/* * linux/drivers/scsi/esas2r/esas2r_main.c * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers * * Copyright (c) 2001-2013 ATTO Technology, Inc. * (mailto:linuxdrivers@attotech.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include "esas2r.h" MODULE_DESCRIPTION(ESAS2R_DRVR_NAME ": " ESAS2R_LONGNAME " driver"); MODULE_AUTHOR("ATTO Technology, Inc."); MODULE_LICENSE("GPL"); MODULE_VERSION(ESAS2R_VERSION_STR); /* global definitions */ static int found_adapters; struct esas2r_adapter *esas2r_adapters[MAX_ADAPTERS]; #define ESAS2R_VDA_EVENT_PORT1 54414 #define ESAS2R_VDA_EVENT_PORT2 54415 #define ESAS2R_VDA_EVENT_SOCK_COUNT 2 static struct esas2r_adapter *esas2r_adapter_from_kobj(struct kobject *kobj) { struct device *dev = container_of(kobj, struct device, kobj); struct Scsi_Host *host = class_to_shost(dev); return (struct esas2r_adapter *)host->hostdata; } static ssize_t read_fw(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); return esas2r_read_fw(a, buf, off, count); } static ssize_t write_fw(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); return esas2r_write_fw(a, buf, off, count); } static ssize_t read_fs(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); return esas2r_read_fs(a, buf, off, count); } static ssize_t write_fs(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); int length = min(sizeof(struct esas2r_ioctl_fs), count); int result = 0; result = esas2r_write_fs(a, buf, off, count); if (result < 0) result = 0; return length; } static ssize_t read_vda(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); return esas2r_read_vda(a, buf, off, count); } static ssize_t write_vda(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); return esas2r_write_vda(a, buf, off, count); } static ssize_t read_live_nvram(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); int length = min_t(size_t, sizeof(struct esas2r_sas_nvram), PAGE_SIZE); memcpy(buf, a->nvram, length); return length; } static ssize_t write_live_nvram(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); struct esas2r_request *rq; int result = -EFAULT; rq = esas2r_alloc_request(a); if (rq == NULL) return -ENOMEM; if (esas2r_write_params(a, rq, (struct esas2r_sas_nvram *)buf)) result = count; esas2r_free_request(a, rq); return result; } static ssize_t read_default_nvram(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); esas2r_nvram_get_defaults(a, (struct esas2r_sas_nvram *)buf); return sizeof(struct esas2r_sas_nvram); } static ssize_t read_hw(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); int length = min_t(size_t, sizeof(struct atto_ioctl), PAGE_SIZE); if (!a->local_atto_ioctl) return -ENOMEM; if (handle_hba_ioctl(a, a->local_atto_ioctl) != IOCTL_SUCCESS) return -ENOMEM; memcpy(buf, a->local_atto_ioctl, length); return length; } static ssize_t write_hw(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct esas2r_adapter *a = esas2r_adapter_from_kobj(kobj); int length = min(sizeof(struct atto_ioctl), count); if (!a->local_atto_ioctl) { a->local_atto_ioctl = kmalloc(sizeof(struct atto_ioctl), GFP_KERNEL); if (a->local_atto_ioctl == NULL) { esas2r_log(ESAS2R_LOG_WARN, "write_hw kzalloc failed for %zu bytes", sizeof(struct atto_ioctl)); return -ENOMEM; } } memset(a->local_atto_ioctl, 0, sizeof(struct atto_ioctl)); memcpy(a->local_atto_ioctl, buf, length); return length; } #define ESAS2R_RW_BIN_ATTR(_name) \ struct bin_attribute bin_attr_ ## _name = { \ .attr = \ { .name = __stringify(_name), .mode = S_IRUSR | S_IWUSR }, \ .size = 0, \ .read = read_ ## _name, \ .write = write_ ## _name } ESAS2R_RW_BIN_ATTR(fw); ESAS2R_RW_BIN_ATTR(fs); ESAS2R_RW_BIN_ATTR(vda); ESAS2R_RW_BIN_ATTR(hw); ESAS2R_RW_BIN_ATTR(live_nvram); struct bin_attribute bin_attr_default_nvram = { .attr = { .name = "default_nvram", .mode = S_IRUGO }, .size = 0, .read = read_default_nvram, .write = NULL }; static struct scsi_host_template driver_template = { .module = THIS_MODULE, .show_info = esas2r_show_info, .name = ESAS2R_LONGNAME, .info = esas2r_info, .ioctl = esas2r_ioctl, .queuecommand = esas2r_queuecommand, .eh_abort_handler = esas2r_eh_abort, .eh_device_reset_handler = esas2r_device_reset, .eh_bus_reset_handler = esas2r_bus_reset, .eh_host_reset_handler = esas2r_host_reset, .eh_target_reset_handler = esas2r_target_reset, .can_queue = 128, .this_id = -1, .sg_tablesize = SG_CHUNK_SIZE, .cmd_per_lun = ESAS2R_DEFAULT_CMD_PER_LUN, .present = 0, .unchecked_isa_dma = 0, .emulated = 0, .proc_name = ESAS2R_DRVR_NAME, .change_queue_depth = scsi_change_queue_depth, .max_sectors = 0xFFFF, }; int sgl_page_size = 512; module_param(sgl_page_size, int, 0); MODULE_PARM_DESC(sgl_page_size, "Scatter/gather list (SGL) page size in number of S/G " "entries. If your application is doing a lot of very large " "transfers, you may want to increase the SGL page size. " "Default 512."); int num_sg_lists = 1024; module_param(num_sg_lists, int, 0); MODULE_PARM_DESC(num_sg_lists, "Number of scatter/gather lists. Default 1024."); int sg_tablesize = SG_CHUNK_SIZE; module_param(sg_tablesize, int, 0); MODULE_PARM_DESC(sg_tablesize, "Maximum number of entries in a scatter/gather table."); int num_requests = 256; module_param(num_requests, int, 0); MODULE_PARM_DESC(num_requests, "Number of requests. Default 256."); int num_ae_requests = 4; module_param(num_ae_requests, int, 0); MODULE_PARM_DESC(num_ae_requests, "Number of VDA asynchronous event requests. Default 4."); int cmd_per_lun = ESAS2R_DEFAULT_CMD_PER_LUN; module_param(cmd_per_lun, int, 0); MODULE_PARM_DESC(cmd_per_lun, "Maximum number of commands per LUN. Default " DEFINED_NUM_TO_STR(ESAS2R_DEFAULT_CMD_PER_LUN) "."); int can_queue = 128; module_param(can_queue, int, 0); MODULE_PARM_DESC(can_queue, "Maximum number of commands per adapter. Default 128."); int esas2r_max_sectors = 0xFFFF; module_param(esas2r_max_sectors, int, 0); MODULE_PARM_DESC(esas2r_max_sectors, "Maximum number of disk sectors in a single data transfer. " "Default 65535 (largest possible setting)."); int interrupt_mode = 1; module_param(interrupt_mode, int, 0); MODULE_PARM_DESC(interrupt_mode, "Defines the interrupt mode to use. 0 for legacy" ", 1 for MSI. Default is MSI (1)."); static const struct pci_device_id esas2r_pci_table[] = { { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x0049, 0, 0, 0 }, { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x004A, 0, 0, 0 }, { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x004B, 0, 0, 0 }, { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x004C, 0, 0, 0 }, { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x004D, 0, 0, 0 }, { ATTO_VENDOR_ID, 0x0049, ATTO_VENDOR_ID, 0x004E, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0 } }; MODULE_DEVICE_TABLE(pci, esas2r_pci_table); static int esas2r_probe(struct pci_dev *pcid, const struct pci_device_id *id); static void esas2r_remove(struct pci_dev *pcid); static struct pci_driver esas2r_pci_driver = { .name = ESAS2R_DRVR_NAME, .id_table = esas2r_pci_table, .probe = esas2r_probe, .remove = esas2r_remove, .suspend = esas2r_suspend, .resume = esas2r_resume, }; static int esas2r_probe(struct pci_dev *pcid, const struct pci_device_id *id) { struct Scsi_Host *host = NULL; struct esas2r_adapter *a; int err; size_t host_alloc_size = sizeof(struct esas2r_adapter) + ((num_requests) + 1) * sizeof(struct esas2r_request); esas2r_log_dev(ESAS2R_LOG_DEBG, &(pcid->dev), "esas2r_probe() 0x%02x 0x%02x 0x%02x 0x%02x", pcid->vendor, pcid->device, pcid->subsystem_vendor, pcid->subsystem_device); esas2r_log_dev(ESAS2R_LOG_INFO, &(pcid->dev), "before pci_enable_device() " "enable_cnt: %d", pcid->enable_cnt.counter); err = pci_enable_device(pcid); if (err != 0) { esas2r_log_dev(ESAS2R_LOG_CRIT, &(pcid->dev), "pci_enable_device() FAIL (%d)", err); return -ENODEV; } esas2r_log_dev(ESAS2R_LOG_INFO, &(pcid->dev), "pci_enable_device() OK"); esas2r_log_dev(ESAS2R_LOG_INFO, &(pcid->dev), "after pci_enable_device() enable_cnt: %d", pcid->enable_cnt.counter); host = scsi_host_alloc(&driver_template, host_alloc_size); if (host == NULL) { esas2r_log(ESAS2R_LOG_CRIT, "scsi_host_alloc() FAIL"); return -ENODEV; } memset(host->hostdata, 0, host_alloc_size); a = (struct esas2r_adapter *)host->hostdata; esas2r_log(ESAS2R_LOG_INFO, "scsi_host_alloc() OK host: %p", host); /* override max LUN and max target id */ host->max_id = ESAS2R_MAX_ID + 1; host->max_lun = 255; /* we can handle 16-byte CDbs */ host->max_cmd_len = 16; host->can_queue = can_queue; host->cmd_per_lun = cmd_per_lun; host->this_id = host->max_id + 1; host->max_channel = 0; host->unique_id = found_adapters; host->sg_tablesize = sg_tablesize; host->max_sectors = esas2r_max_sectors; /* set to bus master for BIOses that don't do it for us */ esas2r_log(ESAS2R_LOG_INFO, "pci_set_master() called"); pci_set_master(pcid); if (!esas2r_init_adapter(host, pcid, found_adapters)) { esas2r_log(ESAS2R_LOG_CRIT, "unable to initialize device at PCI bus %x:%x", pcid->bus->number, pcid->devfn); esas2r_log_dev(ESAS2R_LOG_INFO, &(host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); return 0; } esas2r_log(ESAS2R_LOG_INFO, "pci_set_drvdata(%p, %p) called", pcid, host->hostdata); pci_set_drvdata(pcid, host); esas2r_log(ESAS2R_LOG_INFO, "scsi_add_host() called"); err = scsi_add_host(host, &pcid->dev); if (err) { esas2r_log(ESAS2R_LOG_CRIT, "scsi_add_host returned %d", err); esas2r_log_dev(ESAS2R_LOG_CRIT, &(host->shost_gendev), "scsi_add_host() FAIL"); esas2r_log_dev(ESAS2R_LOG_INFO, &(host->shost_gendev), "scsi_host_put() called"); scsi_host_put(host); esas2r_log_dev(ESAS2R_LOG_INFO, &(host->shost_gendev), "pci_set_drvdata(%p, NULL) called", pcid); pci_set_drvdata(pcid, NULL); return -ENODEV; } esas2r_fw_event_on(a); esas2r_log_dev(ESAS2R_LOG_INFO, &(host->shost_gendev), "scsi_scan_host() called"); scsi_scan_host(host); /* Add sysfs binary files */ if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_fw)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: fw"); else a->sysfs_fw_created = 1; if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_fs)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: fs"); else a->sysfs_fs_created = 1; if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_vda)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: vda"); else a->sysfs_vda_created = 1; if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_hw)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: hw"); else a->sysfs_hw_created = 1; if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_live_nvram)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: live_nvram"); else a->sysfs_live_nvram_created = 1; if (sysfs_create_bin_file(&host->shost_dev.kobj, &bin_attr_default_nvram)) esas2r_log_dev(ESAS2R_LOG_WARN, &(host->shost_gendev), "Failed to create sysfs binary file: default_nvram"); else a->sysfs_default_nvram_created = 1; found_adapters++; return 0; } static void esas2r_remove(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_remove(%p) called; " "host:%p", pdev, host); esas2r_kill_adapter(a->index); found_adapters--; } static int __init esas2r_init(void) { int i; esas2r_log(ESAS2R_LOG_INFO, "%s called", __func__); /* verify valid parameters */ if (can_queue < 1) { esas2r_log(ESAS2R_LOG_WARN, "warning: can_queue must be at least 1, value " "forced."); can_queue = 1; } else if (can_queue > 2048) { esas2r_log(ESAS2R_LOG_WARN, "warning: can_queue must be no larger than 2048, " "value forced."); can_queue = 2048; } if (cmd_per_lun < 1) { esas2r_log(ESAS2R_LOG_WARN, "warning: cmd_per_lun must be at least 1, value " "forced."); cmd_per_lun = 1; } else if (cmd_per_lun > 2048) { esas2r_log(ESAS2R_LOG_WARN, "warning: cmd_per_lun must be no larger than " "2048, value forced."); cmd_per_lun = 2048; } if (sg_tablesize < 32) { esas2r_log(ESAS2R_LOG_WARN, "warning: sg_tablesize must be at least 32, " "value forced."); sg_tablesize = 32; } if (esas2r_max_sectors < 1) { esas2r_log(ESAS2R_LOG_WARN, "warning: esas2r_max_sectors must be at least " "1, value forced."); esas2r_max_sectors = 1; } else if (esas2r_max_sectors > 0xffff) { esas2r_log(ESAS2R_LOG_WARN, "warning: esas2r_max_sectors must be no larger " "than 0xffff, value forced."); esas2r_max_sectors = 0xffff; } sgl_page_size &= ~(ESAS2R_SGL_ALIGN - 1); if (sgl_page_size < SGL_PG_SZ_MIN) sgl_page_size = SGL_PG_SZ_MIN; else if (sgl_page_size > SGL_PG_SZ_MAX) sgl_page_size = SGL_PG_SZ_MAX; if (num_sg_lists < NUM_SGL_MIN) num_sg_lists = NUM_SGL_MIN; else if (num_sg_lists > NUM_SGL_MAX) num_sg_lists = NUM_SGL_MAX; if (num_requests < NUM_REQ_MIN) num_requests = NUM_REQ_MIN; else if (num_requests > NUM_REQ_MAX) num_requests = NUM_REQ_MAX; if (num_ae_requests < NUM_AE_MIN) num_ae_requests = NUM_AE_MIN; else if (num_ae_requests > NUM_AE_MAX) num_ae_requests = NUM_AE_MAX; /* set up other globals */ for (i = 0; i < MAX_ADAPTERS; i++) esas2r_adapters[i] = NULL; return pci_register_driver(&esas2r_pci_driver); } /* Handle ioctl calls to "/proc/scsi/esas2r/ATTOnode" */ static const struct file_operations esas2r_proc_fops = { .compat_ioctl = compat_ptr_ioctl, .unlocked_ioctl = esas2r_proc_ioctl, }; static const struct proc_ops esas2r_proc_ops = { .proc_ioctl = esas2r_proc_ioctl, #ifdef CONFIG_COMPAT .proc_compat_ioctl = compat_ptr_ioctl, #endif }; static struct Scsi_Host *esas2r_proc_host; static int esas2r_proc_major; long esas2r_proc_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { return esas2r_ioctl_handler(esas2r_proc_host->hostdata, cmd, (void __user *)arg); } static void __exit esas2r_exit(void) { esas2r_log(ESAS2R_LOG_INFO, "%s called", __func__); if (esas2r_proc_major > 0) { esas2r_log(ESAS2R_LOG_INFO, "unregister proc"); remove_proc_entry(ATTONODE_NAME, esas2r_proc_host->hostt->proc_dir); unregister_chrdev(esas2r_proc_major, ESAS2R_DRVR_NAME); esas2r_proc_major = 0; } esas2r_log(ESAS2R_LOG_INFO, "pci_unregister_driver() called"); pci_unregister_driver(&esas2r_pci_driver); } int esas2r_show_info(struct seq_file *m, struct Scsi_Host *sh) { struct esas2r_adapter *a = (struct esas2r_adapter *)sh->hostdata; struct esas2r_target *t; int dev_count = 0; esas2r_log(ESAS2R_LOG_DEBG, "esas2r_show_info (%p,%d)", m, sh->host_no); seq_printf(m, ESAS2R_LONGNAME "\n" "Driver version: "ESAS2R_VERSION_STR "\n" "Flash version: %s\n" "Firmware version: %s\n" "Copyright "ESAS2R_COPYRIGHT_YEARS "\n" "http://www.attotech.com\n" "\n", a->flash_rev, a->fw_rev[0] ? a->fw_rev : "(none)"); seq_printf(m, "Adapter information:\n" "--------------------\n" "Model: %s\n" "SAS address: %02X%02X%02X%02X:%02X%02X%02X%02X\n", esas2r_get_model_name(a), a->nvram->sas_addr[0], a->nvram->sas_addr[1], a->nvram->sas_addr[2], a->nvram->sas_addr[3], a->nvram->sas_addr[4], a->nvram->sas_addr[5], a->nvram->sas_addr[6], a->nvram->sas_addr[7]); seq_puts(m, "\n" "Discovered devices:\n" "\n" " # Target ID\n" "---------------\n"); for (t = a->targetdb; t < a->targetdb_end; t++) if (t->buffered_target_state == TS_PRESENT) { seq_printf(m, " %3d %3d\n", ++dev_count, (u16)(uintptr_t)(t - a->targetdb)); } if (dev_count == 0) seq_puts(m, "none\n"); seq_putc(m, '\n'); return 0; } const char *esas2r_info(struct Scsi_Host *sh) { struct esas2r_adapter *a = (struct esas2r_adapter *)sh->hostdata; static char esas2r_info_str[512]; esas2r_log_dev(ESAS2R_LOG_INFO, &(sh->shost_gendev), "esas2r_info() called"); /* * if we haven't done so already, register as a char driver * and stick a node under "/proc/scsi/esas2r/ATTOnode" */ if (esas2r_proc_major <= 0) { esas2r_proc_host = sh; esas2r_proc_major = register_chrdev(0, ESAS2R_DRVR_NAME, &esas2r_proc_fops); esas2r_log_dev(ESAS2R_LOG_DEBG, &(sh->shost_gendev), "register_chrdev (major %d)", esas2r_proc_major); if (esas2r_proc_major > 0) { struct proc_dir_entry *pde; pde = proc_create(ATTONODE_NAME, 0, sh->hostt->proc_dir, &esas2r_proc_ops); if (!pde) { esas2r_log_dev(ESAS2R_LOG_WARN, &(sh->shost_gendev), "failed to create_proc_entry"); esas2r_proc_major = -1; } } } sprintf(esas2r_info_str, ESAS2R_LONGNAME " (bus 0x%02X, device 0x%02X, IRQ 0x%02X)" " driver version: "ESAS2R_VERSION_STR " firmware version: " "%s\n", a->pcid->bus->number, a->pcid->devfn, a->pcid->irq, a->fw_rev[0] ? a->fw_rev : "(none)"); return esas2r_info_str; } /* Callback for building a request scatter/gather list */ static u32 get_physaddr_from_sgc(struct esas2r_sg_context *sgc, u64 *addr) { u32 len; if (likely(sgc->cur_offset == sgc->exp_offset)) { /* * the normal case: caller used all bytes from previous call, so * expected offset is the same as the current offset. */ if (sgc->sgel_count < sgc->num_sgel) { /* retrieve next segment, except for first time */ if (sgc->exp_offset > (u8 *)0) { /* advance current segment */ sgc->cur_sgel = sg_next(sgc->cur_sgel); ++(sgc->sgel_count); } len = sg_dma_len(sgc->cur_sgel); (*addr) = sg_dma_address(sgc->cur_sgel); /* save the total # bytes returned to caller so far */ sgc->exp_offset += len; } else { len = 0; } } else if (sgc->cur_offset < sgc->exp_offset) { /* * caller did not use all bytes from previous call. need to * compute the address based on current segment. */ len = sg_dma_len(sgc->cur_sgel); (*addr) = sg_dma_address(sgc->cur_sgel); sgc->exp_offset -= len; /* calculate PA based on prev segment address and offsets */ *addr = *addr + (sgc->cur_offset - sgc->exp_offset); sgc->exp_offset += len; /* re-calculate length based on offset */ len = lower_32_bits( sgc->exp_offset - sgc->cur_offset); } else { /* if ( sgc->cur_offset > sgc->exp_offset ) */ /* * we don't expect the caller to skip ahead. * cur_offset will never exceed the len we return */ len = 0; } return len; } int esas2r_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) { struct esas2r_adapter *a = (struct esas2r_adapter *)cmd->device->host->hostdata; struct esas2r_request *rq; struct esas2r_sg_context sgc; unsigned bufflen; /* Assume success, if it fails we will fix the result later. */ cmd->result = DID_OK << 16; if (unlikely(test_bit(AF_DEGRADED_MODE, &a->flags))) { cmd->result = DID_NO_CONNECT << 16; cmd->scsi_done(cmd); return 0; } rq = esas2r_alloc_request(a); if (unlikely(rq == NULL)) { esas2r_debug("esas2r_alloc_request failed"); return SCSI_MLQUEUE_HOST_BUSY; } rq->cmd = cmd; bufflen = scsi_bufflen(cmd); if (likely(bufflen != 0)) { if (cmd->sc_data_direction == DMA_TO_DEVICE) rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD); else if (cmd->sc_data_direction == DMA_FROM_DEVICE) rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD); } memcpy(rq->vrq->scsi.cdb, cmd->cmnd, cmd->cmd_len); rq->vrq->scsi.length = cpu_to_le32(bufflen); rq->target_id = cmd->device->id; rq->vrq->scsi.flags |= cpu_to_le32(cmd->device->lun); rq->sense_buf = cmd->sense_buffer; rq->sense_len = SCSI_SENSE_BUFFERSIZE; esas2r_sgc_init(&sgc, a, rq, NULL); sgc.length = bufflen; sgc.cur_offset = NULL; sgc.cur_sgel = scsi_sglist(cmd); sgc.exp_offset = NULL; sgc.num_sgel = scsi_dma_map(cmd); sgc.sgel_count = 0; if (unlikely(sgc.num_sgel < 0)) { esas2r_free_request(a, rq); return SCSI_MLQUEUE_HOST_BUSY; } sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_from_sgc; if (unlikely(!esas2r_build_sg_list(a, rq, &sgc))) { scsi_dma_unmap(cmd); esas2r_free_request(a, rq); return SCSI_MLQUEUE_HOST_BUSY; } esas2r_debug("start request %p to %d:%d\n", rq, (int)cmd->device->id, (int)cmd->device->lun); esas2r_start_request(a, rq); return 0; } static void complete_task_management_request(struct esas2r_adapter *a, struct esas2r_request *rq) { (*rq->task_management_status_ptr) = rq->req_stat; esas2r_free_request(a, rq); } /** * Searches the specified queue for the specified queue for the command * to abort. * * @param [in] a * @param [in] abort_request * @param [in] cmd * t * @return 0 on failure, 1 if command was not found, 2 if command was found */ static int esas2r_check_active_queue(struct esas2r_adapter *a, struct esas2r_request **abort_request, struct scsi_cmnd *cmd, struct list_head *queue) { bool found = false; struct esas2r_request *ar = *abort_request; struct esas2r_request *rq; struct list_head *element, *next; list_for_each_safe(element, next, queue) { rq = list_entry(element, struct esas2r_request, req_list); if (rq->cmd == cmd) { /* Found the request. See what to do with it. */ if (queue == &a->active_list) { /* * We are searching the active queue, which * means that we need to send an abort request * to the firmware. */ ar = esas2r_alloc_request(a); if (ar == NULL) { esas2r_log_dev(ESAS2R_LOG_WARN, &(a->host->shost_gendev), "unable to allocate an abort request for cmd %p", cmd); return 0; /* Failure */ } /* * Task management request must be formatted * with a lock held. */ ar->sense_len = 0; ar->vrq->scsi.length = 0; ar->target_id = rq->target_id; ar->vrq->scsi.flags |= cpu_to_le32( (u8)le32_to_cpu(rq->vrq->scsi.flags)); memset(ar->vrq->scsi.cdb, 0, sizeof(ar->vrq->scsi.cdb)); ar->vrq->scsi.flags |= cpu_to_le32( FCP_CMND_TRM); ar->vrq->scsi.u.abort_handle = rq->vrq->scsi.handle; } else { /* * The request is pending but not active on * the firmware. Just free it now and we'll * report the successful abort below. */ list_del_init(&rq->req_list); esas2r_free_request(a, rq); } found = true; break; } } if (!found) return 1; /* Not found */ return 2; /* found */ } int esas2r_eh_abort(struct scsi_cmnd *cmd) { struct esas2r_adapter *a = (struct esas2r_adapter *)cmd->device->host->hostdata; struct esas2r_request *abort_request = NULL; unsigned long flags; struct list_head *queue; int result; esas2r_log(ESAS2R_LOG_INFO, "eh_abort (%p)", cmd); if (test_bit(AF_DEGRADED_MODE, &a->flags)) { cmd->result = DID_ABORT << 16; scsi_set_resid(cmd, 0); cmd->scsi_done(cmd); return SUCCESS; } spin_lock_irqsave(&a->queue_lock, flags); /* * Run through the defer and active queues looking for the request * to abort. */ queue = &a->defer_list; check_active_queue: result = esas2r_check_active_queue(a, &abort_request, cmd, queue); if (!result) { spin_unlock_irqrestore(&a->queue_lock, flags); return FAILED; } else if (result == 2 && (queue == &a->defer_list)) { queue = &a->active_list; goto check_active_queue; } spin_unlock_irqrestore(&a->queue_lock, flags); if (abort_request) { u8 task_management_status = RS_PENDING; /* * the request is already active, so we need to tell * the firmware to abort it and wait for the response. */ abort_request->comp_cb = complete_task_management_request; abort_request->task_management_status_ptr = &task_management_status; esas2r_start_request(a, abort_request); if (atomic_read(&a->disable_cnt) == 0) esas2r_do_deferred_processes(a); while (task_management_status == RS_PENDING) msleep(10); /* * Once we get here, the original request will have been * completed by the firmware and the abort request will have * been cleaned up. we're done! */ return SUCCESS; } /* * If we get here, either we found the inactive request and * freed it, or we didn't find it at all. Either way, success! */ cmd->result = DID_ABORT << 16; scsi_set_resid(cmd, 0); cmd->scsi_done(cmd); return SUCCESS; } static int esas2r_host_bus_reset(struct scsi_cmnd *cmd, bool host_reset) { struct esas2r_adapter *a = (struct esas2r_adapter *)cmd->device->host->hostdata; if (test_bit(AF_DEGRADED_MODE, &a->flags)) return FAILED; if (host_reset) esas2r_reset_adapter(a); else esas2r_reset_bus(a); /* above call sets the AF_OS_RESET flag. wait for it to clear. */ while (test_bit(AF_OS_RESET, &a->flags)) { msleep(10); if (test_bit(AF_DEGRADED_MODE, &a->flags)) return FAILED; } if (test_bit(AF_DEGRADED_MODE, &a->flags)) return FAILED; return SUCCESS; } int esas2r_host_reset(struct scsi_cmnd *cmd) { esas2r_log(ESAS2R_LOG_INFO, "host_reset (%p)", cmd); return esas2r_host_bus_reset(cmd, true); } int esas2r_bus_reset(struct scsi_cmnd *cmd) { esas2r_log(ESAS2R_LOG_INFO, "bus_reset (%p)", cmd); return esas2r_host_bus_reset(cmd, false); } static int esas2r_dev_targ_reset(struct scsi_cmnd *cmd, bool target_reset) { struct esas2r_adapter *a = (struct esas2r_adapter *)cmd->device->host->hostdata; struct esas2r_request *rq; u8 task_management_status = RS_PENDING; bool completed; if (test_bit(AF_DEGRADED_MODE, &a->flags)) return FAILED; retry: rq = esas2r_alloc_request(a); if (rq == NULL) { if (target_reset) { esas2r_log(ESAS2R_LOG_CRIT, "unable to allocate a request for a " "target reset (%d)!", cmd->device->id); } else { esas2r_log(ESAS2R_LOG_CRIT, "unable to allocate a request for a " "device reset (%d:%llu)!", cmd->device->id, cmd->device->lun); } return FAILED; } rq->target_id = cmd->device->id; rq->vrq->scsi.flags |= cpu_to_le32(cmd->device->lun); rq->req_stat = RS_PENDING; rq->comp_cb = complete_task_management_request; rq->task_management_status_ptr = &task_management_status; if (target_reset) { esas2r_debug("issuing target reset (%p) to id %d", rq, cmd->device->id); completed = esas2r_send_task_mgmt(a, rq, 0x20); } else { esas2r_debug("issuing device reset (%p) to id %d lun %d", rq, cmd->device->id, cmd->device->lun); completed = esas2r_send_task_mgmt(a, rq, 0x10); } if (completed) { /* Task management cmd completed right away, need to free it. */ esas2r_free_request(a, rq); } else { /* * Wait for firmware to complete the request. Completion * callback will free it. */ while (task_management_status == RS_PENDING) msleep(10); } if (test_bit(AF_DEGRADED_MODE, &a->flags)) return FAILED; if (task_management_status == RS_BUSY) { /* * Busy, probably because we are flashing. Wait a bit and * try again. */ msleep(100); goto retry; } return SUCCESS; } int esas2r_device_reset(struct scsi_cmnd *cmd) { esas2r_log(ESAS2R_LOG_INFO, "device_reset (%p)", cmd); return esas2r_dev_targ_reset(cmd, false); } int esas2r_target_reset(struct scsi_cmnd *cmd) { esas2r_log(ESAS2R_LOG_INFO, "target_reset (%p)", cmd); return esas2r_dev_targ_reset(cmd, true); } void esas2r_log_request_failure(struct esas2r_adapter *a, struct esas2r_request *rq) { u8 reqstatus = rq->req_stat; if (reqstatus == RS_SUCCESS) return; if (rq->vrq->scsi.function == VDA_FUNC_SCSI) { if (reqstatus == RS_SCSI_ERROR) { if (rq->func_rsp.scsi_rsp.sense_len >= 13) { esas2r_log(ESAS2R_LOG_WARN, "request failure - SCSI error %x ASC:%x ASCQ:%x CDB:%x", rq->sense_buf[2], rq->sense_buf[12], rq->sense_buf[13], rq->vrq->scsi.cdb[0]); } else { esas2r_log(ESAS2R_LOG_WARN, "request failure - SCSI error CDB:%x\n", rq->vrq->scsi.cdb[0]); } } else if ((rq->vrq->scsi.cdb[0] != INQUIRY && rq->vrq->scsi.cdb[0] != REPORT_LUNS) || (reqstatus != RS_SEL && reqstatus != RS_SEL2)) { if ((reqstatus == RS_UNDERRUN) && (rq->vrq->scsi.cdb[0] == INQUIRY)) { /* Don't log inquiry underruns */ } else { esas2r_log(ESAS2R_LOG_WARN, "request failure - cdb:%x reqstatus:%d target:%d", rq->vrq->scsi.cdb[0], reqstatus, rq->target_id); } } } } void esas2r_wait_request(struct esas2r_adapter *a, struct esas2r_request *rq) { u32 starttime; u32 timeout; starttime = jiffies_to_msecs(jiffies); timeout = rq->timeout ? rq->timeout : 5000; while (true) { esas2r_polled_interrupt(a); if (rq->req_stat != RS_STARTED) break; schedule_timeout_interruptible(msecs_to_jiffies(100)); if ((jiffies_to_msecs(jiffies) - starttime) > timeout) { esas2r_hdebug("request TMO"); esas2r_bugon(); rq->req_stat = RS_TIMEOUT; esas2r_local_reset_adapter(a); return; } } } u32 esas2r_map_data_window(struct esas2r_adapter *a, u32 addr_lo) { u32 offset = addr_lo & (MW_DATA_WINDOW_SIZE - 1); u32 base = addr_lo & -(signed int)MW_DATA_WINDOW_SIZE; if (a->window_base != base) { esas2r_write_register_dword(a, MVR_PCI_WIN1_REMAP, base | MVRPW1R_ENABLE); esas2r_flush_register_dword(a, MVR_PCI_WIN1_REMAP); a->window_base = base; } return offset; } /* Read a block of data from chip memory */ bool esas2r_read_mem_block(struct esas2r_adapter *a, void *to, u32 from, u32 size) { u8 *end = (u8 *)to; while (size) { u32 len; u32 offset; u32 iatvr; iatvr = (from & -(signed int)MW_DATA_WINDOW_SIZE); esas2r_map_data_window(a, iatvr); offset = from & (MW_DATA_WINDOW_SIZE - 1); len = size; if (len > MW_DATA_WINDOW_SIZE - offset) len = MW_DATA_WINDOW_SIZE - offset; from += len; size -= len; while (len--) { *end++ = esas2r_read_data_byte(a, offset); offset++; } } return true; } void esas2r_nuxi_mgt_data(u8 function, void *data) { struct atto_vda_grp_info *g; struct atto_vda_devinfo *d; struct atto_vdapart_info *p; struct atto_vda_dh_info *h; struct atto_vda_metrics_info *m; struct atto_vda_schedule_info *s; struct atto_vda_buzzer_info *b; u8 i; switch (function) { case VDAMGT_BUZZER_INFO: case VDAMGT_BUZZER_SET: b = (struct atto_vda_buzzer_info *)data; b->duration = le32_to_cpu(b->duration); break; case VDAMGT_SCHEDULE_INFO: case VDAMGT_SCHEDULE_EVENT: s = (struct atto_vda_schedule_info *)data; s->id = le32_to_cpu(s->id); break; case VDAMGT_DEV_INFO: case VDAMGT_DEV_CLEAN: case VDAMGT_DEV_PT_INFO: case VDAMGT_DEV_FEATURES: case VDAMGT_DEV_PT_FEATURES: case VDAMGT_DEV_OPERATION: d = (struct atto_vda_devinfo *)data; d->capacity = le64_to_cpu(d->capacity); d->block_size = le32_to_cpu(d->block_size); d->ses_dev_index = le16_to_cpu(d->ses_dev_index); d->target_id = le16_to_cpu(d->target_id); d->lun = le16_to_cpu(d->lun); d->features = le16_to_cpu(d->features); break; case VDAMGT_GRP_INFO: case VDAMGT_GRP_CREATE: case VDAMGT_GRP_DELETE: case VDAMGT_ADD_STORAGE: case VDAMGT_MEMBER_ADD: case VDAMGT_GRP_COMMIT: case VDAMGT_GRP_REBUILD: case VDAMGT_GRP_COMMIT_INIT: case VDAMGT_QUICK_RAID: case VDAMGT_GRP_FEATURES: case VDAMGT_GRP_COMMIT_INIT_AUTOMAP: case VDAMGT_QUICK_RAID_INIT_AUTOMAP: case VDAMGT_SPARE_LIST: case VDAMGT_SPARE_ADD: case VDAMGT_SPARE_REMOVE: case VDAMGT_LOCAL_SPARE_ADD: case VDAMGT_GRP_OPERATION: g = (struct atto_vda_grp_info *)data; g->capacity = le64_to_cpu(g->capacity); g->block_size = le32_to_cpu(g->block_size); g->interleave = le32_to_cpu(g->interleave); g->features = le16_to_cpu(g->features); for (i = 0; i < 32; i++) g->members[i] = le16_to_cpu(g->members[i]); break; case VDAMGT_PART_INFO: case VDAMGT_PART_MAP: case VDAMGT_PART_UNMAP: case VDAMGT_PART_AUTOMAP: case VDAMGT_PART_SPLIT: case VDAMGT_PART_MERGE: p = (struct atto_vdapart_info *)data; p->part_size = le64_to_cpu(p->part_size); p->start_lba = le32_to_cpu(p->start_lba); p->block_size = le32_to_cpu(p->block_size); p->target_id = le16_to_cpu(p->target_id); break; case VDAMGT_DEV_HEALTH_REQ: h = (struct atto_vda_dh_info *)data; h->med_defect_cnt = le32_to_cpu(h->med_defect_cnt); h->info_exc_cnt = le32_to_cpu(h->info_exc_cnt); break; case VDAMGT_DEV_METRICS: m = (struct atto_vda_metrics_info *)data; for (i = 0; i < 32; i++) m->dev_indexes[i] = le16_to_cpu(m->dev_indexes[i]); break; default: break; } } void esas2r_nuxi_cfg_data(u8 function, void *data) { struct atto_vda_cfg_init *ci; switch (function) { case VDA_CFG_INIT: case VDA_CFG_GET_INIT: case VDA_CFG_GET_INIT2: ci = (struct atto_vda_cfg_init *)data; ci->date_time.year = le16_to_cpu(ci->date_time.year); ci->sgl_page_size = le32_to_cpu(ci->sgl_page_size); ci->vda_version = le32_to_cpu(ci->vda_version); ci->epoch_time = le32_to_cpu(ci->epoch_time); ci->ioctl_tunnel = le32_to_cpu(ci->ioctl_tunnel); ci->num_targets_backend = le32_to_cpu(ci->num_targets_backend); break; default: break; } } void esas2r_nuxi_ae_data(union atto_vda_ae *ae) { struct atto_vda_ae_raid *r = &ae->raid; struct atto_vda_ae_lu *l = &ae->lu; switch (ae->hdr.bytype) { case VDAAE_HDR_TYPE_RAID: r->dwflags = le32_to_cpu(r->dwflags); break; case VDAAE_HDR_TYPE_LU: l->dwevent = le32_to_cpu(l->dwevent); l->wphys_target_id = le16_to_cpu(l->wphys_target_id); l->id.tgtlun.wtarget_id = le16_to_cpu(l->id.tgtlun.wtarget_id); if (l->hdr.bylength >= offsetof(struct atto_vda_ae_lu, id) + sizeof(struct atto_vda_ae_lu_tgt_lun_raid)) { l->id.tgtlun_raid.dwinterleave = le32_to_cpu(l->id.tgtlun_raid.dwinterleave); l->id.tgtlun_raid.dwblock_size = le32_to_cpu(l->id.tgtlun_raid.dwblock_size); } break; case VDAAE_HDR_TYPE_DISK: default: break; } } void esas2r_free_request(struct esas2r_adapter *a, struct esas2r_request *rq) { unsigned long flags; esas2r_rq_destroy_request(rq, a); spin_lock_irqsave(&a->request_lock, flags); list_add(&rq->comp_list, &a->avail_request); spin_unlock_irqrestore(&a->request_lock, flags); } struct esas2r_request *esas2r_alloc_request(struct esas2r_adapter *a) { struct esas2r_request *rq; unsigned long flags; spin_lock_irqsave(&a->request_lock, flags); if (unlikely(list_empty(&a->avail_request))) { spin_unlock_irqrestore(&a->request_lock, flags); return NULL; } rq = list_first_entry(&a->avail_request, struct esas2r_request, comp_list); list_del(&rq->comp_list); spin_unlock_irqrestore(&a->request_lock, flags); esas2r_rq_init_request(rq, a); return rq; } void esas2r_complete_request_cb(struct esas2r_adapter *a, struct esas2r_request *rq) { esas2r_debug("completing request %p\n", rq); scsi_dma_unmap(rq->cmd); if (unlikely(rq->req_stat != RS_SUCCESS)) { esas2r_debug("[%x STATUS %x:%x (%x)]", rq->target_id, rq->req_stat, rq->func_rsp.scsi_rsp.scsi_stat, rq->cmd); rq->cmd->result = ((esas2r_req_status_to_error(rq->req_stat) << 16) | (rq->func_rsp.scsi_rsp.scsi_stat & STATUS_MASK)); if (rq->req_stat == RS_UNDERRUN) scsi_set_resid(rq->cmd, le32_to_cpu(rq->func_rsp.scsi_rsp. residual_length)); else scsi_set_resid(rq->cmd, 0); } rq->cmd->scsi_done(rq->cmd); esas2r_free_request(a, rq); } /* Run tasklet to handle stuff outside of interrupt context. */ void esas2r_adapter_tasklet(unsigned long context) { struct esas2r_adapter *a = (struct esas2r_adapter *)context; if (unlikely(test_bit(AF2_TIMER_TICK, &a->flags2))) { clear_bit(AF2_TIMER_TICK, &a->flags2); esas2r_timer_tick(a); } if (likely(test_bit(AF2_INT_PENDING, &a->flags2))) { clear_bit(AF2_INT_PENDING, &a->flags2); esas2r_adapter_interrupt(a); } if (esas2r_is_tasklet_pending(a)) esas2r_do_tasklet_tasks(a); if (esas2r_is_tasklet_pending(a) || (test_bit(AF2_INT_PENDING, &a->flags2)) || (test_bit(AF2_TIMER_TICK, &a->flags2))) { clear_bit(AF_TASKLET_SCHEDULED, &a->flags); esas2r_schedule_tasklet(a); } else { clear_bit(AF_TASKLET_SCHEDULED, &a->flags); } } static void esas2r_timer_callback(struct timer_list *t); void esas2r_kickoff_timer(struct esas2r_adapter *a) { timer_setup(&a->timer, esas2r_timer_callback, 0); a->timer.expires = jiffies + msecs_to_jiffies(100); add_timer(&a->timer); } static void esas2r_timer_callback(struct timer_list *t) { struct esas2r_adapter *a = from_timer(a, t, timer); set_bit(AF2_TIMER_TICK, &a->flags2); esas2r_schedule_tasklet(a); esas2r_kickoff_timer(a); } /* * Firmware events need to be handled outside of interrupt context * so we schedule a delayed_work to handle them. */ static void esas2r_free_fw_event(struct esas2r_fw_event_work *fw_event) { unsigned long flags; struct esas2r_adapter *a = fw_event->a; spin_lock_irqsave(&a->fw_event_lock, flags); list_del(&fw_event->list); kfree(fw_event); spin_unlock_irqrestore(&a->fw_event_lock, flags); } void esas2r_fw_event_off(struct esas2r_adapter *a) { unsigned long flags; spin_lock_irqsave(&a->fw_event_lock, flags); a->fw_events_off = 1; spin_unlock_irqrestore(&a->fw_event_lock, flags); } void esas2r_fw_event_on(struct esas2r_adapter *a) { unsigned long flags; spin_lock_irqsave(&a->fw_event_lock, flags); a->fw_events_off = 0; spin_unlock_irqrestore(&a->fw_event_lock, flags); } static void esas2r_add_device(struct esas2r_adapter *a, u16 target_id) { int ret; struct scsi_device *scsi_dev; scsi_dev = scsi_device_lookup(a->host, 0, target_id, 0); if (scsi_dev) { esas2r_log_dev( ESAS2R_LOG_WARN, &(scsi_dev-> sdev_gendev), "scsi device already exists at id %d", target_id); scsi_device_put(scsi_dev); } else { esas2r_log_dev( ESAS2R_LOG_INFO, &(a->host-> shost_gendev), "scsi_add_device() called for 0:%d:0", target_id); ret = scsi_add_device(a->host, 0, target_id, 0); if (ret) { esas2r_log_dev( ESAS2R_LOG_CRIT, &(a->host-> shost_gendev), "scsi_add_device failed with %d for id %d", ret, target_id); } } } static void esas2r_remove_device(struct esas2r_adapter *a, u16 target_id) { struct scsi_device *scsi_dev; scsi_dev = scsi_device_lookup(a->host, 0, target_id, 0); if (scsi_dev) { scsi_device_set_state(scsi_dev, SDEV_OFFLINE); esas2r_log_dev( ESAS2R_LOG_INFO, &(scsi_dev-> sdev_gendev), "scsi_remove_device() called for 0:%d:0", target_id); scsi_remove_device(scsi_dev); esas2r_log_dev( ESAS2R_LOG_INFO, &(scsi_dev-> sdev_gendev), "scsi_device_put() called"); scsi_device_put(scsi_dev); } else { esas2r_log_dev( ESAS2R_LOG_WARN, &(a->host->shost_gendev), "no target found at id %d", target_id); } } /* * Sends a firmware asynchronous event to anyone who happens to be * listening on the defined ATTO VDA event ports. */ static void esas2r_send_ae_event(struct esas2r_fw_event_work *fw_event) { struct esas2r_vda_ae *ae = (struct esas2r_vda_ae *)fw_event->data; char *type; switch (ae->vda_ae.hdr.bytype) { case VDAAE_HDR_TYPE_RAID: type = "RAID group state change"; break; case VDAAE_HDR_TYPE_LU: type = "Mapped destination LU change"; break; case VDAAE_HDR_TYPE_DISK: type = "Physical disk inventory change"; break; case VDAAE_HDR_TYPE_RESET: type = "Firmware reset"; break; case VDAAE_HDR_TYPE_LOG_INFO: type = "Event Log message (INFO level)"; break; case VDAAE_HDR_TYPE_LOG_WARN: type = "Event Log message (WARN level)"; break; case VDAAE_HDR_TYPE_LOG_CRIT: type = "Event Log message (CRIT level)"; break; case VDAAE_HDR_TYPE_LOG_FAIL: type = "Event Log message (FAIL level)"; break; case VDAAE_HDR_TYPE_NVC: type = "NVCache change"; break; case VDAAE_HDR_TYPE_TLG_INFO: type = "Time stamped log message (INFO level)"; break; case VDAAE_HDR_TYPE_TLG_WARN: type = "Time stamped log message (WARN level)"; break; case VDAAE_HDR_TYPE_TLG_CRIT: type = "Time stamped log message (CRIT level)"; break; case VDAAE_HDR_TYPE_PWRMGT: type = "Power management"; break; case VDAAE_HDR_TYPE_MUTE: type = "Mute button pressed"; break; case VDAAE_HDR_TYPE_DEV: type = "Device attribute change"; break; default: type = "Unknown"; break; } esas2r_log(ESAS2R_LOG_WARN, "An async event of type \"%s\" was received from the firmware. The event contents are:", type); esas2r_log_hexdump(ESAS2R_LOG_WARN, &ae->vda_ae, ae->vda_ae.hdr.bylength); } static void esas2r_firmware_event_work(struct work_struct *work) { struct esas2r_fw_event_work *fw_event = container_of(work, struct esas2r_fw_event_work, work.work); struct esas2r_adapter *a = fw_event->a; u16 target_id = *(u16 *)&fw_event->data[0]; if (a->fw_events_off) goto done; switch (fw_event->type) { case fw_event_null: break; /* do nothing */ case fw_event_lun_change: esas2r_remove_device(a, target_id); esas2r_add_device(a, target_id); break; case fw_event_present: esas2r_add_device(a, target_id); break; case fw_event_not_present: esas2r_remove_device(a, target_id); break; case fw_event_vda_ae: esas2r_send_ae_event(fw_event); break; } done: esas2r_free_fw_event(fw_event); } void esas2r_queue_fw_event(struct esas2r_adapter *a, enum fw_event_type type, void *data, int data_sz) { struct esas2r_fw_event_work *fw_event; unsigned long flags; fw_event = kzalloc(sizeof(struct esas2r_fw_event_work), GFP_ATOMIC); if (!fw_event) { esas2r_log(ESAS2R_LOG_WARN, "esas2r_queue_fw_event failed to alloc"); return; } if (type == fw_event_vda_ae) { struct esas2r_vda_ae *ae = (struct esas2r_vda_ae *)fw_event->data; ae->signature = ESAS2R_VDA_EVENT_SIG; ae->bus_number = a->pcid->bus->number; ae->devfn = a->pcid->devfn; memcpy(&ae->vda_ae, data, sizeof(ae->vda_ae)); } else { memcpy(fw_event->data, data, data_sz); } fw_event->type = type; fw_event->a = a; spin_lock_irqsave(&a->fw_event_lock, flags); list_add_tail(&fw_event->list, &a->fw_event_list); INIT_DELAYED_WORK(&fw_event->work, esas2r_firmware_event_work); queue_delayed_work_on( smp_processor_id(), a->fw_event_q, &fw_event->work, msecs_to_jiffies(1)); spin_unlock_irqrestore(&a->fw_event_lock, flags); } void esas2r_target_state_changed(struct esas2r_adapter *a, u16 targ_id, u8 state) { if (state == TS_LUN_CHANGE) esas2r_queue_fw_event(a, fw_event_lun_change, &targ_id, sizeof(targ_id)); else if (state == TS_PRESENT) esas2r_queue_fw_event(a, fw_event_present, &targ_id, sizeof(targ_id)); else if (state == TS_NOT_PRESENT) esas2r_queue_fw_event(a, fw_event_not_present, &targ_id, sizeof(targ_id)); } /* Translate status to a Linux SCSI mid-layer error code */ int esas2r_req_status_to_error(u8 req_stat) { switch (req_stat) { case RS_OVERRUN: case RS_UNDERRUN: case RS_SUCCESS: /* * NOTE: SCSI mid-layer wants a good status for a SCSI error, because * it will check the scsi_stat value in the completion anyway. */ case RS_SCSI_ERROR: return DID_OK; case RS_SEL: case RS_SEL2: return DID_NO_CONNECT; case RS_RESET: return DID_RESET; case RS_ABORTED: return DID_ABORT; case RS_BUSY: return DID_BUS_BUSY; } /* everything else is just an error. */ return DID_ERROR; } module_init(esas2r_init); module_exit(esas2r_exit);