/* fd_mcs.c -- Future Domain MCS 600/700 (or IBM OEM) driver * * FutureDomain MCS-600/700 v0.2 03/11/1998 by ZP Gu (zpg@castle.net) * * This driver is cloned from fdomain.* to specifically support * the Future Domain MCS 600/700 MCA SCSI adapters. Some PS/2s * also equipped with IBM Fast SCSI Adapter/A which is an OEM * of MCS 700. * * This driver also supports Reply SB16/SCSI card (the SCSI part). * * What makes this driver different is that this driver is MCA only * and it supports multiple adapters in the same system, IRQ * sharing, some driver statistics, and maps highest SCSI id to sda. * All cards are auto-detected. * * Assumptions: TMC-1800/18C50/18C30, BIOS >= 3.4 * * LILO command-line options: * fd_mcs=[,] * * ******************************************************** * Please see Copyrights/Comments in fdomain.* for credits. * Following is from fdomain.c for acknowledgement: * * Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu * Revised: Wed Oct 2 11:10:55 1996 by r.faith@ieee.org * Author: Rickard E. Faith, faith@cs.unc.edu * Copyright 1992, 1993, 1994, 1995, 1996 Rickard E. Faith * * $Id: fdomain.c,v 5.45 1996/10/02 15:13:06 root Exp $ * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. ************************************************************************** NOTES ON USER DEFINABLE OPTIONS: DEBUG: This turns on the printing of various debug information. ENABLE_PARITY: This turns on SCSI parity checking. With the current driver, all attached devices must support SCSI parity. If none of your devices support parity, then you can probably get the driver to work by turning this option off. I have no way of testing this, however, and it would appear that no one ever uses this option. FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the 18C30 chip have a 2k cache). When this many 512 byte blocks are filled by the SCSI device, an interrupt will be raised. Therefore, this could be as low as 0, or as high as 16. Note, however, that values which are too high or too low seem to prevent any interrupts from occurring, and thereby lock up the machine. I have found that 2 is a good number, but throughput may be increased by changing this value to values which are close to 2. Please let me know if you try any different values. [*****Now a runtime option*****] RESELECTION: This is no longer an option, since I gave up trying to implement it in version 4.x of this driver. It did not improve performance at all and made the driver unstable (because I never found one of the two race conditions which were introduced by the multiple outstanding command code). The instability seems a very high price to pay just so that you don't have to wait for the tape to rewind. If you want this feature implemented, send me patches. I'll be happy to send a copy of my (broken) driver to anyone who would like to see a copy. **************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "scsi.h" #include #define DRIVER_VERSION "v0.2 by ZP Gu" /* START OF USER DEFINABLE OPTIONS */ #define DEBUG 0 /* Enable debugging output */ #define ENABLE_PARITY 1 /* Enable SCSI Parity */ /* END OF USER DEFINABLE OPTIONS */ #if DEBUG #define EVERY_ACCESS 0 /* Write a line on every scsi access */ #define ERRORS_ONLY 1 /* Only write a line if there is an error */ #define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */ #define DEBUG_ABORT 1 /* Debug abort() routine */ #define DEBUG_RESET 1 /* Debug reset() routine */ #define DEBUG_RACE 1 /* Debug interrupt-driven race condition */ #else #define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */ #define ERRORS_ONLY 0 #define DEBUG_MESSAGES 0 #define DEBUG_ABORT 0 #define DEBUG_RESET 0 #define DEBUG_RACE 0 #endif /* Errors are reported on the line, so we don't need to report them again */ #if EVERY_ACCESS #undef ERRORS_ONLY #define ERRORS_ONLY 0 #endif #if ENABLE_PARITY #define PARITY_MASK 0x08 #else #define PARITY_MASK 0x00 #endif enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; enum { in_arbitration = 0x02, in_selection = 0x04, in_other = 0x08, disconnect = 0x10, aborted = 0x20, sent_ident = 0x40, }; enum in_port_type { Read_SCSI_Data = 0, SCSI_Status = 1, TMC_Status = 2, FIFO_Status = 3, /* tmc18c50/tmc18c30 only */ Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */ LSB_ID_Code = 5, MSB_ID_Code = 6, Read_Loopback = 7, SCSI_Data_NoACK = 8, Interrupt_Status = 9, Configuration1 = 10, Configuration2 = 11, /* tmc18c50/tmc18c30 only */ Read_FIFO = 12, FIFO_Data_Count = 14 }; enum out_port_type { Write_SCSI_Data = 0, SCSI_Cntl = 1, Interrupt_Cntl = 2, SCSI_Mode_Cntl = 3, TMC_Cntl = 4, Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */ Write_Loopback = 7, IO_Control = 11, /* tmc18c30 only */ Write_FIFO = 12 }; struct fd_hostdata { unsigned long _bios_base; int _bios_major; int _bios_minor; volatile int _in_command; Scsi_Cmnd *_current_SC; enum chip_type _chip; int _adapter_mask; int _fifo_count; /* Number of 512 byte blocks before INTR */ char _adapter_name[64]; #if DEBUG_RACE volatile int _in_interrupt_flag; #endif int _SCSI_Mode_Cntl_port; int _FIFO_Data_Count_port; int _Interrupt_Cntl_port; int _Interrupt_Status_port; int _Interrupt_Cond_port; int _Read_FIFO_port; int _Read_SCSI_Data_port; int _SCSI_Cntl_port; int _SCSI_Data_NoACK_port; int _SCSI_Status_port; int _TMC_Cntl_port; int _TMC_Status_port; int _Write_FIFO_port; int _Write_SCSI_Data_port; int _FIFO_Size; /* = 0x2000; 8k FIFO for pre-tmc18c30 chips */ /* simple stats */ int _Bytes_Read; int _Bytes_Written; int _INTR_Processed; }; #define FD_MAX_HOSTS 3 /* enough? */ #define HOSTDATA(shpnt) ((struct fd_hostdata *) shpnt->hostdata) #define bios_base (HOSTDATA(shpnt)->_bios_base) #define bios_major (HOSTDATA(shpnt)->_bios_major) #define bios_minor (HOSTDATA(shpnt)->_bios_minor) #define in_command (HOSTDATA(shpnt)->_in_command) #define current_SC (HOSTDATA(shpnt)->_current_SC) #define chip (HOSTDATA(shpnt)->_chip) #define adapter_mask (HOSTDATA(shpnt)->_adapter_mask) #define FIFO_COUNT (HOSTDATA(shpnt)->_fifo_count) #define adapter_name (HOSTDATA(shpnt)->_adapter_name) #if DEBUG_RACE #define in_interrupt_flag (HOSTDATA(shpnt)->_in_interrupt_flag) #endif #define SCSI_Mode_Cntl_port (HOSTDATA(shpnt)->_SCSI_Mode_Cntl_port) #define FIFO_Data_Count_port (HOSTDATA(shpnt)->_FIFO_Data_Count_port) #define Interrupt_Cntl_port (HOSTDATA(shpnt)->_Interrupt_Cntl_port) #define Interrupt_Status_port (HOSTDATA(shpnt)->_Interrupt_Status_port) #define Interrupt_Cond_port (HOSTDATA(shpnt)->_Interrupt_Cond_port) #define Read_FIFO_port (HOSTDATA(shpnt)->_Read_FIFO_port) #define Read_SCSI_Data_port (HOSTDATA(shpnt)->_Read_SCSI_Data_port) #define SCSI_Cntl_port (HOSTDATA(shpnt)->_SCSI_Cntl_port) #define SCSI_Data_NoACK_port (HOSTDATA(shpnt)->_SCSI_Data_NoACK_port) #define SCSI_Status_port (HOSTDATA(shpnt)->_SCSI_Status_port) #define TMC_Cntl_port (HOSTDATA(shpnt)->_TMC_Cntl_port) #define TMC_Status_port (HOSTDATA(shpnt)->_TMC_Status_port) #define Write_FIFO_port (HOSTDATA(shpnt)->_Write_FIFO_port) #define Write_SCSI_Data_port (HOSTDATA(shpnt)->_Write_SCSI_Data_port) #define FIFO_Size (HOSTDATA(shpnt)->_FIFO_Size) #define Bytes_Read (HOSTDATA(shpnt)->_Bytes_Read) #define Bytes_Written (HOSTDATA(shpnt)->_Bytes_Written) #define INTR_Processed (HOSTDATA(shpnt)->_INTR_Processed) struct fd_mcs_adapters_struct { char *name; int id; enum chip_type fd_chip; int fifo_size; int fifo_count; }; #define REPLY_ID 0x5137 static struct fd_mcs_adapters_struct fd_mcs_adapters[] = { {"Future Domain SCSI Adapter MCS-700(18C50)", 0x60e9, tmc18c50, 0x2000, 4}, {"Future Domain SCSI Adapter MCS-600/700(TMC-1800)", 0x6127, tmc1800, 0x2000, 4}, {"Reply Sound Blaster/SCSI Adapter", REPLY_ID, tmc18c30, 0x800, 2}, }; #define FD_BRDS ARRAY_SIZE(fd_mcs_adapters) static irqreturn_t fd_mcs_intr(int irq, void *dev_id); static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000 }; static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 }; static unsigned short interrupts[] = { 3, 5, 10, 11, 12, 14, 15, 0 }; /* host information */ static int found = 0; static struct Scsi_Host *hosts[FD_MAX_HOSTS + 1] = { NULL }; static int user_fifo_count = 0; static int user_fifo_size = 0; #ifndef MODULE static int __init fd_mcs_setup(char *str) { static int done_setup = 0; int ints[3]; get_options(str, 3, ints); if (done_setup++ || ints[0] < 1 || ints[0] > 2 || ints[1] < 1 || ints[1] > 16) { printk("fd_mcs: usage: fd_mcs=FIFO_COUNT, FIFO_SIZE\n"); return 0; } user_fifo_count = ints[0] >= 1 ? ints[1] : 0; user_fifo_size = ints[0] >= 2 ? ints[2] : 0; return 1; } __setup("fd_mcs=", fd_mcs_setup); #endif /* !MODULE */ static void print_banner(struct Scsi_Host *shpnt) { printk("scsi%d : ", shpnt->host_no); if (bios_base) { printk("BIOS at 0x%lX", bios_base); } else { printk("No BIOS"); } printk(", HostID %d, %s Chip, IRQ %d, IO 0x%lX\n", shpnt->this_id, chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? "TMC-18C30" : (chip == tmc1800 ? "TMC-1800" : "Unknown")), shpnt->irq, shpnt->io_port); } static void do_pause(unsigned amount) { /* Pause for amount*10 milliseconds */ do { mdelay(10); } while (--amount); } static void fd_mcs_make_bus_idle(struct Scsi_Host *shpnt) { outb(0, SCSI_Cntl_port); outb(0, SCSI_Mode_Cntl_port); if (chip == tmc18c50 || chip == tmc18c30) outb(0x21 | PARITY_MASK, TMC_Cntl_port); /* Clear forced intr. */ else outb(0x01 | PARITY_MASK, TMC_Cntl_port); } static int fd_mcs_detect(struct scsi_host_template * tpnt) { int loop; struct Scsi_Host *shpnt; /* get id, port, bios, irq */ int slot; u_char pos2, pos3, pos4; int id, port, irq; unsigned long bios; /* if not MCA machine, return */ if (!MCA_bus) return 0; /* changeable? */ id = 7; for (loop = 0; loop < FD_BRDS; loop++) { slot = 0; while (MCA_NOTFOUND != (slot = mca_find_adapter(fd_mcs_adapters[loop].id, slot))) { /* if we get this far, an adapter has been detected and is enabled */ printk(KERN_INFO "scsi : %s at slot %d\n", fd_mcs_adapters[loop].name, slot + 1); pos2 = mca_read_stored_pos(slot, 2); pos3 = mca_read_stored_pos(slot, 3); pos4 = mca_read_stored_pos(slot, 4); /* ready for next probe */ slot++; if (fd_mcs_adapters[loop].id == REPLY_ID) { /* reply card */ static int reply_irq[] = { 10, 11, 14, 15 }; bios = 0; /* no bios */ if (pos2 & 0x2) port = ports[pos4 & 0x3]; else continue; /* can't really disable it, same as irq=10 */ irq = reply_irq[((pos4 >> 2) & 0x1) + 2 * ((pos4 >> 4) & 0x1)]; } else { bios = addresses[pos2 >> 6]; port = ports[(pos2 >> 4) & 0x03]; irq = interrupts[(pos2 >> 1) & 0x07]; } if (irq) { /* claim the slot */ mca_set_adapter_name(slot - 1, fd_mcs_adapters[loop].name); /* check irq/region */ if (request_irq(irq, fd_mcs_intr, IRQF_SHARED, "fd_mcs", hosts)) { printk(KERN_ERR "fd_mcs: interrupt is not available, skipping...\n"); continue; } /* request I/O region */ if (request_region(port, 0x10, "fd_mcs")) { printk(KERN_ERR "fd_mcs: I/O region is already in use, skipping...\n"); continue; } /* register */ if (!(shpnt = scsi_register(tpnt, sizeof(struct fd_hostdata)))) { printk(KERN_ERR "fd_mcs: scsi_register() failed\n"); release_region(port, 0x10); free_irq(irq, hosts); continue; } /* save name */ strcpy(adapter_name, fd_mcs_adapters[loop].name); /* chip/fifo */ chip = fd_mcs_adapters[loop].fd_chip; /* use boot time value if available */ FIFO_COUNT = user_fifo_count ? user_fifo_count : fd_mcs_adapters[loop].fifo_count; FIFO_Size = user_fifo_size ? user_fifo_size : fd_mcs_adapters[loop].fifo_size; /* FIXME: Do we need to keep this bit of code inside NOT_USED around at all? */ #ifdef NOT_USED /* *************************************************** */ /* Try to toggle 32-bit mode. This only works on an 18c30 chip. (User reports say this works, so we should switch to it in the near future.) */ outb(0x80, port + IO_Control); if ((inb(port + Configuration2) & 0x80) == 0x80) { outb(0x00, port + IO_Control); if ((inb(port + Configuration2) & 0x80) == 0x00) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ printk("FIRST: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size); } } /* That should have worked, but appears to have problems. Let's assume it is an 18c30 if the RAM is disabled. */ if (inb(port + Configuration2) & 0x02) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ printk("SECOND: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size); } /* *************************************************** */ #endif /* IBM/ANSI scsi scan ordering */ /* Stick this back in when the scsi.c changes are there */ shpnt->reverse_ordering = 1; /* saving info */ hosts[found++] = shpnt; shpnt->this_id = id; shpnt->irq = irq; shpnt->io_port = port; shpnt->n_io_port = 0x10; /* save */ bios_base = bios; adapter_mask = (1 << id); /* save more */ SCSI_Mode_Cntl_port = port + SCSI_Mode_Cntl; FIFO_Data_Count_port = port + FIFO_Data_Count; Interrupt_Cntl_port = port + Interrupt_Cntl; Interrupt_Status_port = port + Interrupt_Status; Interrupt_Cond_port = port + Interrupt_Cond; Read_FIFO_port = port + Read_FIFO; Read_SCSI_Data_port = port + Read_SCSI_Data; SCSI_Cntl_port = port + SCSI_Cntl; SCSI_Data_NoACK_port = port + SCSI_Data_NoACK; SCSI_Status_port = port + SCSI_Status; TMC_Cntl_port = port + TMC_Cntl; TMC_Status_port = port + TMC_Status; Write_FIFO_port = port + Write_FIFO; Write_SCSI_Data_port = port + Write_SCSI_Data; Bytes_Read = 0; Bytes_Written = 0; INTR_Processed = 0; /* say something */ print_banner(shpnt); /* reset */ outb(1, SCSI_Cntl_port); do_pause(2); outb(0, SCSI_Cntl_port); do_pause(115); outb(0, SCSI_Mode_Cntl_port); outb(PARITY_MASK, TMC_Cntl_port); /* done reset */ } } if (found == FD_MAX_HOSTS) { printk("fd_mcs: detecting reached max=%d host adapters.\n", FD_MAX_HOSTS); break; } } return found; } static const char *fd_mcs_info(struct Scsi_Host *shpnt) { return adapter_name; } static int TOTAL_INTR = 0; /* * inout : decides on the direction of the dataflow and the meaning of the * variables * buffer: If inout==FALSE data is being written to it else read from it * *start: If inout==FALSE start of the valid data in the buffer * offset: If inout==FALSE offset from the beginning of the imaginary file * from which we start writing into the buffer * length: If inout==FALSE max number of bytes to be written into the buffer * else number of bytes in the buffer */ static int fd_mcs_proc_info(struct Scsi_Host *shpnt, char *buffer, char **start, off_t offset, int length, int inout) { int len = 0; if (inout) return (-ENOSYS); *start = buffer + offset; len += sprintf(buffer + len, "Future Domain MCS-600/700 Driver %s\n", DRIVER_VERSION); len += sprintf(buffer + len, "HOST #%d: %s\n", shpnt->host_no, adapter_name); len += sprintf(buffer + len, "FIFO Size=0x%x, FIFO Count=%d\n", FIFO_Size, FIFO_COUNT); len += sprintf(buffer + len, "DriverCalls=%d, Interrupts=%d, BytesRead=%d, BytesWrite=%d\n\n", TOTAL_INTR, INTR_Processed, Bytes_Read, Bytes_Written); if ((len -= offset) <= 0) return 0; if (len > length) len = length; return len; } static int fd_mcs_select(struct Scsi_Host *shpnt, int target) { int status; unsigned long timeout; outb(0x82, SCSI_Cntl_port); /* Bus Enable + Select */ outb(adapter_mask | (1 << target), SCSI_Data_NoACK_port); /* Stop arbitration and enable parity */ outb(PARITY_MASK, TMC_Cntl_port); timeout = 350; /* 350mS -- because of timeouts (was 250mS) */ do { status = inb(SCSI_Status_port); /* Read adapter status */ if (status & 1) { /* Busy asserted */ /* Enable SCSI Bus (on error, should make bus idle with 0) */ outb(0x80, SCSI_Cntl_port); return 0; } udelay(1000); /* wait one msec */ } while (--timeout); /* Make bus idle */ fd_mcs_make_bus_idle(shpnt); #if EVERY_ACCESS if (!target) printk("Selection failed\n"); #endif #if ERRORS_ONLY if (!target) { static int flag = 0; if (!flag) /* Skip first failure for all chips. */ ++flag; else printk("fd_mcs: Selection failed\n"); } #endif return 1; } static void my_done(struct Scsi_Host *shpnt, int error) { if (in_command) { in_command = 0; outb(0x00, Interrupt_Cntl_port); fd_mcs_make_bus_idle(shpnt); current_SC->result = error; current_SC->scsi_done(current_SC); } else { panic("fd_mcs: my_done() called outside of command\n"); } #if DEBUG_RACE in_interrupt_flag = 0; #endif } /* only my_done needs to be protected */ static irqreturn_t fd_mcs_intr(int irq, void *dev_id) { unsigned long flags; int status; int done = 0; unsigned data_count, tmp_count; int i = 0; struct Scsi_Host *shpnt; TOTAL_INTR++; /* search for one adapter-response on shared interrupt */ while ((shpnt = hosts[i++])) { if ((inb(TMC_Status_port)) & 1) break; } /* return if some other device on this IRQ caused the interrupt */ if (!shpnt) { return IRQ_NONE; } INTR_Processed++; outb(0x00, Interrupt_Cntl_port); /* Abort calls my_done, so we do nothing here. */ if (current_SC->SCp.phase & aborted) { #if DEBUG_ABORT printk("Interrupt after abort, ignoring\n"); #endif /* return IRQ_HANDLED; */ } #if DEBUG_RACE ++in_interrupt_flag; #endif if (current_SC->SCp.phase & in_arbitration) { status = inb(TMC_Status_port); /* Read adapter status */ if (!(status & 0x02)) { #if EVERY_ACCESS printk(" AFAIL "); #endif spin_lock_irqsave(shpnt->host_lock, flags); my_done(shpnt, DID_BUS_BUSY << 16); spin_unlock_irqrestore(shpnt->host_lock, flags); return IRQ_HANDLED; } current_SC->SCp.phase = in_selection; outb(0x40 | FIFO_COUNT, Interrupt_Cntl_port); outb(0x82, SCSI_Cntl_port); /* Bus Enable + Select */ outb(adapter_mask | (1 << scmd_id(current_SC)), SCSI_Data_NoACK_port); /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, TMC_Cntl_port); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } else if (current_SC->SCp.phase & in_selection) { status = inb(SCSI_Status_port); if (!(status & 0x01)) { /* Try again, for slow devices */ if (fd_mcs_select(shpnt, scmd_id(current_SC))) { #if EVERY_ACCESS printk(" SFAIL "); #endif spin_lock_irqsave(shpnt->host_lock, flags); my_done(shpnt, DID_NO_CONNECT << 16); spin_unlock_irqrestore(shpnt->host_lock, flags); return IRQ_HANDLED; } else { #if EVERY_ACCESS printk(" AltSel "); #endif /* Stop arbitration and enable parity */ outb(0x10 | PARITY_MASK, TMC_Cntl_port); } } current_SC->SCp.phase = in_other; outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port); outb(0x80, SCSI_Cntl_port); #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } /* current_SC->SCp.phase == in_other: this is the body of the routine */ status = inb(SCSI_Status_port); if (status & 0x10) { /* REQ */ switch (status & 0x0e) { case 0x08: /* COMMAND OUT */ outb(current_SC->cmnd[current_SC->SCp.sent_command++], Write_SCSI_Data_port); #if EVERY_ACCESS printk("CMD = %x,", current_SC->cmnd[current_SC->SCp.sent_command - 1]); #endif break; case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, TMC_Cntl_port); } break; case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */ if (chip != tmc1800 && !current_SC->SCp.have_data_in) { current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, TMC_Cntl_port); } break; case 0x0c: /* STATUS IN */ current_SC->SCp.Status = inb(Read_SCSI_Data_port); #if EVERY_ACCESS printk("Status = %x, ", current_SC->SCp.Status); #endif #if ERRORS_ONLY if (current_SC->SCp.Status && current_SC->SCp.Status != 2 && current_SC->SCp.Status != 8) { printk("ERROR fd_mcs: target = %d, command = %x, status = %x\n", current_SC->device->id, current_SC->cmnd[0], current_SC->SCp.Status); } #endif break; case 0x0a: /* MESSAGE OUT */ outb(MESSAGE_REJECT, Write_SCSI_Data_port); /* Reject */ break; case 0x0e: /* MESSAGE IN */ current_SC->SCp.Message = inb(Read_SCSI_Data_port); #if EVERY_ACCESS printk("Message = %x, ", current_SC->SCp.Message); #endif if (!current_SC->SCp.Message) ++done; #if DEBUG_MESSAGES || EVERY_ACCESS if (current_SC->SCp.Message) { printk("fd_mcs: message = %x\n", current_SC->SCp.Message); } #endif break; } } if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) { /* We have to get the FIFO direction correct, so I've made a table based on the SCSI Standard of which commands appear to require a DATA OUT phase. */ /* p. 94: Command for all device types CHANGE DEFINITION 40 DATA OUT COMPARE 39 DATA OUT COPY 18 DATA OUT COPY AND VERIFY 3a DATA OUT INQUIRY 12 LOG SELECT 4c DATA OUT LOG SENSE 4d MODE SELECT (6) 15 DATA OUT MODE SELECT (10) 55 DATA OUT MODE SENSE (6) 1a MODE SENSE (10) 5a READ BUFFER 3c RECEIVE DIAGNOSTIC RESULTS 1c REQUEST SENSE 03 SEND DIAGNOSTIC 1d DATA OUT TEST UNIT READY 00 WRITE BUFFER 3b DATA OUT p.178: Commands for direct-access devices (not listed on p. 94) FORMAT UNIT 04 DATA OUT LOCK-UNLOCK CACHE 36 PRE-FETCH 34 PREVENT-ALLOW MEDIUM REMOVAL 1e READ (6)/RECEIVE 08 READ (10) 3c READ CAPACITY 25 READ DEFECT DATA (10) 37 READ LONG 3e REASSIGN BLOCKS 07 DATA OUT RELEASE 17 RESERVE 16 DATA OUT REZERO UNIT/REWIND 01 SEARCH DATA EQUAL (10) 31 DATA OUT SEARCH DATA HIGH (10) 30 DATA OUT SEARCH DATA LOW (10) 32 DATA OUT SEEK (6) 0b SEEK (10) 2b SET LIMITS (10) 33 START STOP UNIT 1b SYNCHRONIZE CACHE 35 VERIFY (10) 2f WRITE (6)/PRINT/SEND 0a DATA OUT WRITE (10)/SEND 2a DATA OUT WRITE AND VERIFY (10) 2e DATA OUT WRITE LONG 3f DATA OUT WRITE SAME 41 DATA OUT ? p. 261: Commands for sequential-access devices (not previously listed) ERASE 19 LOAD UNLOAD 1b LOCATE 2b READ BLOCK LIMITS 05 READ POSITION 34 READ REVERSE 0f RECOVER BUFFERED DATA 14 SPACE 11 WRITE FILEMARKS 10 ? p. 298: Commands for printer devices (not previously listed) ****** NOT SUPPORTED BY THIS DRIVER, since 0b is SEEK (6) ***** SLEW AND PRINT 0b DATA OUT -- same as seek STOP PRINT 1b SYNCHRONIZE BUFFER 10 p. 315: Commands for processor devices (not previously listed) p. 321: Commands for write-once devices (not previously listed) MEDIUM SCAN 38 READ (12) a8 SEARCH DATA EQUAL (12) b1 DATA OUT SEARCH DATA HIGH (12) b0 DATA OUT SEARCH DATA LOW (12) b2 DATA OUT SET LIMITS (12) b3 VERIFY (12) af WRITE (12) aa DATA OUT WRITE AND VERIFY (12) ae DATA OUT p. 332: Commands for CD-ROM devices (not previously listed) PAUSE/RESUME 4b PLAY AUDIO (10) 45 PLAY AUDIO (12) a5 PLAY AUDIO MSF 47 PLAY TRACK RELATIVE (10) 49 PLAY TRACK RELATIVE (12) a9 READ HEADER 44 READ SUB-CHANNEL 42 READ TOC 43 p. 370: Commands for scanner devices (not previously listed) GET DATA BUFFER STATUS 34 GET WINDOW 25 OBJECT POSITION 31 SCAN 1b SET WINDOW 24 DATA OUT p. 391: Commands for optical memory devices (not listed) ERASE (10) 2c ERASE (12) ac MEDIUM SCAN 38 DATA OUT READ DEFECT DATA (12) b7 READ GENERATION 29 READ UPDATED BLOCK 2d UPDATE BLOCK 3d DATA OUT p. 419: Commands for medium changer devices (not listed) EXCHANGE MEDIUM 46 INITIALIZE ELEMENT STATUS 07 MOVE MEDIUM a5 POSITION TO ELEMENT 2b READ ELEMENT STATUS b8 REQUEST VOL. ELEMENT ADDRESS b5 SEND VOLUME TAG b6 DATA OUT p. 454: Commands for communications devices (not listed previously) GET MESSAGE (6) 08 GET MESSAGE (10) 28 GET MESSAGE (12) a8 */ switch (current_SC->cmnd[0]) { case CHANGE_DEFINITION: case COMPARE: case COPY: case COPY_VERIFY: case LOG_SELECT: case MODE_SELECT: case MODE_SELECT_10: case SEND_DIAGNOSTIC: case WRITE_BUFFER: case FORMAT_UNIT: case REASSIGN_BLOCKS: case RESERVE: case SEARCH_EQUAL: case SEARCH_HIGH: case SEARCH_LOW: case WRITE_6: case WRITE_10: case WRITE_VERIFY: case 0x3f: case 0x41: case 0xb1: case 0xb0: case 0xb2: case 0xaa: case 0xae: case 0x24: case 0x38: case 0x3d: case 0xb6: case 0xea: /* alternate number for WRITE LONG */ current_SC->SCp.have_data_in = -1; outb(0xd0 | PARITY_MASK, TMC_Cntl_port); break; case 0x00: default: current_SC->SCp.have_data_in = 1; outb(0x90 | PARITY_MASK, TMC_Cntl_port); break; } } if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */ while ((data_count = FIFO_Size - inw(FIFO_Data_Count_port)) > 512) { #if EVERY_ACCESS printk("DC=%d, ", data_count); #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count > 0) { #if EVERY_ACCESS printk("%d OUT, ", data_count); #endif if (data_count == 1) { Bytes_Written++; outb(*current_SC->SCp.ptr++, Write_FIFO_port); --current_SC->SCp.this_residual; } else { data_count >>= 1; tmp_count = data_count << 1; outsw(Write_FIFO_port, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += tmp_count; Bytes_Written += tmp_count; current_SC->SCp.this_residual -= tmp_count; } } if (!current_SC->SCp.this_residual) { if (current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } else break; } } } else if (current_SC->SCp.have_data_in == 1) { /* DATA IN */ while ((data_count = inw(FIFO_Data_Count_port)) > 0) { #if EVERY_ACCESS printk("DC=%d, ", data_count); #endif if (data_count > current_SC->SCp.this_residual) data_count = current_SC->SCp.this_residual; if (data_count) { #if EVERY_ACCESS printk("%d IN, ", data_count); #endif if (data_count == 1) { Bytes_Read++; *current_SC->SCp.ptr++ = inb(Read_FIFO_port); --current_SC->SCp.this_residual; } else { data_count >>= 1; /* Number of words */ tmp_count = data_count << 1; insw(Read_FIFO_port, current_SC->SCp.ptr, data_count); current_SC->SCp.ptr += tmp_count; Bytes_Read += tmp_count; current_SC->SCp.this_residual -= tmp_count; } } if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) { --current_SC->SCp.buffers_residual; ++current_SC->SCp.buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; } } } if (done) { #if EVERY_ACCESS printk(" ** IN DONE %d ** ", current_SC->SCp.have_data_in); #endif #if ERRORS_ONLY if (current_SC->cmnd[0] == REQUEST_SENSE && !current_SC->SCp.Status) { if ((unsigned char) (*((char *) current_SC->request_buffer + 2)) & 0x0f) { unsigned char key; unsigned char code; unsigned char qualifier; key = (unsigned char) (*((char *) current_SC->request_buffer + 2)) & 0x0f; code = (unsigned char) (*((char *) current_SC->request_buffer + 12)); qualifier = (unsigned char) (*((char *) current_SC->request_buffer + 13)); if (key != UNIT_ATTENTION && !(key == NOT_READY && code == 0x04 && (!qualifier || qualifier == 0x02 || qualifier == 0x01)) && !(key == ILLEGAL_REQUEST && (code == 0x25 || code == 0x24 || !code))) printk("fd_mcs: REQUEST SENSE " "Key = %x, Code = %x, Qualifier = %x\n", key, code, qualifier); } } #endif #if EVERY_ACCESS printk("BEFORE MY_DONE. . ."); #endif spin_lock_irqsave(shpnt->host_lock, flags); my_done(shpnt, (current_SC->SCp.Status & 0xff) | ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16)); spin_unlock_irqrestore(shpnt->host_lock, flags); #if EVERY_ACCESS printk("RETURNING.\n"); #endif } else { if (current_SC->SCp.phase & disconnect) { outb(0xd0 | FIFO_COUNT, Interrupt_Cntl_port); outb(0x00, SCSI_Cntl_port); } else { outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port); } } #if DEBUG_RACE in_interrupt_flag = 0; #endif return IRQ_HANDLED; } static int fd_mcs_release(struct Scsi_Host *shpnt) { int i, this_host, irq_usage; release_region(shpnt->io_port, shpnt->n_io_port); this_host = -1; irq_usage = 0; for (i = 0; i < found; i++) { if (shpnt == hosts[i]) this_host = i; if (shpnt->irq == hosts[i]->irq) irq_usage++; } /* only for the last one */ if (1 == irq_usage) free_irq(shpnt->irq, hosts); found--; for (i = this_host; i < found; i++) hosts[i] = hosts[i + 1]; hosts[found] = NULL; return 0; } static int fd_mcs_queue(Scsi_Cmnd * SCpnt, void (*done) (Scsi_Cmnd *)) { struct Scsi_Host *shpnt = SCpnt->device->host; if (in_command) { panic("fd_mcs: fd_mcs_queue() NOT REENTRANT!\n"); } #if EVERY_ACCESS printk("queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->target, *(unsigned char *) SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen); #endif fd_mcs_make_bus_idle(shpnt); SCpnt->scsi_done = done; /* Save this for the done function */ current_SC = SCpnt; /* Initialize static data */ if (current_SC->use_sg) { current_SC->SCp.buffer = (struct scatterlist *) current_SC->request_buffer; current_SC->SCp.ptr = page_address(current_SC->SCp.buffer->page) + current_SC->SCp.buffer->offset; current_SC->SCp.this_residual = current_SC->SCp.buffer->length; current_SC->SCp.buffers_residual = current_SC->use_sg - 1; } else { current_SC->SCp.ptr = (char *) current_SC->request_buffer; current_SC->SCp.this_residual = current_SC->request_bufflen; current_SC->SCp.buffer = NULL; current_SC->SCp.buffers_residual = 0; } current_SC->SCp.Status = 0; current_SC->SCp.Message = 0; current_SC->SCp.have_data_in = 0; current_SC->SCp.sent_command = 0; current_SC->SCp.phase = in_arbitration; /* Start arbitration */ outb(0x00, Interrupt_Cntl_port); outb(0x00, SCSI_Cntl_port); /* Disable data drivers */ outb(adapter_mask, SCSI_Data_NoACK_port); /* Set our id bit */ in_command = 1; outb(0x20, Interrupt_Cntl_port); outb(0x14 | PARITY_MASK, TMC_Cntl_port); /* Start arbitration */ return 0; } #if DEBUG_ABORT || DEBUG_RESET static void fd_mcs_print_info(Scsi_Cmnd * SCpnt) { unsigned int imr; unsigned int irr; unsigned int isr; struct Scsi_Host *shpnt = SCpnt->host; if (!SCpnt || !SCpnt->host) { printk("fd_mcs: cannot provide detailed information\n"); } printk("%s\n", fd_mcs_info(SCpnt->host)); print_banner(SCpnt->host); switch (SCpnt->SCp.phase) { case in_arbitration: printk("arbitration "); break; case in_selection: printk("selection "); break; case in_other: printk("other "); break; default: printk("unknown "); break; } printk("(%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n", SCpnt->SCp.phase, SCpnt->device->id, *(unsigned char *) SCpnt->cmnd, SCpnt->use_sg, SCpnt->request_bufflen); printk("sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout); #if DEBUG_RACE printk("in_interrupt_flag = %d\n", in_interrupt_flag); #endif imr = (inb(0x0a1) << 8) + inb(0x21); outb(0x0a, 0xa0); irr = inb(0xa0) << 8; outb(0x0a, 0x20); irr += inb(0x20); outb(0x0b, 0xa0); isr = inb(0xa0) << 8; outb(0x0b, 0x20); isr += inb(0x20); /* Print out interesting information */ printk("IMR = 0x%04x", imr); if (imr & (1 << shpnt->irq)) printk(" (masked)"); printk(", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr); printk("SCSI Status = 0x%02x\n", inb(SCSI_Status_port)); printk("TMC Status = 0x%02x", inb(TMC_Status_port)); if (inb(TMC_Status_port) & 1) printk(" (interrupt)"); printk("\n"); printk("Interrupt Status = 0x%02x", inb(Interrupt_Status_port)); if (inb(Interrupt_Status_port) & 0x08) printk(" (enabled)"); printk("\n"); if (chip == tmc18c50 || chip == tmc18c30) { printk("FIFO Status = 0x%02x\n", inb(shpnt->io_port + FIFO_Status)); printk("Int. Condition = 0x%02x\n", inb(shpnt->io_port + Interrupt_Cond)); } printk("Configuration 1 = 0x%02x\n", inb(shpnt->io_port + Configuration1)); if (chip == tmc18c50 || chip == tmc18c30) printk("Configuration 2 = 0x%02x\n", inb(shpnt->io_port + Configuration2)); } #endif static int fd_mcs_abort(Scsi_Cmnd * SCpnt) { struct Scsi_Host *shpnt = SCpnt->device->host; unsigned long flags; #if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT printk("fd_mcs: abort "); #endif spin_lock_irqsave(shpnt->host_lock, flags); if (!in_command) { #if EVERY_ACCESS || ERRORS_ONLY printk(" (not in command)\n"); #endif spin_unlock_irqrestore(shpnt->host_lock, flags); return FAILED; } else printk("\n"); #if DEBUG_ABORT fd_mcs_print_info(SCpnt); #endif fd_mcs_make_bus_idle(shpnt); current_SC->SCp.phase |= aborted; current_SC->result = DID_ABORT << 16; /* Aborts are not done well. . . */ my_done(shpnt, DID_ABORT << 16); spin_unlock_irqrestore(shpnt->host_lock, flags); return SUCCESS; } static int fd_mcs_bus_reset(Scsi_Cmnd * SCpnt) { struct Scsi_Host *shpnt = SCpnt->device->host; unsigned long flags; #if DEBUG_RESET static int called_once = 0; #endif #if ERRORS_ONLY if (SCpnt) printk("fd_mcs: SCSI Bus Reset\n"); #endif #if DEBUG_RESET if (called_once) fd_mcs_print_info(current_SC); called_once = 1; #endif spin_lock_irqsave(shpnt->host_lock, flags); outb(1, SCSI_Cntl_port); do_pause(2); outb(0, SCSI_Cntl_port); do_pause(115); outb(0, SCSI_Mode_Cntl_port); outb(PARITY_MASK, TMC_Cntl_port); spin_unlock_irqrestore(shpnt->host_lock, flags); /* Unless this is the very first call (i.e., SCPnt == NULL), everything is probably hosed at this point. We will, however, try to keep things going by informing the high-level code that we need help. */ return SUCCESS; } #include static int fd_mcs_biosparam(struct scsi_device * disk, struct block_device *bdev, sector_t capacity, int *info_array) { unsigned char *p = scsi_bios_ptable(bdev); int size = capacity; /* BIOS >= 3.4 for MCA cards */ /* This algorithm was provided by Future Domain (much thanks!). */ if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */ && p[4]) { /* Partition type */ /* The partition table layout is as follows: Start: 0x1b3h Offset: 0 = partition status 1 = starting head 2 = starting sector and cylinder (word, encoded) 4 = partition type 5 = ending head 6 = ending sector and cylinder (word, encoded) 8 = starting absolute sector (double word) c = number of sectors (double word) Signature: 0x1fe = 0x55aa So, this algorithm assumes: 1) the first partition table is in use, 2) the data in the first entry is correct, and 3) partitions never divide cylinders Note that (1) may be FALSE for NetBSD (and other BSD flavors), as well as for Linux. Note also, that Linux doesn't pay any attention to the fields that are used by this algorithm -- it only uses the absolute sector data. Recent versions of Linux's fdisk(1) will fill this data in correctly, and forthcoming versions will check for consistency. Checking for a non-zero partition type is not part of the Future Domain algorithm, but it seemed to be a reasonable thing to do, especially in the Linux and BSD worlds. */ info_array[0] = p[5] + 1; /* heads */ info_array[1] = p[6] & 0x3f; /* sectors */ } else { /* Note that this new method guarantees that there will always be less than 1024 cylinders on a platter. This is good for drives up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */ if ((unsigned int) size >= 0x7e0000U) { info_array[0] = 0xff; /* heads = 255 */ info_array[1] = 0x3f; /* sectors = 63 */ } else if ((unsigned int) size >= 0x200000U) { info_array[0] = 0x80; /* heads = 128 */ info_array[1] = 0x3f; /* sectors = 63 */ } else { info_array[0] = 0x40; /* heads = 64 */ info_array[1] = 0x20; /* sectors = 32 */ } } /* For both methods, compute the cylinders */ info_array[2] = (unsigned int) size / (info_array[0] * info_array[1]); kfree(p); return 0; } static struct scsi_host_template driver_template = { .proc_name = "fd_mcs", .proc_info = fd_mcs_proc_info, .detect = fd_mcs_detect, .release = fd_mcs_release, .info = fd_mcs_info, .queuecommand = fd_mcs_queue, .eh_abort_handler = fd_mcs_abort, .eh_bus_reset_handler = fd_mcs_bus_reset, .bios_param = fd_mcs_biosparam, .can_queue = 1, .this_id = 7, .sg_tablesize = 64, .cmd_per_lun = 1, .use_clustering = DISABLE_CLUSTERING, }; #include "scsi_module.c" MODULE_LICENSE("GPL");