); return -EINVAL; } for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += ntohl(p[i]); if (csum != 0xffffffff) { csio_err(hw, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } sf_sec_size = hw->params.sf_size / hw->params.sf_nsec; i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ csio_dbg(hw, "Erasing sectors... start:%d end:%d\n", FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1); ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1); if (ret) { csio_err(hw, "Flash Erase failed\n"); goto out; } /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page); if (ret) goto out; csio_dbg(hw, "Writing Flash .. start:%d end:%d\n", FW_IMG_START, FW_IMG_START + size); addr = FLASH_FW_START; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data); if (ret) goto out; } ret = csio_hw_write_flash(hw, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const uint8_t *)&hdr->fw_ver); out: if (ret) csio_err(hw, "firmware download failed, error %d\n", ret); return ret; } static int csio_hw_get_flash_params(struct csio_hw *hw) { /* Table for non-Numonix supported flash parts. Numonix parts are left * to the preexisting code. All flash parts have 64KB sectors. */ static struct flash_desc { u32 vendor_and_model_id; u32 size_mb; } supported_flash[] = { { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ }; u32 part, manufacturer; u32 density, size = 0; u32 flashid = 0; int ret; ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID); if (!ret) ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid); csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */ if (ret) return ret; /* Check to see if it's one of our non-standard supported Flash parts. */ for (part = 0; part < ARRAY_SIZE(supported_flash); part++) if (supported_flash[part].vendor_and_model_id == flashid) { hw->params.sf_size = supported_flash[part].size_mb; hw->params.sf_nsec = hw->params.sf_size / SF_SEC_SIZE; goto found; } /* Decode Flash part size. The code below looks repetitive with * common encodings, but that's not guaranteed in the JEDEC * specification for the Read JEDEC ID command. The only thing that * we're guaranteed by the JEDEC specification is where the * Manufacturer ID is in the returned result. After that each * Manufacturer ~could~ encode things completely differently. * Note, all Flash parts must have 64KB sectors. */ manufacturer = flashid & 0xff; switch (manufacturer) { case 0x20: { /* Micron/Numonix */ /* This Density -> Size decoding table is taken from Micron * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x14 ... 0x19: /* 1MB - 32MB */ size = 1 << density; break; case 0x20: /* 64MB */ size = 1 << 26; break; case 0x21: /* 128MB */ size = 1 << 27; break; case 0x22: /* 256MB */ size = 1 << 28; } break; } case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */ /* This Density -> Size decoding table is taken from ISSI * Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x16: /* 32 MB */ size = 1 << 25; break; case 0x17: /* 64MB */ size = 1 << 26; } break; } case 0xc2: /* Macronix */ case 0xef: /* Winbond */ { /* This Density -> Size decoding table is taken from * Macronix and Winbond Data Sheets. */ density = (flashid >> 16) & 0xff; switch (density) { case 0x17: /* 8MB */ case 0x18: /* 16MB */ size = 1 << density; } } } /* If we didn't recognize the FLASH part, that's no real issue: the * Hardware/Software contract says that Hardware will _*ALWAYS*_ * use a FLASH part which is at least 4MB in size and has 64KB * sectors. The unrecognized FLASH part is likely to be much larger * than 4MB, but that's all we really need. */ if (size == 0) { csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); size = 1 << 22; } /* Store decoded Flash size */ hw->params.sf_size = size; hw->params.sf_nsec = size / SF_SEC_SIZE; found: if (hw->params.sf_size < FLASH_MIN_SIZE) csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n", flashid, hw->params.sf_size, FLASH_MIN_SIZE); return 0; } /*****************************************************************************/ /* HW State machine assists */ /*****************************************************************************/ static int csio_hw_dev_ready(struct csio_hw *hw) { uint32_t reg; int cnt = 6; int src_pf; while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) && (--cnt != 0)) mdelay(100); if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) src_pf = SOURCEPF_G(reg); else src_pf = T6_SOURCEPF_G(reg); if ((cnt == 0) && (((int32_t)(src_pf) < 0) || (src_pf >= CSIO_MAX_PFN))) { csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt); return -EIO; } hw->pfn = src_pf; return 0; } /* * csio_do_hello - Perform the HELLO FW Mailbox command and process response. * @hw: HW module * @state: Device state * * FW_HELLO_CMD has to be polled for completion. */ static int csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state) { struct csio_mb *mbp; int rv = 0; enum fw_retval retval; uint8_t mpfn; char state_str[16]; int retries = FW_CMD_HELLO_RETRIES; memset(state_str, 0, sizeof(state_str)); mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { rv = -ENOMEM; CSIO_INC_STATS(hw, n_err_nomem); goto out; } retry: csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, hw->pfn, CSIO_MASTER_MAY, NULL); rv = csio_mb_issue(hw, mbp); if (rv) { csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv); goto out_free_mb; } csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn); if (retval != FW_SUCCESS) { csio_err(hw, "HELLO cmd failed with ret: %d\n", retval); rv = -EINVAL; goto out_free_mb; } /* Firmware has designated us to be master */ if (hw->pfn == mpfn) { hw->flags |= CSIO_HWF_MASTER; } else if (*state == CSIO_DEV_STATE_UNINIT) { /* * If we're not the Master PF then we need to wait around for * the Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable * PF and there is no current Master PF; a Master PF may show up * momentarily and we wouldn't want to fail pointlessly. (This * can happen when an OS loads lots of different drivers rapidly * at the same time). In this case, the Master PF returned by * the firmware will be PCIE_FW_MASTER_MASK so the test below * will work ... */ int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { uint32_t pcie_fw; spin_unlock_irq(&hw->lock); msleep(50); spin_lock_irq(&hw->lock); waiting -= 50; /* * If neither Error nor Initialized are indicated * by the firmware keep waiting till we exhaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = csio_rd_reg32(hw, PCIE_FW_A); if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) { if (waiting <= 0) { if (retries-- > 0) goto retry; rv = -ETIMEDOUT; break; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & PCIE_FW_ERR_F) { *state = CSIO_DEV_STATE_ERR; rv = -ETIMEDOUT; } else if (pcie_fw & PCIE_FW_INIT_F) *state = CSIO_DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (mpfn == PCIE_FW_MASTER_M && (pcie_fw & PCIE_FW_MASTER_VLD_F)) mpfn = PCIE_FW_MASTER_G(pcie_fw); break; } hw->flags &= ~CSIO_HWF_MASTER; } switch (*state) { case CSIO_DEV_STATE_UNINIT: strcpy(state_str, "Initializing"); break; case CSIO_DEV_STATE_INIT: strcpy(state_str, "Initialized"); break; case CSIO_DEV_STATE_ERR: strcpy(state_str, "Error"); break; default: strcpy(state_str, "Unknown"); break; } if (hw->pfn == mpfn) csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n", hw->pfn, state_str); else csio_info(hw, "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n", hw->pfn, mpfn, state_str); out_free_mb: mempool_free(mbp, hw->mb_mempool); out: return rv; } /* * csio_do_bye - Perform the BYE FW Mailbox command and process response. * @hw: HW module * */ static int csio_do_bye(struct csio_hw *hw) { struct csio_mb *mbp; enum fw_retval retval; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of BYE command failed\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { mempool_free(mbp, hw->mb_mempool); return -EINVAL; } mempool_free(mbp, hw->mb_mempool); return 0; } /* * csio_do_reset- Perform the device reset. * @hw: HW module * @fw_rst: FW reset * * If fw_rst is set, issues FW reset mbox cmd otherwise * does PIO reset. * Performs reset of the function. */ static int csio_do_reset(struct csio_hw *hw, bool fw_rst) { struct csio_mb *mbp; enum fw_retval retval; if (!fw_rst) { /* PIO reset */ csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); mdelay(2000); return 0; } mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, PIORSTMODE_F | PIORST_F, 0, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of RESET command failed.n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } mempool_free(mbp, hw->mb_mempool); return 0; } static int csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp) { struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb; uint16_t caps; caps = ntohs(rsp->fcoecaps); if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) { csio_err(hw, "No FCoE Initiator capability in the firmware.\n"); return -EINVAL; } if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) { csio_err(hw, "No FCoE Control Offload capability\n"); return -EINVAL; } return 0; } /* * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET * @hw: the HW module * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * PCIE_FW_MASTER_MASK). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ static int csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force) { enum fw_retval retval = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (mbox <= PCIE_FW_MASTER_M) { struct csio_mb *mbp; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of RESET command failed!\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } retval = csio_mb_fw_retval(mbp); mempool_free(mbp, hw->mb_mempool); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (retval == 0 || force) { csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F); csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, PCIE_FW_HALT_F); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return retval ? -EINVAL : 0; } /* * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET * @hw: the HW module * @reset: if we want to do a RESET to restart things * * Restart firmware previously halted by csio_hw_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. * * We do this in two ways: * * 1. If we're dealing with newer firmware we'll simply want to take * the chip's microprocessor out of RESET. This will cause the * firmware to start up from its start vector. And then we'll loop * until the firmware indicates it's started again (PCIE_FW.HALT * reset to 0) or we timeout. * * 2. If we're dealing with older firmware then we'll need to RESET * the chip since older firmware won't recognize the PCIE_FW.HALT * flag and automatically RESET itself on startup. */ static int csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset) { if (reset) { /* * Since we're directing the RESET instead of the firmware * doing it automatically, we need to clear the PCIE_FW.HALT * bit. */ csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0); /* * If we've been given a valid mailbox, first try to get the * firmware to do the RESET. If that works, great and we can * return success. Otherwise, if we haven't been given a * valid mailbox or the RESET command failed, fall back to * hitting the chip with a hammer. */ if (mbox <= PCIE_FW_MASTER_M) { csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); msleep(100); if (csio_do_reset(hw, true) == 0) return 0; } csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); msleep(2000); } else { int ms; csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F)) return 0; msleep(100); ms += 100; } return -ETIMEDOUT; } return 0; } /* * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW * @hw: the HW module * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ static int csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox, const u8 *fw_data, uint32_t size, int32_t force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; int reset, ret; ret = csio_hw_fw_halt(hw, mbox, force); if (ret != 0 && !force) return ret; ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size); if (ret != 0) return ret; /* * Older versions of the firmware don't understand the new * PCIE_FW.HALT flag and so won't know to perform a RESET when they * restart. So for newly loaded older firmware we'll have to do the * RESET for it so it starts up on a clean slate. We can tell if * the newly loaded firmware will handle this right by checking * its header flags to see if it advertises the capability. */ reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); return csio_hw_fw_restart(hw, mbox, reset); } /* * csio_get_device_params - Get device parameters. * @hw: HW module * */ static int csio_get_device_params(struct csio_hw *hw) { struct csio_wrm *wrm = csio_hw_to_wrm(hw); struct csio_mb *mbp; enum fw_retval retval; u32 param[6]; int i, j = 0; /* Initialize portids to -1 */ for (i = 0; i < CSIO_MAX_PPORTS; i++) hw->pport[i].portid = -1; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } /* Get port vec information. */ param[0] = FW_PARAM_DEV(PORTVEC); /* Get Core clock. */ param[1] = FW_PARAM_DEV(CCLK); /* Get EQ id start and end. */ param[2] = FW_PARAM_PFVF(EQ_START); param[3] = FW_PARAM_PFVF(EQ_END); /* Get IQ id start and end. */ param[4] = FW_PARAM_PFVF(IQFLINT_START); param[5] = FW_PARAM_PFVF(IQFLINT_END); csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, ARRAY_SIZE(param), param, NULL, false, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_mb_process_read_params_rsp(hw, mbp, &retval, ARRAY_SIZE(param), param); if (retval != FW_SUCCESS) { csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } /* cache the information. */ hw->port_vec = param[0]; hw->vpd.cclk = param[1]; wrm->fw_eq_start = param[2]; wrm->fw_iq_start = param[4]; /* Using FW configured max iqs & eqs */ if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) || !csio_is_hw_master(hw)) { hw->cfg_niq = param[5] - param[4] + 1; hw->cfg_neq = param[3] - param[2] + 1; csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n", hw->cfg_niq, hw->cfg_neq); } hw->port_vec &= csio_port_mask; hw->num_pports = hweight32(hw->port_vec); csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n", hw->port_vec, hw->num_pports); for (i = 0; i < hw->num_pports; i++) { while ((hw->port_vec & (1 << j)) == 0) j++; hw->pport[i].portid = j++; csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid); } mempool_free(mbp, hw->mb_mempool); return 0; } /* * csio_config_device_caps - Get and set device capabilities. * @hw: HW module * */ static int csio_config_device_caps(struct csio_hw *hw) { struct csio_mb *mbp; enum fw_retval retval; int rv = -EINVAL; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } /* Get device capabilities */ csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n"); goto out; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval); goto out; } /* Validate device capabilities */ rv = csio_hw_validate_caps(hw, mbp); if (rv != 0) goto out; /* Don't config device capabilities if already configured */ if (hw->fw_state == CSIO_DEV_STATE_INIT) { rv = 0; goto out; } /* Write back desired device capabilities */ csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true, false, true, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n"); goto out; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval); goto out; } rv = 0; out: mempool_free(mbp, hw->mb_mempool); return rv; } static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) { enum cc_fec cc_fec = 0; if (fw_fec & FW_PORT_CAP32_FEC_RS) cc_fec |= FEC_RS; if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) cc_fec |= FEC_BASER_RS; return cc_fec; } static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause) { fw_port_cap32_t fw_pause = 0; if (cc_pause & PAUSE_RX) fw_pause |= FW_PORT_CAP32_FC_RX; if (cc_pause & PAUSE_TX) fw_pause |= FW_PORT_CAP32_FC_TX; return fw_pause; } static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec) { fw_port_cap32_t fw_fec = 0; if (cc_fec & FEC_RS) fw_fec |= FW_PORT_CAP32_FEC_RS; if (cc_fec & FEC_BASER_RS) fw_fec |= FW_PORT_CAP32_FEC_BASER_RS; return fw_fec; } /** * fwcap_to_fwspeed - return highest speed in Port Capabilities * @acaps: advertised Port Capabilities * * Get the highest speed for the port from the advertised Port * Capabilities. */ fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) { #define TEST_SPEED_RETURN(__caps_speed) \ do { \ if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return FW_PORT_CAP32_SPEED_##__caps_speed; \ } while (0) TEST_SPEED_RETURN(400G); TEST_SPEED_RETURN(200G); TEST_SPEED_RETURN(100G); TEST_SPEED_RETURN(50G); TEST_SPEED_RETURN(40G); TEST_SPEED_RETURN(25G); TEST_SPEED_RETURN(10G); TEST_SPEED_RETURN(1G); TEST_SPEED_RETURN(100M); #undef TEST_SPEED_RETURN return 0; } /** * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits * @caps16: a 16-bit Port Capabilities value * * Returns the equivalent 32-bit Port Capabilities value. */ fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) { fw_port_cap32_t caps32 = 0; #define CAP16_TO_CAP32(__cap) \ do { \ if (caps16 & FW_PORT_CAP_##__cap) \ caps32 |= FW_PORT_CAP32_##__cap; \ } while (0) CAP16_TO_CAP32(SPEED_100M); CAP16_TO_CAP32(SPEED_1G); CAP16_TO_CAP32(SPEED_25G); CAP16_TO_CAP32(SPEED_10G); CAP16_TO_CAP32(SPEED_40G); CAP16_TO_CAP32(SPEED_100G); CAP16_TO_CAP32(FC_RX); CAP16_TO_CAP32(FC_TX); CAP16_TO_CAP32(ANEG); CAP16_TO_CAP32(MDIAUTO); CAP16_TO_CAP32(MDISTRAIGHT); CAP16_TO_CAP32(FEC_RS); CAP16_TO_CAP32(FEC_BASER_RS); CAP16_TO_CAP32(802_3_PAUSE); CAP16_TO_CAP32(802_3_ASM_DIR); #undef CAP16_TO_CAP32 return caps32; } /** * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits * @caps32: a 32-bit Port Capabilities value * * Returns the equivalent 16-bit Port Capabilities value. Note that * not all 32-bit Port Capabilities can be represented in the 16-bit * Port Capabilities and some fields/values may not make it. */ fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32) { fw_port_cap16_t caps16 = 0; #define CAP32_TO_CAP16(__cap) \ do { \ if (caps32 & FW_PORT_CAP32_##__cap) \ caps16 |= FW_PORT_CAP_##__cap; \ } while (0) CAP32_TO_CAP16(SPEED_100M); CAP32_TO_CAP16(SPEED_1G); CAP32_TO_CAP16(SPEED_10G); CAP32_TO_CAP16(SPEED_25G); CAP32_TO_CAP16(SPEED_40G); CAP32_TO_CAP16(SPEED_100G); CAP32_TO_CAP16(FC_RX); CAP32_TO_CAP16(FC_TX); CAP32_TO_CAP16(802_3_PAUSE); CAP32_TO_CAP16(802_3_ASM_DIR); CAP32_TO_CAP16(ANEG); CAP32_TO_CAP16(FORCE_PAUSE); CAP32_TO_CAP16(MDIAUTO); CAP32_TO_CAP16(MDISTRAIGHT); CAP32_TO_CAP16(FEC_RS); CAP32_TO_CAP16(FEC_BASER_RS); #undef CAP32_TO_CAP16 return caps16; } /** * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value * * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new * 32-bit Port Capabilities value. */ fw_port_cap32_t lstatus_to_fwcap(u32 lstatus) { fw_port_cap32_t linkattr = 0; /* The format of the Link Status in the old * 16-bit Port Information message isn't the same as the * 16-bit Port Capabilities bitfield used everywhere else. */ if (lstatus & FW_PORT_CMD_RXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_RX; if (lstatus & FW_PORT_CMD_TXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_TX; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) linkattr |= FW_PORT_CAP32_SPEED_100M; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) linkattr |= FW_PORT_CAP32_SPEED_1G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) linkattr |= FW_PORT_CAP32_SPEED_10G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) linkattr |= FW_PORT_CAP32_SPEED_25G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) linkattr |= FW_PORT_CAP32_SPEED_40G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) linkattr |= FW_PORT_CAP32_SPEED_100G; return linkattr; } /** * csio_init_link_config - initialize a link's SW state * @lc: pointer to structure holding the link state * @pcaps: link Port Capabilities * @acaps: link current Advertised Port Capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, fw_port_cap32_t acaps) { lc->pcaps = pcaps; lc->def_acaps = acaps; lc->lpacaps = 0; lc->speed_caps = 0; lc->speed = 0; lc->requested_fc = PAUSE_RX | PAUSE_TX; lc->fc = lc->requested_fc; /* * For Forward Error Control, we default to whatever the Firmware * tells us the Link is currently advertising. */ lc->requested_fec = FEC_AUTO; lc->fec = fwcap_to_cc_fec(lc->def_acaps); /* If the Port is capable of Auto-Negtotiation, initialize it as * "enabled" and copy over all of the Physical Port Capabilities * to the Advertised Port Capabilities. Otherwise mark it as * Auto-Negotiate disabled and select the highest supported speed * for the link. Note parallel structure in t4_link_l1cfg_core() * and t4_handle_get_port_info(). */ if (lc->pcaps & FW_PORT_CAP32_ANEG) { lc->acaps = lc->pcaps & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->acaps = 0; lc->autoneg = AUTONEG_DISABLE; } } static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps, uint32_t *rcaps) { unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO); fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap; lc->link_ok = 0; /* * Convert driver coding of Pause Frame Flow Control settings into the * Firmware's API. */ fw_fc = cc_to_fwcap_pause(lc->requested_fc); /* * Convert Common Code Forward Error Control settings into the * Firmware's API. If the current Requested FEC has "Automatic" * (IEEE 802.3) specified, then we use whatever the Firmware * sent us as part of it's IEEE 802.3-based interpretation of * the Transceiver Module EPROM FEC parameters. Otherwise we * use whatever is in the current Requested FEC settings. */ if (lc->requested_fec & FEC_AUTO) cc_fec = fwcap_to_cc_fec(lc->def_acaps); else cc_fec = lc->requested_fec; fw_fec = cc_to_fwcap_fec(cc_fec); /* Figure out what our Requested Port Capabilities are going to be. * Note parallel structure in t4_handle_get_port_info() and * init_link_config(). */ if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec; lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = cc_fec; } else if (lc->autoneg == AUTONEG_DISABLE) { lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi; lc->fc = lc->requested_fc & ~PAUSE_AUTONEG; lc->fec = cc_fec; } else { lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi; } *rcaps = lrcap; } /* * csio_enable_ports - Bring up all available ports. * @hw: HW module. * */ static int csio_enable_ports(struct csio_hw *hw) { struct csio_mb *mbp; u16 fw_caps = FW_CAPS_UNKNOWN; enum fw_retval retval; uint8_t portid; fw_port_cap32_t pcaps, acaps, rcaps; int i; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } for (i = 0; i < hw->num_pports; i++) { portid = hw->pport[i].portid; if (fw_caps == FW_CAPS_UNKNOWN) { u32 param, val; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); val = 1; csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, 1, ¶m, &val, true, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n", portid); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_mb_process_read_params_rsp(hw, mbp, &retval, 0, NULL); fw_caps = retval ? FW_CAPS16 : FW_CAPS32; } /* Read PORT information */ csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, false, 0, fw_caps, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n", portid); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps, &pcaps, &acaps); if (retval != FW_SUCCESS) { csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n", portid, retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps); csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps); /* Write back PORT information */ csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true, rcaps, fw_caps, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n", portid); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n", portid, retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } } /* For all ports */ mempool_free(mbp, hw->mb_mempool); return 0; } /* * csio_get_fcoe_resinfo - Read fcoe fw resource info. * @hw: HW module * Issued with lock held. */ static int csio_get_fcoe_resinfo(struct csio_hw *hw) { struct csio_fcoe_res_info *res_info = &hw->fres_info; struct fw_fcoe_res_info_cmd *rsp; struct csio_mb *mbp; enum fw_retval retval; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } /* Get FCoE FW resource information */ csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb); retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16)); if (retval != FW_SUCCESS) { csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } res_info->e_d_tov = ntohs(rsp->e_d_tov); res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq); res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els); res_info->r_r_tov = ntohs(rsp->r_r_tov); res_info->max_xchgs = ntohl(rsp->max_xchgs); res_info->max_ssns = ntohl(rsp->max_ssns); res_info->used_xchgs = ntohl(rsp->used_xchgs); res_info->used_ssns = ntohl(rsp->used_ssns); res_info->max_fcfs = ntohl(rsp->max_fcfs); res_info->max_vnps = ntohl(rsp->max_vnps); res_info->used_fcfs = ntohl(rsp->used_fcfs); res_info->used_vnps = ntohl(rsp->used_vnps); csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns, res_info->max_xchgs); mempool_free(mbp, hw->mb_mempool); return 0; } static int csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param) { struct csio_mb *mbp; enum fw_retval retval; u32 _param[1]; mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } /* * Find out whether we're dealing with a version of * the firmware which has configuration file support. */ _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, ARRAY_SIZE(_param), _param, NULL, false, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } csio_mb_process_read_params_rsp(hw, mbp, &retval, ARRAY_SIZE(_param), _param); if (retval != FW_SUCCESS) { csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", retval); mempool_free(mbp, hw->mb_mempool); return -EINVAL; } mempool_free(mbp, hw->mb_mempool); *param = _param[0]; return 0; } static int csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path) { int ret = 0; const struct firmware *cf; struct pci_dev *pci_dev = hw->pdev; struct device *dev = &pci_dev->dev; unsigned int mtype = 0, maddr = 0; uint32_t *cfg_data; int value_to_add = 0; const char *fw_cfg_file; if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) fw_cfg_file = FW_CFG_NAME_T5; else fw_cfg_file = FW_CFG_NAME_T6; if (request_firmware(&cf, fw_cfg_file, dev) < 0) { csio_err(hw, "could not find config file %s, err: %d\n", fw_cfg_file, ret); return -ENOENT; } if (cf->size%4 != 0) value_to_add = 4 - (cf->size % 4); cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL); if (cfg_data == NULL) { ret = -ENOMEM; goto leave; } memcpy((void *)cfg_data, (const void *)cf->data, cf->size); if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) { ret = -EINVAL; goto leave; } mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; ret = csio_memory_write(hw, mtype, maddr, cf->size + value_to_add, cfg_data); if ((ret == 0) && (value_to_add != 0)) { union { u32 word; char buf[4]; } last; size_t size = cf->size & ~0x3; int i; last.word = cfg_data[size >> 2]; for (i = value_to_add; i < 4; i++) last.buf[i] = 0; ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word); } if (ret == 0) { csio_info(hw, "config file upgraded to %s\n", fw_cfg_file); snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file); } leave: kfree(cfg_data); release_firmware(cf); return ret; } /* * HW initialization: contact FW, obtain config, perform basic init. * * If the firmware we're dealing with has Configuration File support, then * we use that to perform all configuration -- either using the configuration * file stored in flash on the adapter or using a filesystem-local file * if available. * * If we don't have configuration file support in the firmware, then we'll * have to set things up the old fashioned way with hard-coded register * writes and firmware commands ... */ /* * Attempt to initialize the HW via a Firmware Configuration File. */ static int csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param) { struct csio_mb *mbp = NULL; struct fw_caps_config_cmd *caps_cmd; unsigned int mtype, maddr; int rv = -EINVAL; uint32_t finiver = 0, finicsum = 0, cfcsum = 0; char path[64]; char *config_name = NULL; /* * Reset device if necessary */ if (reset) { rv = csio_do_reset(hw, true); if (rv != 0) goto bye; } /* * If we have a configuration file in host , * then use that. Otherwise, use the configuration file stored * in the HW flash ... */ spin_unlock_irq(&hw->lock); rv = csio_hw_flash_config(hw, fw_cfg_param, path); spin_lock_irq(&hw->lock); if (rv != 0) { /* * config file was not found. Use default * config file from flash. */ config_name = "On FLASH"; mtype = FW_MEMTYPE_CF_FLASH; maddr = hw->chip_ops->chip_flash_cfg_addr(hw); } else { config_name = path; mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param); maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16; } mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) { CSIO_INC_STATS(hw, n_err_nomem); return -ENOMEM; } /* * Tell the firmware to process the indicated Configuration File. * If there are no errors and the caller has provided return value * pointers for the [fini] section version, checksum and computed * checksum, pass those back to the caller. */ caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb); CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); caps_cmd->cfvalid_to_len16 = htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | FW_LEN16(*caps_cmd)); if (csio_mb_issue(hw, mbp)) { rv = -EINVAL; goto bye; } rv = csio_mb_fw_retval(mbp); /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware * Configuration File in FLASH), our last gasp effort is to use the * Firmware Configuration File which is embedded in the * firmware. A very few early versions of the firmware didn't * have one embedded but we can ignore those. */ if (rv == ENOENT) { CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); if (csio_mb_issue(hw, mbp)) { rv = -EINVAL; goto bye; } rv = csio_mb_fw_retval(mbp); config_name = "Firmware Default"; } if (rv != FW_SUCCESS) goto bye; finiver = ntohl(caps_cmd->finiver); finicsum = ntohl(caps_cmd->finicsum); cfcsum = ntohl(caps_cmd->cfcsum); /* * And now tell the firmware to use the configuration we just loaded. */ caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); if (csio_mb_issue(hw, mbp)) { rv = -EINVAL; goto bye; } rv = csio_mb_fw_retval(mbp); if (rv != FW_SUCCESS) { csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv); goto bye; } if (finicsum != cfcsum) { csio_warn(hw, "Config File checksum mismatch: csum=%#x, computed=%#x\n", finicsum, cfcsum); } /* Validate device capabilities */ rv = csio_hw_validate_caps(hw, mbp); if (rv != 0) goto bye; mempool_free(mbp, hw->mb_mempool); mbp = NULL; /* * Note that we're operating with parameters * not supplied by the driver, rather than from hard-wired * initialization constants buried in the driver. */ hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; /* device parameters */ rv = csio_get_device_params(hw); if (rv != 0) goto bye; /* Configure SGE */ csio_wr_sge_init(hw); /* * And finally tell the firmware to initialize itself using the * parameters from the Configuration File. */ /* Post event to notify completion of configuration */ csio_post_event(&hw->sm, CSIO_HWE_INIT); csio_info(hw, "Successfully configure using Firmware " "Configuration File %s, version %#x, computed checksum %#x\n", config_name, finiver, cfcsum); return 0; /* * Something bad happened. Return the error ... */ bye: if (mbp) mempool_free(mbp, hw->mb_mempool); hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS; csio_warn(hw, "Configuration file error %d\n", rv); return rv; } /* Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return 1; #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) return 1; #undef SAME_INTF return 0; } /* The firmware in the filesystem is usable, but should it be installed? * This routine explains itself in detail if it indicates the filesystem * firmware should be installed. */ static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable, int k, int c) { const char *reason; if (!card_fw_usable) { reason = "incompatible or unusable"; goto install; } if (k > c) { reason = "older than the version supported with this driver"; goto install; } return 0; install: csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); return 1; } static struct fw_info fw_info_array[] = { { .chip = CHELSIO_T5, .fs_name = FW_CFG_NAME_T5, .fw_mod_name = FW_FNAME_T5, .fw_hdr = { .chip = FW_HDR_CHIP_T5, .fw_ver = __cpu_to_be32(FW_VERSION(T5)), .intfver_nic = FW_INTFVER(T5, NIC), .intfver_vnic = FW_INTFVER(T5, VNIC), .intfver_ri = FW_INTFVER(T5, RI), .intfver_iscsi = FW_INTFVER(T5, ISCSI), .intfver_fcoe = FW_INTFVER(T5, FCOE), }, }, { .chip = CHELSIO_T6, .fs_name = FW_CFG_NAME_T6, .fw_mod_name = FW_FNAME_T6, .fw_hdr = { .chip = FW_HDR_CHIP_T6, .fw_ver = __cpu_to_be32(FW_VERSION(T6)), .intfver_nic = FW_INTFVER(T6, NIC), .intfver_vnic = FW_INTFVER(T6, VNIC), .intfver_ri = FW_INTFVER(T6, RI), .intfver_iscsi = FW_INTFVER(T6, ISCSI), .intfver_fcoe = FW_INTFVER(T6, FCOE), }, } }; static struct fw_info *find_fw_info(int chip) { int i; for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { if (fw_info_array[i].chip == chip) return &fw_info_array[i]; } return NULL; } static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info, const u8 *fw_data, unsigned int fw_size, struct fw_hdr *card_fw, enum csio_dev_state state, int *reset) { int ret, card_fw_usable, fs_fw_usable; const struct fw_hdr *fs_fw; const struct fw_hdr *drv_fw; drv_fw = &fw_info->fw_hdr; /* Read the header of the firmware on the card */ ret = csio_hw_read_flash(hw, FLASH_FW_START, sizeof(*card_fw) / sizeof(uint32_t), (uint32_t *)card_fw, 1); if (ret == 0) { card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); } else { csio_err(hw, "Unable to read card's firmware header: %d\n", ret); card_fw_usable = 0; } if (fw_data != NULL) { fs_fw = (const void *)fw_data; fs_fw_usable = fw_compatible(drv_fw, fs_fw); } else { fs_fw = NULL; fs_fw_usable = 0; } if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { /* Common case: the firmware on the card is an exact match and * the filesystem one is an exact match too, or the filesystem * one is absent/incompatible. */ } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT && csio_should_install_fs_fw(hw, card_fw_usable, be32_to_cpu(fs_fw->fw_ver), be32_to_cpu(card_fw->fw_ver))) { ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data, fw_size, 0); if (ret != 0) { csio_err(hw, "failed to install firmware: %d\n", ret); goto bye; } /* Installed successfully, update the cached header too. */ memcpy(card_fw, fs_fw, sizeof(*card_fw)); card_fw_usable = 1; *reset = 0; /* already reset as part of load_fw */ } if (!card_fw_usable) { uint32_t d, c, k; d = be32_to_cpu(drv_fw->fw_ver); c = be32_to_cpu(card_fw->fw_ver); k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; csio_err(hw, "Cannot find a usable firmware: " "chip state %d, " "driver compiled with %d.%d.%d.%d, " "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", state, FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); ret = EINVAL; goto bye; } /* We're using whatever's on the card and it's known to be good. */ hw->fwrev = be32_to_cpu(card_fw->fw_ver); hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); bye: return ret; } /* * Returns -EINVAL if attempts to flash the firmware failed, * -ENOMEM if memory allocation failed else returns 0, * if flashing was not attempted because the card had the * latest firmware ECANCELED is returned */ static int csio_hw_flash_fw(struct csio_hw *hw, int *reset) { int ret = -ECANCELED; const struct firmware *fw; struct fw_info *fw_info; struct fw_hdr *card_fw; struct pci_dev *pci_dev = hw->pdev; struct device *dev = &pci_dev->dev ; const u8 *fw_data = NULL; unsigned int fw_size = 0; const char *fw_bin_file; /* This is the firmware whose headers the driver was compiled * against */ fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id)); if (fw_info == NULL) { csio_err(hw, "unable to get firmware info for chip %d.\n", CHELSIO_CHIP_VERSION(hw->chip_id)); return -EINVAL; } /* allocate memory to read the header of the firmware on the * card */ card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL); if (!card_fw) return -ENOMEM; if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK)) fw_bin_file = FW_FNAME_T5; else fw_bin_file = FW_FNAME_T6; if (request_firmware(&fw, fw_bin_file, dev) < 0) { csio_err(hw, "could not find firmware image %s, err: %d\n", fw_bin_file, ret); } else { fw_data = fw->data; fw_size = fw->size; } /* upgrade FW logic */ ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw, hw->fw_state, reset); /* Cleaning up */ if (fw != NULL) release_firmware(fw); kfree(card_fw); return ret; } static int csio_hw_check_fwver(struct csio_hw *hw) { if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) && (hw->fwrev < CSIO_MIN_T6_FW)) { csio_hw_print_fw_version(hw, "T6 unsupported fw"); return -1; } return 0; } /* * csio_hw_configure - Configure HW * @hw - HW module * */ static void csio_hw_configure(struct csio_hw *hw) { int reset = 1; int rv; u32 param[1]; rv = csio_hw_dev_ready(hw); if (rv != 0) { CSIO_INC_STATS(hw, n_err_fatal); csio_post_event(&hw->sm, CSIO_HWE_FATAL); goto out; } /* HW version */ hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A); /* Needed for FW download */ rv = csio_hw_get_flash_params(hw); if (rv != 0) { csio_err(hw, "Failed to get serial flash params rv:%d\n", rv); csio_post_event(&hw->sm, CSIO_HWE_FATAL); goto out; } /* Set PCIe completion timeout to 4 seconds */ if (pci_is_pcie(hw->pdev)) pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2, PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd); hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR); rv = csio_hw_get_fw_version(hw, &hw->fwrev); if (rv != 0) goto out; csio_hw_print_fw_version(hw, "Firmware revision"); rv = csio_do_hello(hw, &hw->fw_state); if (rv != 0) { CSIO_INC_STATS(hw, n_err_fatal); csio_post_event(&hw->sm, CSIO_HWE_FATAL); goto out; } /* Read vpd */ rv = csio_hw_get_vpd_params(hw, &hw->vpd); if (rv != 0) goto out; csio_hw_get_fw_version(hw, &hw->fwrev); csio_hw_get_tp_version(hw, &hw->tp_vers); if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { /* Do firmware update */ spin_unlock_irq(&hw->lock); rv = csio_hw_flash_fw(hw, &reset); spin_lock_irq(&hw->lock); if (rv != 0) goto out; rv = csio_hw_check_fwver(hw); if (rv < 0) goto out; /* If the firmware doesn't support Configuration Files, * return an error. */ rv = csio_hw_check_fwconfig(hw, param); if (rv != 0) { csio_info(hw, "Firmware doesn't support " "Firmware Configuration files\n"); goto out; } /* The firmware provides us with a memory buffer where we can * load a Configuration File from the host if we want to * override the Configuration File in flash. */ rv = csio_hw_use_fwconfig(hw, reset, param); if (rv == -ENOENT) { csio_info(hw, "Could not initialize " "adapter, error%d\n", rv); goto out; } if (rv != 0) { csio_info(hw, "Could not initialize " "adapter, error%d\n", rv); goto out; } } else { rv = csio_hw_check_fwver(hw); if (rv < 0) goto out; if (hw->fw_state == CSIO_DEV_STATE_INIT) { hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; /* device parameters */ rv = csio_get_device_params(hw); if (rv != 0) goto out; /* Get device capabilities */ rv = csio_config_device_caps(hw); if (rv != 0) goto out; /* Configure SGE */ csio_wr_sge_init(hw); /* Post event to notify completion of configuration */ csio_post_event(&hw->sm, CSIO_HWE_INIT); goto out; } } /* if not master */ out: return; } /* * csio_hw_initialize - Initialize HW * @hw - HW module * */ static void csio_hw_initialize(struct csio_hw *hw) { struct csio_mb *mbp; enum fw_retval retval; int rv; int i; if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); if (!mbp) goto out; csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); if (csio_mb_issue(hw, mbp)) { csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n"); goto free_and_out; } retval = csio_mb_fw_retval(mbp); if (retval != FW_SUCCESS) { csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n", retval); goto free_and_out; } mempool_free(mbp, hw->mb_mempool); } rv = csio_get_fcoe_resinfo(hw); if (rv != 0) { csio_err(hw, "Failed to read fcoe resource info: %d\n", rv); goto out; } spin_unlock_irq(&hw->lock); rv = csio_config_queues(hw); spin_lock_irq(&hw->lock); if (rv != 0) { csio_err(hw, "Config of queues failed!: %d\n", rv); goto out; } for (i = 0; i < hw->num_pports; i++) hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA; if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { rv = csio_enable_ports(hw); if (rv != 0) { csio_err(hw, "Failed to enable ports: %d\n", rv); goto out; } } csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE); return; free_and_out: mempool_free(mbp, hw->mb_mempool); out: return; } #define PF_INTR_MASK (PFSW_F | PFCIM_F) /* * csio_hw_intr_enable - Enable HW interrupts * @hw: Pointer to HW module. * * Enable interrupts in HW registers. */ static void csio_hw_intr_enable(struct csio_hw *hw) { uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw)); u32 pf = 0; uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A); if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); else pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); /* * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up * by FW, so do nothing for INTX. */ if (hw->intr_mode == CSIO_IM_MSIX) csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), AIVEC_V(AIVEC_M), vec); else if (hw->intr_mode == CSIO_IM_MSI) csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A), AIVEC_V(AIVEC_M), 0); csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A)); /* Turn on MB interrupts - this will internally flush PIO as well */ csio_mb_intr_enable(hw); /* These are common registers - only a master can modify them */ if (csio_is_hw_master(hw)) { /* * Disable the Serial FLASH interrupt, if enabled! */ pl &= (~SF_F); csio_wr_reg32(hw, pl, PL_INT_ENABLE_A); csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F | EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F | ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F | ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F | ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F | ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F, SGE_INT_ENABLE3_A); csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf); } hw->flags |= CSIO_HWF_HW_INTR_ENABLED; } /* * csio_hw_intr_disable - Disable HW interrupts * @hw: Pointer to HW module. * * Turn off Mailbox and PCI_PF_CFG interrupts. */ void csio_hw_intr_disable(struct csio_hw *hw) { u32 pf = 0; if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK)) pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); else pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A)); if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED)) return; hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED; csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A)); if (csio_is_hw_master(hw)) csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0); /* Turn off MB interrupts */ csio_mb_intr_disable(hw); } void csio_hw_fatal_err(struct csio_hw *hw) { csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0); csio_hw_intr_disable(hw); /* Do not reset HW, we may need FW state for debugging */ csio_fatal(hw, "HW Fatal error encountered!\n"); } /*****************************************************************************/ /* START: HW SM */ /*****************************************************************************/ /* * csio_hws_uninit - Uninit state * @hw - HW module * @evt - Event * */ static void csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_CFG: csio_set_state(&hw->sm, csio_hws_configuring); csio_hw_configure(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_configuring - Configuring state * @hw - HW module * @evt - Event * */ static void csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_INIT: csio_set_state(&hw->sm, csio_hws_initializing); csio_hw_initialize(hw); break; case CSIO_HWE_INIT_DONE: csio_set_state(&hw->sm, csio_hws_ready); /* Fan out event to all lnode SMs */ csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); break; case CSIO_HWE_FATAL: csio_set_state(&hw->sm, csio_hws_uninit); break; case CSIO_HWE_PCI_REMOVE: csio_do_bye(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_initializing - Initializing state * @hw - HW module * @evt - Event * */ static void csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_INIT_DONE: csio_set_state(&hw->sm, csio_hws_ready); /* Fan out event to all lnode SMs */ csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); /* Enable interrupts */ csio_hw_intr_enable(hw); break; case CSIO_HWE_FATAL: csio_set_state(&hw->sm, csio_hws_uninit); break; case CSIO_HWE_PCI_REMOVE: csio_do_bye(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_ready - Ready state * @hw - HW module * @evt - Event * */ static void csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt) { /* Remember the event */ hw->evtflag = evt; hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_HBA_RESET: case CSIO_HWE_FW_DLOAD: case CSIO_HWE_SUSPEND: case CSIO_HWE_PCI_REMOVE: case CSIO_HWE_PCIERR_DETECTED: csio_set_state(&hw->sm, csio_hws_quiescing); /* cleanup all outstanding cmds */ if (evt == CSIO_HWE_HBA_RESET || evt == CSIO_HWE_PCIERR_DETECTED) csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false); else csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true); csio_hw_intr_disable(hw); csio_hw_mbm_cleanup(hw); csio_evtq_stop(hw); csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP); csio_evtq_flush(hw); csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw)); csio_post_event(&hw->sm, CSIO_HWE_QUIESCED); break; case CSIO_HWE_FATAL: csio_set_state(&hw->sm, csio_hws_uninit); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_quiescing - Quiescing state * @hw - HW module * @evt - Event * */ static void csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_QUIESCED: switch (hw->evtflag) { case CSIO_HWE_FW_DLOAD: csio_set_state(&hw->sm, csio_hws_resetting); /* Download firmware */ /* Fall through */ case CSIO_HWE_HBA_RESET: csio_set_state(&hw->sm, csio_hws_resetting); /* Start reset of the HBA */ csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET); csio_wr_destroy_queues(hw, false); csio_do_reset(hw, false); csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE); break; case CSIO_HWE_PCI_REMOVE: csio_set_state(&hw->sm, csio_hws_removing); csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE); csio_wr_destroy_queues(hw, true); /* Now send the bye command */ csio_do_bye(hw); break; case CSIO_HWE_SUSPEND: csio_set_state(&hw->sm, csio_hws_quiesced); break; case CSIO_HWE_PCIERR_DETECTED: csio_set_state(&hw->sm, csio_hws_pcierr); csio_wr_destroy_queues(hw, false); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_quiesced - Quiesced state * @hw - HW module * @evt - Event * */ static void csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_RESUME: csio_set_state(&hw->sm, csio_hws_configuring); csio_hw_configure(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_resetting - HW Resetting state * @hw - HW module * @evt - Event * */ static void csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_HBA_RESET_DONE: csio_evtq_start(hw); csio_set_state(&hw->sm, csio_hws_configuring); csio_hw_configure(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_removing - PCI Hotplug removing state * @hw - HW module * @evt - Event * */ static void csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_HBA_RESET: if (!csio_is_hw_master(hw)) break; /* * The BYE should have already been issued, so we can't * use the mailbox interface. Hence we use the PL_RST * register directly. */ csio_err(hw, "Resetting HW and waiting 2 seconds...\n"); csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A); mdelay(2000); break; /* Should never receive any new events */ default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /* * csio_hws_pcierr - PCI Error state * @hw - HW module * @evt - Event * */ static void csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt) { hw->prev_evt = hw->cur_evt; hw->cur_evt = evt; CSIO_INC_STATS(hw, n_evt_sm[evt]); switch (evt) { case CSIO_HWE_PCIERR_SLOT_RESET: csio_evtq_start(hw); csio_set_state(&hw->sm, csio_hws_configuring); csio_hw_configure(hw); break; default: CSIO_INC_STATS(hw, n_evt_unexp); break; } } /*****************************************************************************/ /* END: HW SM */ /*****************************************************************************/ /* * csio_handle_intr_status - table driven interrupt handler * @hw: HW instance * @reg: the interrupt status register to process * @acts: table of interrupt actions * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occurred. The actions include * optionally emitting a warning or alert message. The table is terminated * by an entry specifying mask 0. Returns the number of fatal interrupt * conditions. */ int csio_handle_intr_status(struct csio_hw *hw, unsigned int reg, const struct intr_info *acts) { int fatal = 0; unsigned int mask = 0; unsigned int status = csio_rd_reg32(hw, reg); for ( ; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; csio_fatal(hw, "Fatal %s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg) csio_info(hw, "%s (0x%x)\n", acts->msg, status & acts->mask); mask |= acts->mask; } status &= mask; if (status) /* clear processed interrupts */ csio_wr_reg32(hw, status, reg); return fatal; } /* * TP interrupt handler. */ static void csio_tp_intr_handler(struct csio_hw *hw) { static struct intr_info tp_intr_info[] = { { 0x3fffffff, "TP parity error", -1, 1 }, { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info)) csio_hw_fatal_err(hw); } /* * SGE interrupt handler. */ static void csio_sge_intr_handler(struct csio_hw *hw) { uint64_t v; static struct intr_info sge_intr_info[] = { { ERR_CPL_EXCEED_IQE_SIZE_F, "SGE received CPL exceeding IQE size", -1, 1 }, { ERR_INVALID_CIDX_INC_F, "SGE GTS CIDX increment too large", -1, 0 }, { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 }, { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 }, { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F, "SGE IQID > 1023 received CPL for FL", -1, 0 }, { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1, 0 }, { ERR_ING_CTXT_PRIO_F, "SGE too many priority ingress contexts", -1, 0 }, { ERR_EGR_CTXT_PRIO_F, "SGE too many priority egress contexts", -1, 0 }, { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 }, { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 }, { 0, NULL, 0, 0 } }; v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) | ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32); if (v) { csio_fatal(hw, "SGE parity error (%#llx)\n", (unsigned long long)v); csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF), SGE_INT_CAUSE1_A); csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A); } v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info); if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) || v != 0) csio_hw_fatal_err(hw); } #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\ OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F) #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\ IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F) /* * CIM interrupt handler. */ static void csio_cim_intr_handler(struct csio_hw *hw) { static struct intr_info cim_intr_info[] = { { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 }, { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 }, { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 }, { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 }, { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info cim_upintr_info[] = { { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 }, { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 }, { ILLWRINT_F, "CIM illegal write", -1, 1 }, { ILLRDINT_F, "CIM illegal read", -1, 1 }, { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 }, { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 }, { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 }, { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 }, { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 }, { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 }, { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 }, { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 }, { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 }, { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 }, { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 }, { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 }, { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 }, { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 }, { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 }, { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 }, { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 }, { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 }, { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 }, { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 }, { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 }, { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 }, { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 }, { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 }, { 0, NULL, 0, 0 } }; int fat; fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A, cim_intr_info) + csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A, cim_upintr_info); if (fat) csio_hw_fatal_err(hw); } /* * ULP RX interrupt handler. */ static void csio_ulprx_intr_handler(struct csio_hw *hw) { static struct intr_info ulprx_intr_info[] = { { 0x1800000, "ULPRX context error", -1, 1 }, { 0x7fffff, "ULPRX parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info)) csio_hw_fatal_err(hw); } /* * ULP TX interrupt handler. */ static void csio_ulptx_intr_handler(struct csio_hw *hw) { static struct intr_info ulptx_intr_info[] = { { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1, 0 }, { 0xfffffff, "ULPTX parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info)) csio_hw_fatal_err(hw); } /* * PM TX interrupt handler. */ static void csio_pmtx_intr_handler(struct csio_hw *hw) { static struct intr_info pmtx_intr_info[] = { { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 }, { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 }, { 0xffffff0, "PMTX framing error", -1, 1 }, { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1, 1 }, { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 }, { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1}, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info)) csio_hw_fatal_err(hw); } /* * PM RX interrupt handler. */ static void csio_pmrx_intr_handler(struct csio_hw *hw) { static struct intr_info pmrx_intr_info[] = { { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 }, { 0x3ffff0, "PMRX framing error", -1, 1 }, { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1, 1 }, { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 }, { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1}, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info)) csio_hw_fatal_err(hw); } /* * CPL switch interrupt handler. */ static void csio_cplsw_intr_handler(struct csio_hw *hw) { static struct intr_info cplsw_intr_info[] = { { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 }, { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 }, { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 }, { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 }, { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 }, { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info)) csio_hw_fatal_err(hw); } /* * LE interrupt handler. */ static void csio_le_intr_handler(struct csio_hw *hw) { enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id); static struct intr_info le_intr_info[] = { { LIPMISS_F, "LE LIP miss", -1, 0 }, { LIP0_F, "LE 0 LIP error", -1, 0 }, { PARITYERR_F, "LE parity error", -1, 1 }, { UNKNOWNCMD_F, "LE unknown command", -1, 1 }, { REQQPARERR_F, "LE request queue parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info t6_le_intr_info[] = { { T6_LIPMISS_F, "LE LIP miss", -1, 0 }, { T6_LIP0_F, "LE 0 LIP error", -1, 0 }, { TCAMINTPERR_F, "LE parity error", -1, 1 }, { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 }, { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, (chip == CHELSIO_T5) ? le_intr_info : t6_le_intr_info)) csio_hw_fatal_err(hw); } /* * MPS interrupt handler. */ static void csio_mps_intr_handler(struct csio_hw *hw) { static struct intr_info mps_rx_intr_info[] = { { 0xffffff, "MPS Rx parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_tx_intr_info[] = { { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 }, { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error", -1, 1 }, { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error", -1, 1 }, { BUBBLE_F, "MPS Tx underflow", -1, 1 }, { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 }, { FRMERR_F, "MPS Tx framing error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_trc_intr_info[] = { { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 }, { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error", -1, 1 }, { MISCPERR_F, "MPS TRC misc parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_stat_sram_intr_info[] = { { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_stat_tx_intr_info[] = { { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_stat_rx_intr_info[] = { { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, { 0, NULL, 0, 0 } }; static struct intr_info mps_cls_intr_info[] = { { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 }, { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 }, { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 }, { 0, NULL, 0, 0 } }; int fat; fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A, mps_rx_intr_info) + csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A, mps_tx_intr_info) + csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A, mps_trc_intr_info) + csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A, mps_stat_sram_intr_info) + csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A, mps_stat_tx_intr_info) + csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A, mps_stat_rx_intr_info) + csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A, mps_cls_intr_info); csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A); csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */ if (fat) csio_hw_fatal_err(hw); } #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \ ECC_UE_INT_CAUSE_F) /* * EDC/MC interrupt handler. */ static void csio_mem_intr_handler(struct csio_hw *hw, int idx) { static const char name[3][5] = { "EDC0", "EDC1", "MC" }; unsigned int addr, cnt_addr, v; if (idx <= MEM_EDC1) { addr = EDC_REG(EDC_INT_CAUSE_A, idx); cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx); } else { addr = MC_INT_CAUSE_A; cnt_addr = MC_ECC_STATUS_A; } v = csio_rd_reg32(hw, addr) & MEM_INT_MASK; if (v & PERR_INT_CAUSE_F) csio_fatal(hw, "%s FIFO parity error\n", name[idx]); if (v & ECC_CE_INT_CAUSE_F) { uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr)); csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr); csio_warn(hw, "%u %s correctable ECC data error%s\n", cnt, name[idx], cnt > 1 ? "s" : ""); } if (v & ECC_UE_INT_CAUSE_F) csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]); csio_wr_reg32(hw, v, addr); if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F)) csio_hw_fatal_err(hw); } /* * MA interrupt handler. */ static void csio_ma_intr_handler(struct csio_hw *hw) { uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A); if (status & MEM_PERR_INT_CAUSE_F) csio_fatal(hw, "MA parity error, parity status %#x\n", csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A)); if (status & MEM_WRAP_INT_CAUSE_F) { v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A); csio_fatal(hw, "MA address wrap-around error by client %u to address %#x\n", MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4); } csio_wr_reg32(hw, status, MA_INT_CAUSE_A); csio_hw_fatal_err(hw); } /* * SMB interrupt handler. */ static void csio_smb_intr_handler(struct csio_hw *hw) { static struct intr_info smb_intr_info[] = { { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 }, { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 }, { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info)) csio_hw_fatal_err(hw); } /* * NC-SI interrupt handler. */ static void csio_ncsi_intr_handler(struct csio_hw *hw) { static struct intr_info ncsi_intr_info[] = { { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 }, { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 }, { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 }, { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info)) csio_hw_fatal_err(hw); } /* * XGMAC interrupt handler. */ static void csio_xgmac_intr_handler(struct csio_hw *hw, int port) { uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F; if (!v) return; if (v & TXFIFO_PRTY_ERR_F) csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port); if (v & RXFIFO_PRTY_ERR_F) csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port); csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A)); csio_hw_fatal_err(hw); } /* * PL interrupt handler. */ static void csio_pl_intr_handler(struct csio_hw *hw) { static struct intr_info pl_intr_info[] = { { FATALPERR_F, "T4 fatal parity error", -1, 1 }, { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 }, { 0, NULL, 0, 0 } }; if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info)) csio_hw_fatal_err(hw); } /* * csio_hw_slow_intr_handler - control path interrupt handler * @hw: HW module * * Interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int csio_hw_slow_intr_handler(struct csio_hw *hw) { uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A); if (!(cause & CSIO_GLBL_INTR_MASK)) { CSIO_INC_STATS(hw, n_plint_unexp); return 0; } csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause); CSIO_INC_STATS(hw, n_plint_cnt); if (cause & CIM_F) csio_cim_intr_handler(hw); if (cause & MPS_F) csio_mps_intr_handler(hw); if (cause & NCSI_F) csio_ncsi_intr_handler(hw); if (cause & PL_F) csio_pl_intr_handler(hw); if (cause & SMB_F) csio_smb_intr_handler(hw); if (cause & XGMAC0_F) csio_xgmac_intr_handler(hw, 0); if (cause & XGMAC1_F) csio_xgmac_intr_handler(hw, 1); if (cause & XGMAC_KR0_F) csio_xgmac_intr_handler(hw, 2); if (cause & XGMAC_KR1_F) csio_xgmac_intr_handler(hw, 3); if (cause & PCIE_F) hw->chip_ops->chip_pcie_intr_handler(hw); if (cause & MC_F) csio_mem_intr_handler(hw, MEM_MC); if (cause & EDC0_F) csio_mem_intr_handler(hw, MEM_EDC0); if (cause & EDC1_F) csio_mem_intr_handler(hw, MEM_EDC1); if (cause & LE_F) csio_le_intr_handler(hw); if (cause & TP_F) csio_tp_intr_handler(hw); if (cause & MA_F) csio_ma_intr_handler(hw); if (cause & PM_TX_F) csio_pmtx_intr_handler(hw); if (cause & PM_RX_F) csio_pmrx_intr_handler(hw); if (cause & ULP_RX_F) csio_ulprx_intr_handler(hw); if (cause & CPL_SWITCH_F) csio_cplsw_intr_handler(hw); if (cause & SGE_F) csio_sge_intr_handler(hw); if (cause & ULP_TX_F) csio_ulptx_intr_handler(hw); /* Clear the interrupts just processed for which we are the master. */ csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A); csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */ return 1; } /***************************************************************************** * HW <--> mailbox interfacing routines. ****************************************************************************/ /* * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions * * @data: Private data pointer. * * Called from worker thread context. */ static void csio_mberr_worker(void *data) { struct csio_hw *hw = (struct csio_hw *)data; struct csio_mbm *mbm = &hw->mbm; LIST_HEAD(cbfn_q); struct csio_mb *mbp_next; int rv; del_timer_sync(&mbm->timer); spin_lock_irq(&hw->lock); if (list_empty(&mbm->cbfn_q)) { spin_unlock_irq(&hw->lock); return; } list_splice_tail_init(&mbm->cbfn_q, &cbfn_q); mbm->stats.n_cbfnq = 0; /* Try to start waiting mailboxes */ if (!list_empty(&mbm->req_q)) { mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list); list_del_init(&mbp_next->list); rv = csio_mb_issue(hw, mbp_next); if (rv != 0) list_add_tail(&mbp_next->list, &mbm->req_q); else CSIO_DEC_STATS(mbm, n_activeq); } spin_unlock_irq(&hw->lock); /* Now callback completions */ csio_mb_completions(hw, &cbfn_q); } /* * csio_hw_mb_timer - Top-level Mailbox timeout handler. * * @data: private data pointer * **/ static void csio_hw_mb_timer(struct timer_list *t) { struct csio_mbm *mbm = from_timer(mbm, t, timer); struct csio_hw *hw = mbm->hw; struct csio_mb *mbp = NULL; spin_lock_irq(&hw->lock); mbp = csio_mb_tmo_handler(hw); spin_unlock_irq(&hw->lock); /* Call back the function for the timed-out Mailbox */ if (mbp) mbp->mb_cbfn(hw, mbp); } /* * csio_hw_mbm_cleanup - Cleanup Mailbox module. * @hw: HW module * * Called with lock held, should exit with lock held. * Cancels outstanding mailboxes (waiting, in-flight) and gathers them * into a local queue. Drops lock and calls the completions. Holds * lock and returns. */ static void csio_hw_mbm_cleanup(struct csio_hw *hw) { LIST_HEAD(cbfn_q); csio_mb_cancel_all(hw, &cbfn_q); spin_unlock_irq(&hw->lock); csio_mb_completions(hw, &cbfn_q); spin_lock_irq(&hw->lock); } /***************************************************************************** * Event handling ****************************************************************************/ int csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg, uint16_t len) { struct csio_evt_msg *evt_entry = NULL; if (type >= CSIO_EVT_MAX) return -EINVAL; if (len > CSIO_EVT_MSG_SIZE) return -EINVAL; if (hw->flags & CSIO_HWF_FWEVT_STOP) return -EINVAL; if (list_empty(&hw->evt_free_q)) { csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", type, len); return -ENOMEM; } evt_entry = list_first_entry(&hw->evt_free_q, struct csio_evt_msg, list); list_del_init(&evt_entry->list); /* copy event msg and queue the event */ evt_entry->type = type; memcpy((void *)evt_entry->data, evt_msg, len); list_add_tail(&evt_entry->list, &hw->evt_active_q); CSIO_DEC_STATS(hw, n_evt_freeq); CSIO_INC_STATS(hw, n_evt_activeq); return 0; } static int csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg, uint16_t len, bool msg_sg) { struct csio_evt_msg *evt_entry = NULL; struct csio_fl_dma_buf *fl_sg; uint32_t off = 0; unsigned long flags; int n, ret = 0; if (type >= CSIO_EVT_MAX) return -EINVAL; if (len > CSIO_EVT_MSG_SIZE) return -EINVAL; spin_lock_irqsave(&hw->lock, flags); if (hw->flags & CSIO_HWF_FWEVT_STOP) { ret = -EINVAL; goto out; } if (list_empty(&hw->evt_free_q)) { csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", type, len); ret = -ENOMEM; goto out; } evt_entry = list_first_entry(&hw->evt_free_q, struct csio_evt_msg, list); list_del_init(&evt_entry->list); /* copy event msg and queue the event */ evt_entry->type = type; /* If Payload in SG list*/ if (msg_sg) { fl_sg = (struct csio_fl_dma_buf *) evt_msg; for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) { memcpy((void *)((uintptr_t)evt_entry->data + off), fl_sg->flbufs[n].vaddr, fl_sg->flbufs[n].len); off += fl_sg->flbufs[n].len; } } else memcpy((void *)evt_entry->data, evt_msg, len); list_add_tail(&evt_entry->list, &hw->evt_active_q); CSIO_DEC_STATS(hw, n_evt_freeq); CSIO_INC_STATS(hw, n_evt_activeq); out: spin_unlock_irqrestore(&hw->lock, flags); return ret; } static void csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry) { if (evt_entry) { spin_lock_irq(&hw->lock); list_del_init(&evt_entry->list); list_add_tail(&evt_entry->list, &hw->evt_free_q); CSIO_DEC_STATS(hw, n_evt_activeq); CSIO_INC_STATS(hw, n_evt_freeq); spin_unlock_irq(&hw->lock); } } void csio_evtq_flush(struct csio_hw *hw) { uint32_t count; count = 30; while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) { spin_unlock_irq(&hw->lock); msleep(2000); spin_lock_irq(&hw->lock); } CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING)); } static void csio_evtq_stop(struct csio_hw *hw) { hw->flags |= CSIO_HWF_FWEVT_STOP; } static void csio_evtq_start(struct csio_hw *hw) { hw->flags &= ~CSIO_HWF_FWEVT_STOP; } static void csio_evtq_cleanup(struct csio_hw *hw) { struct list_head *evt_entry, *next_entry; /* Release outstanding events from activeq to freeq*/ if (!list_empty(&hw->evt_active_q)) list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q); hw->stats.n_evt_activeq = 0; hw->flags &= ~CSIO_HWF_FWEVT_PENDING; /* Freeup event entry */ list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) { kfree(evt_entry); CSIO_DEC_STATS(hw, n_evt_freeq); } hw->stats.n_evt_freeq = 0; } static void csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len, struct csio_fl_dma_buf *flb, void *priv) { __u8 op; void *msg = NULL; uint32_t msg_len = 0; bool msg_sg = 0; op = ((struct rss_header *) wr)->opcode; if (op == CPL_FW6_PLD) { CSIO_INC_STATS(hw, n_cpl_fw6_pld); if (!flb || !flb->totlen) { CSIO_INC_STATS(hw, n_cpl_unexp); return; } msg = (void *) flb; msg_len = flb->totlen; msg_sg = 1; } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) { CSIO_INC_STATS(hw, n_cpl_fw6_msg); /* skip RSS header */ msg = (void *)((uintptr_t)wr + sizeof(__be64)); msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) : sizeof(struct cpl_fw4_msg); } else { csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op); CSIO_INC_STATS(hw, n_cpl_unexp); return; } /* * Enqueue event to EventQ. Events processing happens * in Event worker thread context */ if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg, (uint16_t)msg_len, msg_sg)) CSIO_INC_STATS(hw, n_evt_drop); } void csio_evtq_worker(struct work_struct *work) { struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work); struct list_head *evt_entry, *next_entry; LIST_HEAD(evt_q); struct csio_evt_msg *evt_msg; struct cpl_fw6_msg *msg; struct csio_rnode *rn; int rv = 0; uint8_t evtq_stop = 0; csio_dbg(hw, "event worker thread active evts#%d\n", hw->stats.n_evt_activeq); spin_lock_irq(&hw->lock); while (!list_empty(&hw->evt_active_q)) { list_splice_tail_init(&hw->evt_active_q, &evt_q); spin_unlock_irq(&hw->lock); list_for_each_safe(evt_entry, next_entry, &evt_q) { evt_msg = (struct csio_evt_msg *) evt_entry; /* Drop events if queue is STOPPED */ spin_lock_irq(&hw->lock); if (hw->flags & CSIO_HWF_FWEVT_STOP) evtq_stop = 1; spin_unlock_irq(&hw->lock); if (evtq_stop) { CSIO_INC_STATS(hw, n_evt_drop); goto free_evt; } switch (evt_msg->type) { case CSIO_EVT_FW: msg = (struct cpl_fw6_msg *)(evt_msg->data); if ((msg->opcode == CPL_FW6_MSG || msg->opcode == CPL_FW4_MSG) && !msg->type) { rv = csio_mb_fwevt_handler(hw, msg->data); if (!rv) break; /* Handle any remaining fw events */ csio_fcoe_fwevt_handler(hw, msg->opcode, msg->data); } else if (msg->opcode == CPL_FW6_PLD) { csio_fcoe_fwevt_handler(hw, msg->opcode, msg->data); } else { csio_warn(hw, "Unhandled FW msg op %x type %x\n", msg->opcode, msg->type); CSIO_INC_STATS(hw, n_evt_drop); } break; case CSIO_EVT_MBX: csio_mberr_worker(hw); break; case CSIO_EVT_DEV_LOSS: memcpy(&rn, evt_msg->data, sizeof(rn)); csio_rnode_devloss_handler(rn); break; default: csio_warn(hw, "Unhandled event %x on evtq\n", evt_msg->type); CSIO_INC_STATS(hw, n_evt_unexp); break; } free_evt: csio_free_evt(hw, evt_msg); } spin_lock_irq(&hw->lock); } hw->flags &= ~CSIO_HWF_FWEVT_PENDING; spin_unlock_irq(&hw->lock); } int csio_fwevtq_handler(struct csio_hw *hw) { int rv; if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) { CSIO_INC_STATS(hw, n_int_stray); return -EINVAL; } rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx, csio_process_fwevtq_entry, NULL); return rv; } /**************************************************************************** * Entry points ****************************************************************************/ /* Management module */ /* * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q. * mgmt - mgmt module * @io_req - io request * * Return - 0:if given IO Req exists in active Q. * -EINVAL :if lookup fails. */ int csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req) { struct list_head *tmp; /* Lookup ioreq in the ACTIVEQ */ list_for_each(tmp, &mgmtm->active_q) { if (io_req == (struct csio_ioreq *)tmp) return 0; } return -EINVAL; } #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */ /* * csio_mgmts_tmo_handler - MGMT IO Timeout handler. * @data - Event data. * * Return - none. */ static void csio_mgmt_tmo_handler(struct timer_list *t) { struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer); struct list_head *tmp; struct csio_ioreq *io_req; csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n"); spin_lock_irq(&mgmtm->hw->lock); list_for_each(tmp, &mgmtm->active_q) { io_req = (struct csio_ioreq *) tmp; io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO); if (!io_req->tmo) { /* Dequeue the request from retry Q. */ tmp = csio_list_prev(tmp); list_del_init(&io_req->sm.sm_list); if (io_req->io_cbfn) { /* io_req will be freed by completion handler */ io_req->wr_status = -ETIMEDOUT; io_req->io_cbfn(mgmtm->hw, io_req); } else { CSIO_DB_ASSERT(0); } } } /* If retry queue is not empty, re-arm timer */ if (!list_empty(&mgmtm->active_q)) mod_timer(&mgmtm->mgmt_timer, jiffies + msecs_to_jiffies(ECM_MIN_TMO)); spin_unlock_irq(&mgmtm->hw->lock); } static void csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm) { struct csio_hw *hw = mgmtm->hw; struct csio_ioreq *io_req; struct list_head *tmp; uint32_t count; count = 30; /* Wait for all outstanding req to complete gracefully */ while ((!list_empty(&mgmtm->active_q)) && count--) { spin_unlock_irq(&hw->lock); msleep(2000); spin_lock_irq(&hw->lock); } /* release outstanding req from ACTIVEQ */ list_for_each(tmp, &mgmtm->active_q) { io_req = (struct csio_ioreq *) tmp; tmp = csio_list_prev(tmp); list_del_init(&io_req->sm.sm_list); mgmtm->stats.n_active--; if (io_req->io_cbfn) { /* io_req will be freed by completion handler */ io_req->wr_status = -ETIMEDOUT; io_req->io_cbfn(mgmtm->hw, io_req); } } } /* * csio_mgmt_init - Mgmt module init entry point * @mgmtsm - mgmt module * @hw - HW module * * Initialize mgmt timer, resource wait queue, active queue, * completion q. Allocate Egress and Ingress * WR queues and save off the queue index returned by the WR * module for future use. Allocate and save off mgmt reqs in the * mgmt_req_freelist for future use. Make sure their SM is initialized * to uninit state. * Returns: 0 - on success * -ENOMEM - on error. */ static int csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw) { timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0); INIT_LIST_HEAD(&mgmtm->active_q); INIT_LIST_HEAD(&mgmtm->cbfn_q); mgmtm->hw = hw; /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/ return 0; } /* * csio_mgmtm_exit - MGMT module exit entry point * @mgmtsm - mgmt module * * This function called during MGMT module uninit. * Stop timers, free ioreqs allocated. * Returns: None * */ static void csio_mgmtm_exit(struct csio_mgmtm *mgmtm) { del_timer_sync(&mgmtm->mgmt_timer); } /** * csio_hw_start - Kicks off the HW State machine * @hw: Pointer to HW module. * * It is assumed that the initialization is a synchronous operation. * So when we return after posting the event, the HW SM should be in * the ready state, if there were no errors during init. */ int csio_hw_start(struct csio_hw *hw) { spin_lock_irq(&hw->lock); csio_post_event(&hw->sm, CSIO_HWE_CFG); spin_unlock_irq(&hw->lock); if (csio_is_hw_ready(hw)) return 0; else if (csio_match_state(hw, csio_hws_uninit)) return -EINVAL; else return -ENODEV; } int csio_hw_stop(struct csio_hw *hw) { csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE); if (csio_is_hw_removing(hw)) return 0; else return -EINVAL; } /* Max reset retries */ #define CSIO_MAX_RESET_RETRIES 3 /** * csio_hw_reset - Reset the hardware * @hw: HW module. * * Caller should hold lock across this function. */ int csio_hw_reset(struct csio_hw *hw) { if (!csio_is_hw_master(hw)) return -EPERM; if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) { csio_dbg(hw, "Max hw reset attempts reached.."); return -EINVAL; } hw->rst_retries++; csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET); if (csio_is_hw_ready(hw)) { hw->rst_retries = 0; hw->stats.n_reset_start = jiffies_to_msecs(jiffies); return 0; } else return -EINVAL; } /* * csio_hw_get_device_id - Caches the Adapter's vendor & device id. * @hw: HW module. */ static void csio_hw_get_device_id(struct csio_hw *hw) { /* Is the adapter device id cached already ?*/ if (csio_is_dev_id_cached(hw)) return; /* Get the PCI vendor & device id */ pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->params.pci.vendor_id); pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->params.pci.device_id); csio_dev_id_cached(hw); hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK); } /* csio_hw_get_device_id */ /* * csio_hw_set_description - Set the model, description of the hw. * @hw: HW module. * @ven_id: PCI Vendor ID * @dev_id: PCI Device ID */ static void csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id) { uint32_t adap_type, prot_type; if (ven_id == CSIO_VENDOR_ID) { prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK); adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK); if (prot_type == CSIO_T5_FCOE_ASIC) { memcpy(hw->hw_ver, csio_t5_fcoe_adapters[adap_type].model_no, 16); memcpy(hw->model_desc, csio_t5_fcoe_adapters[adap_type].description, 32); } else { char tempName[32] = "Chelsio FCoE Controller"; memcpy(hw->model_desc, tempName, 32); } } } /* csio_hw_set_description */ /** * csio_hw_init - Initialize HW module. * @hw: Pointer to HW module. * * Initialize the members of the HW module. */ int csio_hw_init(struct csio_hw *hw) { int rv = -EINVAL; uint32_t i; uint16_t ven_id, dev_id; struct csio_evt_msg *evt_entry; INIT_LIST_HEAD(&hw->sm.sm_list); csio_init_state(&hw->sm, csio_hws_uninit); spin_lock_init(&hw->lock); INIT_LIST_HEAD(&hw->sln_head); /* Get the PCI vendor & device id */ csio_hw_get_device_id(hw); strcpy(hw->name, CSIO_HW_NAME); /* Initialize the HW chip ops T5 specific ops */ hw->chip_ops = &t5_ops; /* Set the model & its description */ ven_id = hw->params.pci.vendor_id; dev_id = hw->params.pci.device_id; csio_hw_set_description(hw, ven_id, dev_id); /* Initialize default log level */ hw->params.log_level = (uint32_t) csio_dbg_level; csio_set_fwevt_intr_idx(hw, -1); csio_set_nondata_intr_idx(hw, -1); /* Init all the modules: Mailbox, WorkRequest and Transport */ if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer)) goto err; rv = csio_wrm_init(csio_hw_to_wrm(hw), hw); if (rv) goto err_mbm_exit; rv = csio_scsim_init(csio_hw_to_scsim(hw), hw); if (rv) goto err_wrm_exit; rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw); if (rv) goto err_scsim_exit; /* Pre-allocate evtq and initialize them */ INIT_LIST_HEAD(&hw->evt_active_q); INIT_LIST_HEAD(&hw->evt_free_q); for (i = 0; i < csio_evtq_sz; i++) { evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL); if (!evt_entry) { rv = -ENOMEM; csio_err(hw, "Failed to initialize eventq"); goto err_evtq_cleanup; } list_add_tail(&evt_entry->list, &hw->evt_free_q); CSIO_INC_STATS(hw, n_evt_freeq); } hw->dev_num = dev_num; dev_num++; return 0; err_evtq_cleanup: csio_evtq_cleanup(hw); csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); err_scsim_exit: csio_scsim_exit(csio_hw_to_scsim(hw)); err_wrm_exit: csio_wrm_exit(csio_hw_to_wrm(hw), hw); err_mbm_exit: csio_mbm_exit(csio_hw_to_mbm(hw)); err: return rv; } /** * csio_hw_exit - Un-initialize HW module. * @hw: Pointer to HW module. * */ void csio_hw_exit(struct csio_hw *hw) { csio_evtq_cleanup(hw); csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); csio_scsim_exit(csio_hw_to_scsim(hw)); csio_wrm_exit(csio_hw_to_wrm(hw), hw); csio_mbm_exit(csio_hw_to_mbm(hw)); }