/* * Marvell 88SE64xx/88SE94xx main function * * Copyright 2007 Red Hat, Inc. * Copyright 2008 Marvell. * * This file is licensed under GPLv2. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of the * License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #include "mv_sas.h" static int mvs_find_tag(struct mvs_info *mvi, struct sas_task *task, u32 *tag) { if (task->lldd_task) { struct mvs_slot_info *slot; slot = task->lldd_task; *tag = slot->slot_tag; return 1; } return 0; } void mvs_tag_clear(struct mvs_info *mvi, u32 tag) { void *bitmap = &mvi->tags; clear_bit(tag, bitmap); } void mvs_tag_free(struct mvs_info *mvi, u32 tag) { mvs_tag_clear(mvi, tag); } void mvs_tag_set(struct mvs_info *mvi, unsigned int tag) { void *bitmap = &mvi->tags; set_bit(tag, bitmap); } inline int mvs_tag_alloc(struct mvs_info *mvi, u32 *tag_out) { unsigned int index, tag; void *bitmap = &mvi->tags; index = find_first_zero_bit(bitmap, mvi->tags_num); tag = index; if (tag >= mvi->tags_num) return -SAS_QUEUE_FULL; mvs_tag_set(mvi, tag); *tag_out = tag; return 0; } void mvs_tag_init(struct mvs_info *mvi) { int i; for (i = 0; i < mvi->tags_num; ++i) mvs_tag_clear(mvi, i); } void mvs_hexdump(u32 size, u8 *data, u32 baseaddr) { u32 i; u32 run; u32 offset; offset = 0; while (size) { printk(KERN_DEBUG"%08X : ", baseaddr + offset); if (size >= 16) run = 16; else run = size; size -= run; for (i = 0; i < 16; i++) { if (i < run) printk(KERN_DEBUG"%02X ", (u32)data[i]); else printk(KERN_DEBUG" "); } printk(KERN_DEBUG": "); for (i = 0; i < run; i++) printk(KERN_DEBUG"%c", isalnum(data[i]) ? data[i] : '.'); printk(KERN_DEBUG"\n"); data = &data[16]; offset += run; } printk(KERN_DEBUG"\n"); } #if (_MV_DUMP > 1) static void mvs_hba_sb_dump(struct mvs_info *mvi, u32 tag, enum sas_protocol proto) { u32 offset; struct mvs_slot_info *slot = &mvi->slot_info[tag]; offset = slot->cmd_size + MVS_OAF_SZ + MVS_CHIP_DISP->prd_size() * slot->n_elem; dev_printk(KERN_DEBUG, mvi->dev, "+---->Status buffer[%d] :\n", tag); mvs_hexdump(32, (u8 *) slot->response, (u32) slot->buf_dma + offset); } #endif static void mvs_hba_memory_dump(struct mvs_info *mvi, u32 tag, enum sas_protocol proto) { #if (_MV_DUMP > 1) u32 sz, w_ptr; u64 addr; struct mvs_slot_info *slot = &mvi->slot_info[tag]; /*Delivery Queue */ sz = MVS_CHIP_SLOT_SZ; w_ptr = slot->tx; addr = mvi->tx_dma; dev_printk(KERN_DEBUG, mvi->dev, "Delivery Queue Size=%04d , WRT_PTR=%04X\n", sz, w_ptr); dev_printk(KERN_DEBUG, mvi->dev, "Delivery Queue Base Address=0x%llX (PA)" "(tx_dma=0x%llX), Entry=%04d\n", addr, (unsigned long long)mvi->tx_dma, w_ptr); mvs_hexdump(sizeof(u32), (u8 *)(&mvi->tx[mvi->tx_prod]), (u32) mvi->tx_dma + sizeof(u32) * w_ptr); /*Command List */ addr = mvi->slot_dma; dev_printk(KERN_DEBUG, mvi->dev, "Command List Base Address=0x%llX (PA)" "(slot_dma=0x%llX), Header=%03d\n", addr, (unsigned long long)slot->buf_dma, tag); dev_printk(KERN_DEBUG, mvi->dev, "Command Header[%03d]:\n", tag); /*mvs_cmd_hdr */ mvs_hexdump(sizeof(struct mvs_cmd_hdr), (u8 *)(&mvi->slot[tag]), (u32) mvi->slot_dma + tag * sizeof(struct mvs_cmd_hdr)); /*1.command table area */ dev_printk(KERN_DEBUG, mvi->dev, "+---->Command Table :\n"); mvs_hexdump(slot->cmd_size, (u8 *) slot->buf, (u32) slot->buf_dma); /*2.open address frame area */ dev_printk(KERN_DEBUG, mvi->dev, "+---->Open Address Frame :\n"); mvs_hexdump(MVS_OAF_SZ, (u8 *) slot->buf + slot->cmd_size, (u32) slot->buf_dma + slot->cmd_size); /*3.status buffer */ mvs_hba_sb_dump(mvi, tag, proto); /*4.PRD table */ dev_printk(KERN_DEBUG, mvi->dev, "+---->PRD table :\n"); mvs_hexdump(MVS_CHIP_DISP->prd_size() * slot->n_elem, (u8 *) slot->buf + slot->cmd_size + MVS_OAF_SZ, (u32) slot->buf_dma + slot->cmd_size + MVS_OAF_SZ); #endif } static void mvs_hba_cq_dump(struct mvs_info *mvi) { #if (_MV_DUMP > 2) u64 addr; void __iomem *regs = mvi->regs; u32 entry = mvi->rx_cons + 1; u32 rx_desc = le32_to_cpu(mvi->rx[entry]); /*Completion Queue */ addr = mr32(RX_HI) << 16 << 16 | mr32(RX_LO); dev_printk(KERN_DEBUG, mvi->dev, "Completion Task = 0x%p\n", mvi->slot_info[rx_desc & RXQ_SLOT_MASK].task); dev_printk(KERN_DEBUG, mvi->dev, "Completion List Base Address=0x%llX (PA), " "CQ_Entry=%04d, CQ_WP=0x%08X\n", addr, entry - 1, mvi->rx[0]); mvs_hexdump(sizeof(u32), (u8 *)(&rx_desc), mvi->rx_dma + sizeof(u32) * entry); #endif } void mvs_get_sas_addr(void *buf, u32 buflen) { /*memcpy(buf, "\x50\x05\x04\x30\x11\xab\x64\x40", 8);*/ } struct mvs_info *mvs_find_dev_mvi(struct domain_device *dev) { unsigned long i = 0, j = 0, hi = 0; struct sas_ha_struct *sha = dev->port->ha; struct mvs_info *mvi = NULL; struct asd_sas_phy *phy; while (sha->sas_port[i]) { if (sha->sas_port[i] == dev->port) { phy = container_of(sha->sas_port[i]->phy_list.next, struct asd_sas_phy, port_phy_el); j = 0; while (sha->sas_phy[j]) { if (sha->sas_phy[j] == phy) break; j++; } break; } i++; } hi = j/((struct mvs_prv_info *)sha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; return mvi; } /* FIXME */ int mvs_find_dev_phyno(struct domain_device *dev, int *phyno) { unsigned long i = 0, j = 0, n = 0, num = 0; struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; struct sas_ha_struct *sha = dev->port->ha; while (sha->sas_port[i]) { if (sha->sas_port[i] == dev->port) { struct asd_sas_phy *phy; list_for_each_entry(phy, &sha->sas_port[i]->phy_list, port_phy_el) { j = 0; while (sha->sas_phy[j]) { if (sha->sas_phy[j] == phy) break; j++; } phyno[n] = (j >= mvi->chip->n_phy) ? (j - mvi->chip->n_phy) : j; num++; n++; } break; } i++; } return num; } static inline void mvs_free_reg_set(struct mvs_info *mvi, struct mvs_device *dev) { if (!dev) { mv_printk("device has been free.\n"); return; } if (dev->runing_req != 0) return; if (dev->taskfileset == MVS_ID_NOT_MAPPED) return; MVS_CHIP_DISP->free_reg_set(mvi, &dev->taskfileset); } static inline u8 mvs_assign_reg_set(struct mvs_info *mvi, struct mvs_device *dev) { if (dev->taskfileset != MVS_ID_NOT_MAPPED) return 0; return MVS_CHIP_DISP->assign_reg_set(mvi, &dev->taskfileset); } void mvs_phys_reset(struct mvs_info *mvi, u32 phy_mask, int hard) { u32 no; for_each_phy(phy_mask, phy_mask, no) { if (!(phy_mask & 1)) continue; MVS_CHIP_DISP->phy_reset(mvi, no, hard); } } /* FIXME: locking? */ int mvs_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, void *funcdata) { int rc = 0, phy_id = sas_phy->id; u32 tmp, i = 0, hi; struct sas_ha_struct *sha = sas_phy->ha; struct mvs_info *mvi = NULL; while (sha->sas_phy[i]) { if (sha->sas_phy[i] == sas_phy) break; i++; } hi = i/((struct mvs_prv_info *)sha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[hi]; switch (func) { case PHY_FUNC_SET_LINK_RATE: MVS_CHIP_DISP->phy_set_link_rate(mvi, phy_id, funcdata); break; case PHY_FUNC_HARD_RESET: tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_id); if (tmp & PHY_RST_HARD) break; MVS_CHIP_DISP->phy_reset(mvi, phy_id, 1); break; case PHY_FUNC_LINK_RESET: MVS_CHIP_DISP->phy_enable(mvi, phy_id); MVS_CHIP_DISP->phy_reset(mvi, phy_id, 0); break; case PHY_FUNC_DISABLE: MVS_CHIP_DISP->phy_disable(mvi, phy_id); break; case PHY_FUNC_RELEASE_SPINUP_HOLD: default: rc = -EOPNOTSUPP; } msleep(200); return rc; } void __devinit mvs_set_sas_addr(struct mvs_info *mvi, int port_id, u32 off_lo, u32 off_hi, u64 sas_addr) { u32 lo = (u32)sas_addr; u32 hi = (u32)(sas_addr>>32); MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_lo); MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, lo); MVS_CHIP_DISP->write_port_cfg_addr(mvi, port_id, off_hi); MVS_CHIP_DISP->write_port_cfg_data(mvi, port_id, hi); } static void mvs_bytes_dmaed(struct mvs_info *mvi, int i) { struct mvs_phy *phy = &mvi->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_ha_struct *sas_ha; if (!phy->phy_attached) return; if (!(phy->att_dev_info & PORT_DEV_TRGT_MASK) && phy->phy_type & PORT_TYPE_SAS) { return; } sas_ha = mvi->sas; sas_ha->notify_phy_event(sas_phy, PHYE_OOB_DONE); if (sas_phy->phy) { struct sas_phy *sphy = sas_phy->phy; sphy->negotiated_linkrate = sas_phy->linkrate; sphy->minimum_linkrate = phy->minimum_linkrate; sphy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS; sphy->maximum_linkrate = phy->maximum_linkrate; sphy->maximum_linkrate_hw = MVS_CHIP_DISP->phy_max_link_rate(); } if (phy->phy_type & PORT_TYPE_SAS) { struct sas_identify_frame *id; id = (struct sas_identify_frame *)phy->frame_rcvd; id->dev_type = phy->identify.device_type; id->initiator_bits = SAS_PROTOCOL_ALL; id->target_bits = phy->identify.target_port_protocols; } else if (phy->phy_type & PORT_TYPE_SATA) { /*Nothing*/ } mv_dprintk("phy %d byte dmaded.\n", i + mvi->id * mvi->chip->n_phy); sas_phy->frame_rcvd_size = phy->frame_rcvd_size; mvi->sas->notify_port_event(sas_phy, PORTE_BYTES_DMAED); } int mvs_slave_alloc(struct scsi_device *scsi_dev) { struct domain_device *dev = sdev_to_domain_dev(scsi_dev); if (dev_is_sata(dev)) { /* We don't need to rescan targets * if REPORT_LUNS request is failed */ if (scsi_dev->lun > 0) return -ENXIO; scsi_dev->tagged_supported = 1; } return sas_slave_alloc(scsi_dev); } int mvs_slave_configure(struct scsi_device *sdev) { struct domain_device *dev = sdev_to_domain_dev(sdev); int ret = sas_slave_configure(sdev); if (ret) return ret; if (dev_is_sata(dev)) { /* may set PIO mode */ #if MV_DISABLE_NCQ struct ata_port *ap = dev->sata_dev.ap; struct ata_device *adev = ap->link.device; adev->flags |= ATA_DFLAG_NCQ_OFF; scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, 1); #endif } return 0; } void mvs_scan_start(struct Scsi_Host *shost) { int i, j; unsigned short core_nr; struct mvs_info *mvi; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host; for (j = 0; j < core_nr; j++) { mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j]; for (i = 0; i < mvi->chip->n_phy; ++i) mvs_bytes_dmaed(mvi, i); } } int mvs_scan_finished(struct Scsi_Host *shost, unsigned long time) { /* give the phy enabling interrupt event time to come in (1s * is empirically about all it takes) */ if (time < HZ) return 0; /* Wait for discovery to finish */ scsi_flush_work(shost); return 1; } static int mvs_task_prep_smp(struct mvs_info *mvi, struct mvs_task_exec_info *tei) { int elem, rc, i; struct sas_task *task = tei->task; struct mvs_cmd_hdr *hdr = tei->hdr; struct domain_device *dev = task->dev; struct asd_sas_port *sas_port = dev->port; struct scatterlist *sg_req, *sg_resp; u32 req_len, resp_len, tag = tei->tag; void *buf_tmp; u8 *buf_oaf; dma_addr_t buf_tmp_dma; void *buf_prd; struct mvs_slot_info *slot = &mvi->slot_info[tag]; u32 flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); #if _MV_DUMP u8 *buf_cmd; void *from; #endif /* * DMA-map SMP request, response buffers */ sg_req = &task->smp_task.smp_req; elem = dma_map_sg(mvi->dev, sg_req, 1, PCI_DMA_TODEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); sg_resp = &task->smp_task.smp_resp; elem = dma_map_sg(mvi->dev, sg_resp, 1, PCI_DMA_FROMDEVICE); if (!elem) { rc = -ENOMEM; goto err_out; } resp_len = SB_RFB_MAX; /* must be in dwords */ if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_2; } /* * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs */ /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ***** */ buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; #if _MV_DUMP buf_cmd = buf_tmp; hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); buf_tmp += req_len; buf_tmp_dma += req_len; slot->cmd_size = req_len; #else hdr->cmd_tbl = cpu_to_le64(sg_dma_address(sg_req)); #endif /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ buf_oaf = buf_tmp; hdr->open_frame = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_OAF_SZ; buf_tmp_dma += MVS_OAF_SZ; /* region 3: PRD table *********************************** */ buf_prd = buf_tmp; if (tei->n_elem) hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); else hdr->prd_tbl = 0; i = MVS_CHIP_DISP->prd_size() * tei->n_elem; buf_tmp += i; buf_tmp_dma += i; /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ slot->response = buf_tmp; hdr->status_buf = cpu_to_le64(buf_tmp_dma); if (mvi->flags & MVF_FLAG_SOC) hdr->reserved[0] = 0; /* * Fill in TX ring and command slot header */ slot->tx = mvi->tx_prod; mvi->tx[mvi->tx_prod] = cpu_to_le32((TXQ_CMD_SMP << TXQ_CMD_SHIFT) | TXQ_MODE_I | tag | (sas_port->phy_mask << TXQ_PHY_SHIFT)); hdr->flags |= flags; hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | ((req_len - 4) / 4)); hdr->tags = cpu_to_le32(tag); hdr->data_len = 0; /* generate open address frame hdr (first 12 bytes) */ /* initiator, SMP, ftype 1h */ buf_oaf[0] = (1 << 7) | (PROTOCOL_SMP << 4) | 0x01; buf_oaf[1] = dev->linkrate & 0xf; *(u16 *)(buf_oaf + 2) = 0xFFFF; /* SAS SPEC */ memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); /* fill in PRD (scatter/gather) table, if any */ MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); #if _MV_DUMP /* copy cmd table */ from = kmap_atomic(sg_page(sg_req), KM_IRQ0); memcpy(buf_cmd, from + sg_req->offset, req_len); kunmap_atomic(from, KM_IRQ0); #endif return 0; err_out_2: dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_resp, 1, PCI_DMA_FROMDEVICE); err_out: dma_unmap_sg(mvi->dev, &tei->task->smp_task.smp_req, 1, PCI_DMA_TODEVICE); return rc; } static u32 mvs_get_ncq_tag(struct sas_task *task, u32 *tag) { struct ata_queued_cmd *qc = task->uldd_task; if (qc) { if (qc->tf.command == ATA_CMD_FPDMA_WRITE || qc->tf.command == ATA_CMD_FPDMA_READ) { *tag = qc->tag; return 1; } } return 0; } static int mvs_task_prep_ata(struct mvs_info *mvi, struct mvs_task_exec_info *tei) { struct sas_task *task = tei->task; struct domain_device *dev = task->dev; struct mvs_device *mvi_dev = dev->lldd_dev; struct mvs_cmd_hdr *hdr = tei->hdr; struct asd_sas_port *sas_port = dev->port; struct mvs_slot_info *slot; void *buf_prd; u32 tag = tei->tag, hdr_tag; u32 flags, del_q; void *buf_tmp; u8 *buf_cmd, *buf_oaf; dma_addr_t buf_tmp_dma; u32 i, req_len, resp_len; const u32 max_resp_len = SB_RFB_MAX; if (mvs_assign_reg_set(mvi, mvi_dev) == MVS_ID_NOT_MAPPED) { mv_dprintk("Have not enough regiset for dev %d.\n", mvi_dev->device_id); return -EBUSY; } slot = &mvi->slot_info[tag]; slot->tx = mvi->tx_prod; del_q = TXQ_MODE_I | tag | (TXQ_CMD_STP << TXQ_CMD_SHIFT) | (sas_port->phy_mask << TXQ_PHY_SHIFT) | (mvi_dev->taskfileset << TXQ_SRS_SHIFT); mvi->tx[mvi->tx_prod] = cpu_to_le32(del_q); #ifndef DISABLE_HOTPLUG_DMA_FIX if (task->data_dir == DMA_FROM_DEVICE) flags = (MVS_CHIP_DISP->prd_count() << MCH_PRD_LEN_SHIFT); else flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); #else flags = (tei->n_elem << MCH_PRD_LEN_SHIFT); #endif if (task->ata_task.use_ncq) flags |= MCH_FPDMA; if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) { if (task->ata_task.fis.command != ATA_CMD_ID_ATAPI) flags |= MCH_ATAPI; } /* FIXME: fill in port multiplier number */ hdr->flags = cpu_to_le32(flags); /* FIXME: the low order order 5 bits for the TAG if enable NCQ */ if (task->ata_task.use_ncq && mvs_get_ncq_tag(task, &hdr_tag)) task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); else hdr_tag = tag; hdr->tags = cpu_to_le32(hdr_tag); hdr->data_len = cpu_to_le32(task->total_xfer_len); /* * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs */ /* region 1: command table area (MVS_ATA_CMD_SZ bytes) ************** */ buf_cmd = buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_ATA_CMD_SZ; buf_tmp_dma += MVS_ATA_CMD_SZ; #if _MV_DUMP slot->cmd_size = MVS_ATA_CMD_SZ; #endif /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ /* used for STP. unused for SATA? */ buf_oaf = buf_tmp; hdr->open_frame = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_OAF_SZ; buf_tmp_dma += MVS_OAF_SZ; /* region 3: PRD table ********************************************* */ buf_prd = buf_tmp; if (tei->n_elem) hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); else hdr->prd_tbl = 0; i = MVS_CHIP_DISP->prd_size() * MVS_CHIP_DISP->prd_count(); buf_tmp += i; buf_tmp_dma += i; /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ /* FIXME: probably unused, for SATA. kept here just in case * we get a STP/SATA error information record */ slot->response = buf_tmp; hdr->status_buf = cpu_to_le64(buf_tmp_dma); if (mvi->flags & MVF_FLAG_SOC) hdr->reserved[0] = 0; req_len = sizeof(struct host_to_dev_fis); resp_len = MVS_SLOT_BUF_SZ - MVS_ATA_CMD_SZ - sizeof(struct mvs_err_info) - i; /* request, response lengths */ resp_len = min(resp_len, max_resp_len); hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); if (likely(!task->ata_task.device_control_reg_update)) task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ /* fill in command FIS and ATAPI CDB */ memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); if (dev->sata_dev.command_set == ATAPI_COMMAND_SET) memcpy(buf_cmd + STP_ATAPI_CMD, task->ata_task.atapi_packet, 16); /* generate open address frame hdr (first 12 bytes) */ /* initiator, STP, ftype 1h */ buf_oaf[0] = (1 << 7) | (PROTOCOL_STP << 4) | 0x1; buf_oaf[1] = dev->linkrate & 0xf; *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1); memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); /* fill in PRD (scatter/gather) table, if any */ MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); #ifndef DISABLE_HOTPLUG_DMA_FIX if (task->data_dir == DMA_FROM_DEVICE) MVS_CHIP_DISP->dma_fix(mvi->bulk_buffer_dma, TRASH_BUCKET_SIZE, tei->n_elem, buf_prd); #endif return 0; } static int mvs_task_prep_ssp(struct mvs_info *mvi, struct mvs_task_exec_info *tei, int is_tmf, struct mvs_tmf_task *tmf) { struct sas_task *task = tei->task; struct mvs_cmd_hdr *hdr = tei->hdr; struct mvs_port *port = tei->port; struct domain_device *dev = task->dev; struct mvs_device *mvi_dev = dev->lldd_dev; struct asd_sas_port *sas_port = dev->port; struct mvs_slot_info *slot; void *buf_prd; struct ssp_frame_hdr *ssp_hdr; void *buf_tmp; u8 *buf_cmd, *buf_oaf, fburst = 0; dma_addr_t buf_tmp_dma; u32 flags; u32 resp_len, req_len, i, tag = tei->tag; const u32 max_resp_len = SB_RFB_MAX; u32 phy_mask; slot = &mvi->slot_info[tag]; phy_mask = ((port->wide_port_phymap) ? port->wide_port_phymap : sas_port->phy_mask) & TXQ_PHY_MASK; slot->tx = mvi->tx_prod; mvi->tx[mvi->tx_prod] = cpu_to_le32(TXQ_MODE_I | tag | (TXQ_CMD_SSP << TXQ_CMD_SHIFT) | (phy_mask << TXQ_PHY_SHIFT)); flags = MCH_RETRY; if (task->ssp_task.enable_first_burst) { flags |= MCH_FBURST; fburst = (1 << 7); } if (is_tmf) flags |= (MCH_SSP_FR_TASK << MCH_SSP_FR_TYPE_SHIFT); else flags |= (MCH_SSP_FR_CMD << MCH_SSP_FR_TYPE_SHIFT); hdr->flags = cpu_to_le32(flags | (tei->n_elem << MCH_PRD_LEN_SHIFT)); hdr->tags = cpu_to_le32(tag); hdr->data_len = cpu_to_le32(task->total_xfer_len); /* * arrange MVS_SLOT_BUF_SZ-sized DMA buffer according to our needs */ /* region 1: command table area (MVS_SSP_CMD_SZ bytes) ************** */ buf_cmd = buf_tmp = slot->buf; buf_tmp_dma = slot->buf_dma; hdr->cmd_tbl = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_SSP_CMD_SZ; buf_tmp_dma += MVS_SSP_CMD_SZ; #if _MV_DUMP slot->cmd_size = MVS_SSP_CMD_SZ; #endif /* region 2: open address frame area (MVS_OAF_SZ bytes) ********* */ buf_oaf = buf_tmp; hdr->open_frame = cpu_to_le64(buf_tmp_dma); buf_tmp += MVS_OAF_SZ; buf_tmp_dma += MVS_OAF_SZ; /* region 3: PRD table ********************************************* */ buf_prd = buf_tmp; if (tei->n_elem) hdr->prd_tbl = cpu_to_le64(buf_tmp_dma); else hdr->prd_tbl = 0; i = MVS_CHIP_DISP->prd_size() * tei->n_elem; buf_tmp += i; buf_tmp_dma += i; /* region 4: status buffer (larger the PRD, smaller this buf) ****** */ slot->response = buf_tmp; hdr->status_buf = cpu_to_le64(buf_tmp_dma); if (mvi->flags & MVF_FLAG_SOC) hdr->reserved[0] = 0; resp_len = MVS_SLOT_BUF_SZ - MVS_SSP_CMD_SZ - MVS_OAF_SZ - sizeof(struct mvs_err_info) - i; resp_len = min(resp_len, max_resp_len); req_len = sizeof(struct ssp_frame_hdr) + 28; /* request, response lengths */ hdr->lens = cpu_to_le32(((resp_len / 4) << 16) | (req_len / 4)); /* generate open address frame hdr (first 12 bytes) */ /* initiator, SSP, ftype 1h */ buf_oaf[0] = (1 << 7) | (PROTOCOL_SSP << 4) | 0x1; buf_oaf[1] = dev->linkrate & 0xf; *(u16 *)(buf_oaf + 2) = cpu_to_be16(mvi_dev->device_id + 1); memcpy(buf_oaf + 4, dev->sas_addr, SAS_ADDR_SIZE); /* fill in SSP frame header (Command Table.SSP frame header) */ ssp_hdr = (struct ssp_frame_hdr *)buf_cmd; if (is_tmf) ssp_hdr->frame_type = SSP_TASK; else ssp_hdr->frame_type = SSP_COMMAND; memcpy(ssp_hdr->hashed_dest_addr, dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE); memcpy(ssp_hdr->hashed_src_addr, dev->hashed_sas_addr, HASHED_SAS_ADDR_SIZE); ssp_hdr->tag = cpu_to_be16(tag); /* fill in IU for TASK and Command Frame */ buf_cmd += sizeof(*ssp_hdr); memcpy(buf_cmd, &task->ssp_task.LUN, 8); if (ssp_hdr->frame_type != SSP_TASK) { buf_cmd[9] = fburst | task->ssp_task.task_attr | (task->ssp_task.task_prio << 3); memcpy(buf_cmd + 12, &task->ssp_task.cdb, 16); } else{ buf_cmd[10] = tmf->tmf; switch (tmf->tmf) { case TMF_ABORT_TASK: case TMF_QUERY_TASK: buf_cmd[12] = (tmf->tag_of_task_to_be_managed >> 8) & 0xff; buf_cmd[13] = tmf->tag_of_task_to_be_managed & 0xff; break; default: break; } } /* fill in PRD (scatter/gather) table, if any */ MVS_CHIP_DISP->make_prd(task->scatter, tei->n_elem, buf_prd); return 0; } #define DEV_IS_GONE(mvi_dev) ((!mvi_dev || (mvi_dev->dev_type == NO_DEVICE))) static int mvs_task_exec(struct sas_task *task, const int num, gfp_t gfp_flags, struct completion *completion,int is_tmf, struct mvs_tmf_task *tmf) { struct domain_device *dev = task->dev; struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; struct mvs_task_exec_info tei; struct sas_task *t = task; struct mvs_slot_info *slot; u32 tag = 0xdeadbeef, rc, n_elem = 0; u32 n = num, pass = 0; unsigned long flags = 0; if (!dev->port) { struct task_status_struct *tsm = &t->task_status; tsm->resp = SAS_TASK_UNDELIVERED; tsm->stat = SAS_PHY_DOWN; t->task_done(t); return 0; } spin_lock_irqsave(&mvi->lock, flags); do { dev = t->dev; mvi_dev = dev->lldd_dev; if (DEV_IS_GONE(mvi_dev)) { if (mvi_dev) mv_dprintk("device %d not ready.\n", mvi_dev->device_id); else mv_dprintk("device %016llx not ready.\n", SAS_ADDR(dev->sas_addr)); rc = SAS_PHY_DOWN; goto out_done; } if (dev->port->id >= mvi->chip->n_phy) tei.port = &mvi->port[dev->port->id - mvi->chip->n_phy]; else tei.port = &mvi->port[dev->port->id]; if (!tei.port->port_attached) { if (sas_protocol_ata(t->task_proto)) { mv_dprintk("port %d does not" "attached device.\n", dev->port->id); rc = SAS_PHY_DOWN; goto out_done; } else { struct task_status_struct *ts = &t->task_status; ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; t->task_done(t); if (n > 1) t = list_entry(t->list.next, struct sas_task, list); continue; } } if (!sas_protocol_ata(t->task_proto)) { if (t->num_scatter) { n_elem = dma_map_sg(mvi->dev, t->scatter, t->num_scatter, t->data_dir); if (!n_elem) { rc = -ENOMEM; goto err_out; } } } else { n_elem = t->num_scatter; } rc = mvs_tag_alloc(mvi, &tag); if (rc) goto err_out; slot = &mvi->slot_info[tag]; t->lldd_task = NULL; slot->n_elem = n_elem; slot->slot_tag = tag; memset(slot->buf, 0, MVS_SLOT_BUF_SZ); tei.task = t; tei.hdr = &mvi->slot[tag]; tei.tag = tag; tei.n_elem = n_elem; switch (t->task_proto) { case SAS_PROTOCOL_SMP: rc = mvs_task_prep_smp(mvi, &tei); break; case SAS_PROTOCOL_SSP: rc = mvs_task_prep_ssp(mvi, &tei, is_tmf, tmf); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: rc = mvs_task_prep_ata(mvi, &tei); break; default: dev_printk(KERN_ERR, mvi->dev, "unknown sas_task proto: 0x%x\n", t->task_proto); rc = -EINVAL; break; } if (rc) { mv_dprintk("rc is %x\n", rc); goto err_out_tag; } slot->task = t; slot->port = tei.port; t->lldd_task = slot; list_add_tail(&slot->entry, &tei.port->list); /* TODO: select normal or high priority */ spin_lock(&t->task_state_lock); t->task_state_flags |= SAS_TASK_AT_INITIATOR; spin_unlock(&t->task_state_lock); mvs_hba_memory_dump(mvi, tag, t->task_proto); mvi_dev->runing_req++; ++pass; mvi->tx_prod = (mvi->tx_prod + 1) & (MVS_CHIP_SLOT_SZ - 1); if (n > 1) t = list_entry(t->list.next, struct sas_task, list); } while (--n); rc = 0; goto out_done; err_out_tag: mvs_tag_free(mvi, tag); err_out: dev_printk(KERN_ERR, mvi->dev, "mvsas exec failed[%d]!\n", rc); if (!sas_protocol_ata(t->task_proto)) if (n_elem) dma_unmap_sg(mvi->dev, t->scatter, n_elem, t->data_dir); out_done: if (likely(pass)) { MVS_CHIP_DISP->start_delivery(mvi, (mvi->tx_prod - 1) & (MVS_CHIP_SLOT_SZ - 1)); } spin_unlock_irqrestore(&mvi->lock, flags); return rc; } int mvs_queue_command(struct sas_task *task, const int num, gfp_t gfp_flags) { return mvs_task_exec(task, num, gfp_flags, NULL, 0, NULL); } static void mvs_slot_free(struct mvs_info *mvi, u32 rx_desc) { u32 slot_idx = rx_desc & RXQ_SLOT_MASK; mvs_tag_clear(mvi, slot_idx); } static void mvs_slot_task_free(struct mvs_info *mvi, struct sas_task *task, struct mvs_slot_info *slot, u32 slot_idx) { if (!slot->task) return; if (!sas_protocol_ata(task->task_proto)) if (slot->n_elem) dma_unmap_sg(mvi->dev, task->scatter, slot->n_elem, task->data_dir); switch (task->task_proto) { case SAS_PROTOCOL_SMP: dma_unmap_sg(mvi->dev, &task->smp_task.smp_resp, 1, PCI_DMA_FROMDEVICE); dma_unmap_sg(mvi->dev, &task->smp_task.smp_req, 1, PCI_DMA_TODEVICE); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SSP: default: /* do nothing */ break; } list_del_init(&slot->entry); task->lldd_task = NULL; slot->task = NULL; slot->port = NULL; slot->slot_tag = 0xFFFFFFFF; mvs_slot_free(mvi, slot_idx); } static void mvs_update_wideport(struct mvs_info *mvi, int i) { struct mvs_phy *phy = &mvi->phy[i]; struct mvs_port *port = phy->port; int j, no; for_each_phy(port->wide_port_phymap, j, no) { if (j & 1) { MVS_CHIP_DISP->write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT); MVS_CHIP_DISP->write_port_cfg_data(mvi, no, port->wide_port_phymap); } else { MVS_CHIP_DISP->write_port_cfg_addr(mvi, no, PHYR_WIDE_PORT); MVS_CHIP_DISP->write_port_cfg_data(mvi, no, 0); } } } static u32 mvs_is_phy_ready(struct mvs_info *mvi, int i) { u32 tmp; struct mvs_phy *phy = &mvi->phy[i]; struct mvs_port *port = phy->port; tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, i); if ((tmp & PHY_READY_MASK) && !(phy->irq_status & PHYEV_POOF)) { if (!port) phy->phy_attached = 1; return tmp; } if (port) { if (phy->phy_type & PORT_TYPE_SAS) { port->wide_port_phymap &= ~(1U << i); if (!port->wide_port_phymap) port->port_attached = 0; mvs_update_wideport(mvi, i); } else if (phy->phy_type & PORT_TYPE_SATA) port->port_attached = 0; phy->port = NULL; phy->phy_attached = 0; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); } return 0; } static void *mvs_get_d2h_reg(struct mvs_info *mvi, int i, void *buf) { u32 *s = (u32 *) buf; if (!s) return NULL; MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG3); s[3] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG2); s[2] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG1); s[1] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); MVS_CHIP_DISP->write_port_cfg_addr(mvi, i, PHYR_SATA_SIG0); s[0] = MVS_CHIP_DISP->read_port_cfg_data(mvi, i); /* Workaround: take some ATAPI devices for ATA */ if (((s[1] & 0x00FFFFFF) == 0x00EB1401) && (*(u8 *)&s[3] == 0x01)) s[1] = 0x00EB1401 | (*((u8 *)&s[1] + 3) & 0x10); return s; } static u32 mvs_is_sig_fis_received(u32 irq_status) { return irq_status & PHYEV_SIG_FIS; } void mvs_update_phyinfo(struct mvs_info *mvi, int i, int get_st) { struct mvs_phy *phy = &mvi->phy[i]; struct sas_identify_frame *id; id = (struct sas_identify_frame *)phy->frame_rcvd; if (get_st) { phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, i); phy->phy_status = mvs_is_phy_ready(mvi, i); } if (phy->phy_status) { int oob_done = 0; struct asd_sas_phy *sas_phy = &mvi->phy[i].sas_phy; oob_done = MVS_CHIP_DISP->oob_done(mvi, i); MVS_CHIP_DISP->fix_phy_info(mvi, i, id); if (phy->phy_type & PORT_TYPE_SATA) { phy->identify.target_port_protocols = SAS_PROTOCOL_STP; if (mvs_is_sig_fis_received(phy->irq_status)) { phy->phy_attached = 1; phy->att_dev_sas_addr = i + mvi->id * mvi->chip->n_phy; if (oob_done) sas_phy->oob_mode = SATA_OOB_MODE; phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); mvs_get_d2h_reg(mvi, i, id); } else { u32 tmp; dev_printk(KERN_DEBUG, mvi->dev, "Phy%d : No sig fis\n", i); tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, i); MVS_CHIP_DISP->write_port_irq_mask(mvi, i, tmp | PHYEV_SIG_FIS); phy->phy_attached = 0; phy->phy_type &= ~PORT_TYPE_SATA; MVS_CHIP_DISP->phy_reset(mvi, i, 0); goto out_done; } } else if (phy->phy_type & PORT_TYPE_SAS || phy->att_dev_info & PORT_SSP_INIT_MASK) { phy->phy_attached = 1; phy->identify.device_type = phy->att_dev_info & PORT_DEV_TYPE_MASK; if (phy->identify.device_type == SAS_END_DEV) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != NO_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; if (oob_done) sas_phy->oob_mode = SAS_OOB_MODE; phy->frame_rcvd_size = sizeof(struct sas_identify_frame); } memcpy(sas_phy->attached_sas_addr, &phy->att_dev_sas_addr, SAS_ADDR_SIZE); if (MVS_CHIP_DISP->phy_work_around) MVS_CHIP_DISP->phy_work_around(mvi, i); } mv_dprintk("port %d attach dev info is %x\n", i + mvi->id * mvi->chip->n_phy, phy->att_dev_info); mv_dprintk("port %d attach sas addr is %llx\n", i + mvi->id * mvi->chip->n_phy, phy->att_dev_sas_addr); out_done: if (get_st) MVS_CHIP_DISP->write_port_irq_stat(mvi, i, phy->irq_status); } static void mvs_port_notify_formed(struct asd_sas_phy *sas_phy, int lock) { struct sas_ha_struct *sas_ha = sas_phy->ha; struct mvs_info *mvi = NULL; int i = 0, hi; struct mvs_phy *phy = sas_phy->lldd_phy; struct asd_sas_port *sas_port = sas_phy->port; struct mvs_port *port; unsigned long flags = 0; if (!sas_port) return; while (sas_ha->sas_phy[i]) { if (sas_ha->sas_phy[i] == sas_phy) break; i++; } hi = i/((struct mvs_prv_info *)sas_ha->lldd_ha)->n_phy; mvi = ((struct mvs_prv_info *)sas_ha->lldd_ha)->mvi[hi]; if (sas_port->id >= mvi->chip->n_phy) port = &mvi->port[sas_port->id - mvi->chip->n_phy]; else port = &mvi->port[sas_port->id]; if (lock) spin_lock_irqsave(&mvi->lock, flags); port->port_attached = 1; phy->port = port; if (phy->phy_type & PORT_TYPE_SAS) { port->wide_port_phymap = sas_port->phy_mask; mv_printk("set wide port phy map %x\n", sas_port->phy_mask); mvs_update_wideport(mvi, sas_phy->id); } if (lock) spin_unlock_irqrestore(&mvi->lock, flags); } static void mvs_port_notify_deformed(struct asd_sas_phy *sas_phy, int lock) { /*Nothing*/ } void mvs_port_formed(struct asd_sas_phy *sas_phy) { mvs_port_notify_formed(sas_phy, 1); } void mvs_port_deformed(struct asd_sas_phy *sas_phy) { mvs_port_notify_deformed(sas_phy, 1); } struct mvs_device *mvs_alloc_dev(struct mvs_info *mvi) { u32 dev; for (dev = 0; dev < MVS_MAX_DEVICES; dev++) { if (mvi->devices[dev].dev_type == NO_DEVICE) { mvi->devices[dev].device_id = dev; return &mvi->devices[dev]; } } if (dev == MVS_MAX_DEVICES) mv_printk("max support %d devices, ignore ..\n", MVS_MAX_DEVICES); return NULL; } void mvs_free_dev(struct mvs_device *mvi_dev) { u32 id = mvi_dev->device_id; memset(mvi_dev, 0, sizeof(*mvi_dev)); mvi_dev->device_id = id; mvi_dev->dev_type = NO_DEVICE; mvi_dev->dev_status = MVS_DEV_NORMAL; mvi_dev->taskfileset = MVS_ID_NOT_MAPPED; } int mvs_dev_found_notify(struct domain_device *dev, int lock) { unsigned long flags = 0; int res = 0; struct mvs_info *mvi = NULL; struct domain_device *parent_dev = dev->parent; struct mvs_device *mvi_device; mvi = mvs_find_dev_mvi(dev); if (lock) spin_lock_irqsave(&mvi->lock, flags); mvi_device = mvs_alloc_dev(mvi); if (!mvi_device) { res = -1; goto found_out; } dev->lldd_dev = mvi_device; mvi_device->dev_type = dev->dev_type; mvi_device->mvi_info = mvi; if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) { int phy_id; u8 phy_num = parent_dev->ex_dev.num_phys; struct ex_phy *phy; for (phy_id = 0; phy_id < phy_num; phy_id++) { phy = &parent_dev->ex_dev.ex_phy[phy_id]; if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(dev->sas_addr)) { mvi_device->attached_phy = phy_id; break; } } if (phy_id == phy_num) { mv_printk("Error: no attached dev:%016llx" "at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), SAS_ADDR(parent_dev->sas_addr)); res = -1; } } found_out: if (lock) spin_unlock_irqrestore(&mvi->lock, flags); return res; } int mvs_dev_found(struct domain_device *dev) { return mvs_dev_found_notify(dev, 1); } void mvs_dev_gone_notify(struct domain_device *dev, int lock) { unsigned long flags = 0; struct mvs_device *mvi_dev = dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; if (lock) spin_lock_irqsave(&mvi->lock, flags); if (mvi_dev) { mv_dprintk("found dev[%d:%x] is gone.\n", mvi_dev->device_id, mvi_dev->dev_type); mvs_free_reg_set(mvi, mvi_dev); mvs_free_dev(mvi_dev); } else { mv_dprintk("found dev has gone.\n"); } dev->lldd_dev = NULL; if (lock) spin_unlock_irqrestore(&mvi->lock, flags); } void mvs_dev_gone(struct domain_device *dev) { mvs_dev_gone_notify(dev, 1); } static struct sas_task *mvs_alloc_task(void) { struct sas_task *task = kzalloc(sizeof(struct sas_task), GFP_KERNEL); if (task) { INIT_LIST_HEAD(&task->list); spin_lock_init(&task->task_state_lock); task->task_state_flags = SAS_TASK_STATE_PENDING; init_timer(&task->timer); init_completion(&task->completion); } return task; } static void mvs_free_task(struct sas_task *task) { if (task) { BUG_ON(!list_empty(&task->list)); kfree(task); } } static void mvs_task_done(struct sas_task *task) { if (!del_timer(&task->timer)) return; complete(&task->completion); } static void mvs_tmf_timedout(unsigned long data) { struct sas_task *task = (struct sas_task *)data; task->task_state_flags |= SAS_TASK_STATE_ABORTED; complete(&task->completion); } /* XXX */ #define MVS_TASK_TIMEOUT 20 static int mvs_exec_internal_tmf_task(struct domain_device *dev, void *parameter, u32 para_len, struct mvs_tmf_task *tmf) { int res, retry; struct sas_task *task = NULL; for (retry = 0; retry < 3; retry++) { task = mvs_alloc_task(); if (!task) return -ENOMEM; task->dev = dev; task->task_proto = dev->tproto; memcpy(&task->ssp_task, parameter, para_len); task->task_done = mvs_task_done; task->timer.data = (unsigned long) task; task->timer.function = mvs_tmf_timedout; task->timer.expires = jiffies + MVS_TASK_TIMEOUT*HZ; add_timer(&task->timer); res = mvs_task_exec(task, 1, GFP_KERNEL, NULL, 1, tmf); if (res) { del_timer(&task->timer); mv_printk("executing internel task failed:%d\n", res); goto ex_err; } wait_for_completion(&task->completion); res = -TMF_RESP_FUNC_FAILED; /* Even TMF timed out, return direct. */ if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) { if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) { mv_printk("TMF task[%x] timeout.\n", tmf->tmf); goto ex_err; } } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAM_GOOD) { res = TMF_RESP_FUNC_COMPLETE; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_UNDERRUN) { /* no error, but return the number of bytes of * underrun */ res = task->task_status.residual; break; } if (task->task_status.resp == SAS_TASK_COMPLETE && task->task_status.stat == SAS_DATA_OVERRUN) { mv_dprintk("blocked task error.\n"); res = -EMSGSIZE; break; } else { mv_dprintk(" task to dev %016llx response: 0x%x " "status 0x%x\n", SAS_ADDR(dev->sas_addr), task->task_status.resp, task->task_status.stat); mvs_free_task(task); task = NULL; } } ex_err: BUG_ON(retry == 3 && task != NULL); if (task != NULL) mvs_free_task(task); return res; } static int mvs_debug_issue_ssp_tmf(struct domain_device *dev, u8 *lun, struct mvs_tmf_task *tmf) { struct sas_ssp_task ssp_task; DECLARE_COMPLETION_ONSTACK(completion); if (!(dev->tproto & SAS_PROTOCOL_SSP)) return TMF_RESP_FUNC_ESUPP; strncpy((u8 *)&ssp_task.LUN, lun, 8); return mvs_exec_internal_tmf_task(dev, &ssp_task, sizeof(ssp_task), tmf); } /* Standard mandates link reset for ATA (type 0) and hard reset for SSP (type 1) , only for RECOVERY */ static int mvs_debug_I_T_nexus_reset(struct domain_device *dev) { int rc; struct sas_phy *phy = sas_find_local_phy(dev); int reset_type = (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) ? 0 : 1; rc = sas_phy_reset(phy, reset_type); msleep(2000); return rc; } /* mandatory SAM-3 */ int mvs_lu_reset(struct domain_device *dev, u8 *lun) { unsigned long flags; int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED; struct mvs_tmf_task tmf_task; struct mvs_device * mvi_dev = dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; tmf_task.tmf = TMF_LU_RESET; mvi_dev->dev_status = MVS_DEV_EH; rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); if (rc == TMF_RESP_FUNC_COMPLETE) { num = mvs_find_dev_phyno(dev, phyno); spin_lock_irqsave(&mvi->lock, flags); for (i = 0; i < num; i++) mvs_release_task(mvi, phyno[i], dev); spin_unlock_irqrestore(&mvi->lock, flags); } /* If failed, fall-through I_T_Nexus reset */ mv_printk("%s for device[%x]:rc= %d\n", __func__, mvi_dev->device_id, rc); return rc; } int mvs_I_T_nexus_reset(struct domain_device *dev) { unsigned long flags; int i, phyno[WIDE_PORT_MAX_PHY], num , rc = TMF_RESP_FUNC_FAILED; struct mvs_device * mvi_dev = (struct mvs_device *)dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; if (mvi_dev->dev_status != MVS_DEV_EH) return TMF_RESP_FUNC_COMPLETE; rc = mvs_debug_I_T_nexus_reset(dev); mv_printk("%s for device[%x]:rc= %d\n", __func__, mvi_dev->device_id, rc); /* housekeeper */ num = mvs_find_dev_phyno(dev, phyno); spin_lock_irqsave(&mvi->lock, flags); for (i = 0; i < num; i++) mvs_release_task(mvi, phyno[i], dev); spin_unlock_irqrestore(&mvi->lock, flags); return rc; } /* optional SAM-3 */ int mvs_query_task(struct sas_task *task) { u32 tag; struct scsi_lun lun; struct mvs_tmf_task tmf_task; int rc = TMF_RESP_FUNC_FAILED; if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) { struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task; struct domain_device *dev = task->dev; struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; int_to_scsilun(cmnd->device->lun, &lun); rc = mvs_find_tag(mvi, task, &tag); if (rc == 0) { rc = TMF_RESP_FUNC_FAILED; return rc; } tmf_task.tmf = TMF_QUERY_TASK; tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag); rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); switch (rc) { /* The task is still in Lun, release it then */ case TMF_RESP_FUNC_SUCC: /* The task is not in Lun or failed, reset the phy */ case TMF_RESP_FUNC_FAILED: case TMF_RESP_FUNC_COMPLETE: break; } } mv_printk("%s:rc= %d\n", __func__, rc); return rc; } /* mandatory SAM-3, still need free task/slot info */ int mvs_abort_task(struct sas_task *task) { struct scsi_lun lun; struct mvs_tmf_task tmf_task; struct domain_device *dev = task->dev; struct mvs_device *mvi_dev = (struct mvs_device *)dev->lldd_dev; struct mvs_info *mvi = mvi_dev->mvi_info; int rc = TMF_RESP_FUNC_FAILED; unsigned long flags; u32 tag; if (mvi->exp_req) mvi->exp_req--; spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_DONE) { spin_unlock_irqrestore(&task->task_state_lock, flags); rc = TMF_RESP_FUNC_COMPLETE; goto out; } spin_unlock_irqrestore(&task->task_state_lock, flags); if (task->lldd_task && task->task_proto & SAS_PROTOCOL_SSP) { struct scsi_cmnd * cmnd = (struct scsi_cmnd *)task->uldd_task; int_to_scsilun(cmnd->device->lun, &lun); rc = mvs_find_tag(mvi, task, &tag); if (rc == 0) { mv_printk("No such tag in %s\n", __func__); rc = TMF_RESP_FUNC_FAILED; return rc; } tmf_task.tmf = TMF_ABORT_TASK; tmf_task.tag_of_task_to_be_managed = cpu_to_le16(tag); rc = mvs_debug_issue_ssp_tmf(dev, lun.scsi_lun, &tmf_task); /* if successful, clear the task and callback forwards.*/ if (rc == TMF_RESP_FUNC_COMPLETE) { u32 slot_no; struct mvs_slot_info *slot; if (task->lldd_task) { slot = task->lldd_task; slot_no = (u32) (slot - mvi->slot_info); mvs_slot_complete(mvi, slot_no, 1); } } } else if (task->task_proto & SAS_PROTOCOL_SATA || task->task_proto & SAS_PROTOCOL_STP) { /* to do free register_set */ } else { /* SMP */ } out: if (rc != TMF_RESP_FUNC_COMPLETE) mv_printk("%s:rc= %d\n", __func__, rc); return rc; } int mvs_abort_task_set(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct mvs_tmf_task tmf_task; tmf_task.tmf = TMF_ABORT_TASK_SET; rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); return rc; } int mvs_clear_aca(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct mvs_tmf_task tmf_task; tmf_task.tmf = TMF_CLEAR_ACA; rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); return rc; } int mvs_clear_task_set(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct mvs_tmf_task tmf_task; tmf_task.tmf = TMF_CLEAR_TASK_SET; rc = mvs_debug_issue_ssp_tmf(dev, lun, &tmf_task); return rc; } static int mvs_sata_done(struct mvs_info *mvi, struct sas_task *task, u32 slot_idx, int err) { struct mvs_device *mvi_dev = task->dev->lldd_dev; struct task_status_struct *tstat = &task->task_status; struct ata_task_resp *resp = (struct ata_task_resp *)tstat->buf; int stat = SAM_GOOD; resp->frame_len = sizeof(struct dev_to_host_fis); memcpy(&resp->ending_fis[0], SATA_RECEIVED_D2H_FIS(mvi_dev->taskfileset), sizeof(struct dev_to_host_fis)); tstat->buf_valid_size = sizeof(*resp); if (unlikely(err)) stat = SAS_PROTO_RESPONSE; return stat; } static int mvs_slot_err(struct mvs_info *mvi, struct sas_task *task, u32 slot_idx) { struct mvs_slot_info *slot = &mvi->slot_info[slot_idx]; int stat; u32 err_dw0 = le32_to_cpu(*(u32 *) (slot->response)); u32 tfs = 0; enum mvs_port_type type = PORT_TYPE_SAS; if (err_dw0 & CMD_ISS_STPD) MVS_CHIP_DISP->issue_stop(mvi, type, tfs); MVS_CHIP_DISP->command_active(mvi, slot_idx); stat = SAM_CHECK_COND; switch (task->task_proto) { case SAS_PROTOCOL_SSP: stat = SAS_ABORTED_TASK; break; case SAS_PROTOCOL_SMP: stat = SAM_CHECK_COND; break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { if (err_dw0 == 0x80400002) mv_printk("find reserved error, why?\n"); task->ata_task.use_ncq = 0; stat = SAS_PROTO_RESPONSE; mvs_sata_done(mvi, task, slot_idx, 1); } break; default: break; } return stat; } int mvs_slot_complete(struct mvs_info *mvi, u32 rx_desc, u32 flags) { u32 slot_idx = rx_desc & RXQ_SLOT_MASK; struct mvs_slot_info *slot = &mvi->slot_info[slot_idx]; struct sas_task *task = slot->task; struct mvs_device *mvi_dev = NULL; struct task_status_struct *tstat; bool aborted; void *to; enum exec_status sts; if (mvi->exp_req) mvi->exp_req--; if (unlikely(!task || !task->lldd_task)) return -1; tstat = &task->task_status; mvi_dev = task->dev->lldd_dev; mvs_hba_cq_dump(mvi); spin_lock(&task->task_state_lock); task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); task->task_state_flags |= SAS_TASK_STATE_DONE; /* race condition*/ aborted = task->task_state_flags & SAS_TASK_STATE_ABORTED; spin_unlock(&task->task_state_lock); memset(tstat, 0, sizeof(*tstat)); tstat->resp = SAS_TASK_COMPLETE; if (unlikely(aborted)) { tstat->stat = SAS_ABORTED_TASK; if (mvi_dev) mvi_dev->runing_req--; if (sas_protocol_ata(task->task_proto)) mvs_free_reg_set(mvi, mvi_dev); mvs_slot_task_free(mvi, task, slot, slot_idx); return -1; } if (unlikely(!mvi_dev || !slot->port->port_attached || flags)) { mv_dprintk("port has not device.\n"); tstat->stat = SAS_PHY_DOWN; goto out; } /* if (unlikely((rx_desc & RXQ_ERR) || (*(u64 *) slot->response))) { mv_dprintk("Find device[%016llx] RXQ_ERR %X, err info:%016llx\n", SAS_ADDR(task->dev->sas_addr), rx_desc, (u64)(*(u64 *) slot->response)); } */ /* error info record present */ if (unlikely((rx_desc & RXQ_ERR) && (*(u64 *) slot->response))) { tstat->stat = mvs_slot_err(mvi, task, slot_idx); goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: /* hw says status == 0, datapres == 0 */ if (rx_desc & RXQ_GOOD) { tstat->stat = SAM_GOOD; tstat->resp = SAS_TASK_COMPLETE; } /* response frame present */ else if (rx_desc & RXQ_RSP) { struct ssp_response_iu *iu = slot->response + sizeof(struct mvs_err_info); sas_ssp_task_response(mvi->dev, task, iu); } else tstat->stat = SAM_CHECK_COND; break; case SAS_PROTOCOL_SMP: { struct scatterlist *sg_resp = &task->smp_task.smp_resp; tstat->stat = SAM_GOOD; to = kmap_atomic(sg_page(sg_resp), KM_IRQ0); memcpy(to + sg_resp->offset, slot->response + sizeof(struct mvs_err_info), sg_dma_len(sg_resp)); kunmap_atomic(to, KM_IRQ0); break; } case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { tstat->stat = mvs_sata_done(mvi, task, slot_idx, 0); break; } default: tstat->stat = SAM_CHECK_COND; break; } out: if (mvi_dev) { mvi_dev->runing_req--; if (sas_protocol_ata(task->task_proto)) mvs_free_reg_set(mvi, mvi_dev); } mvs_slot_task_free(mvi, task, slot, slot_idx); sts = tstat->stat; spin_unlock(&mvi->lock); if (task->task_done) task->task_done(task); else mv_dprintk("why has not task_done.\n"); spin_lock(&mvi->lock); return sts; } void mvs_release_task(struct mvs_info *mvi, int phy_no, struct domain_device *dev) { int i = 0; u32 slot_idx; struct mvs_phy *phy; struct mvs_port *port; struct mvs_slot_info *slot, *slot2; phy = &mvi->phy[phy_no]; port = phy->port; if (!port) return; list_for_each_entry_safe(slot, slot2, &port->list, entry) { struct sas_task *task; slot_idx = (u32) (slot - mvi->slot_info); task = slot->task; if (dev && task->dev != dev) continue; mv_printk("Release slot [%x] tag[%x], task [%p]:\n", slot_idx, slot->slot_tag, task); if (task->task_proto & SAS_PROTOCOL_SSP) { mv_printk("attached with SSP task CDB["); for (i = 0; i < 16; i++) mv_printk(" %02x", task->ssp_task.cdb[i]); mv_printk(" ]\n"); } mvs_slot_complete(mvi, slot_idx, 1); } } static void mvs_phy_disconnected(struct mvs_phy *phy) { phy->phy_attached = 0; phy->att_dev_info = 0; phy->att_dev_sas_addr = 0; } static void mvs_work_queue(struct work_struct *work) { struct delayed_work *dw = container_of(work, struct delayed_work, work); struct mvs_wq *mwq = container_of(dw, struct mvs_wq, work_q); struct mvs_info *mvi = mwq->mvi; unsigned long flags; spin_lock_irqsave(&mvi->lock, flags); if (mwq->handler & PHY_PLUG_EVENT) { u32 phy_no = (unsigned long) mwq->data; struct sas_ha_struct *sas_ha = mvi->sas; struct mvs_phy *phy = &mvi->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; if (phy->phy_event & PHY_PLUG_OUT) { u32 tmp; struct sas_identify_frame *id; id = (struct sas_identify_frame *)phy->frame_rcvd; tmp = MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no); phy->phy_event &= ~PHY_PLUG_OUT; if (!(tmp & PHY_READY_MASK)) { sas_phy_disconnected(sas_phy); mvs_phy_disconnected(phy); sas_ha->notify_phy_event(sas_phy, PHYE_LOSS_OF_SIGNAL); mv_dprintk("phy%d Removed Device\n", phy_no); } else { MVS_CHIP_DISP->detect_porttype(mvi, phy_no); mvs_update_phyinfo(mvi, phy_no, 1); mvs_bytes_dmaed(mvi, phy_no); mvs_port_notify_formed(sas_phy, 0); mv_dprintk("phy%d Attached Device\n", phy_no); } } } list_del(&mwq->entry); spin_unlock_irqrestore(&mvi->lock, flags); kfree(mwq); } static int mvs_handle_event(struct mvs_info *mvi, void *data, int handler) { struct mvs_wq *mwq; int ret = 0; mwq = kmalloc(sizeof(struct mvs_wq), GFP_ATOMIC); if (mwq) { mwq->mvi = mvi; mwq->data = data; mwq->handler = handler; MV_INIT_DELAYED_WORK(&mwq->work_q, mvs_work_queue, mwq); list_add_tail(&mwq->entry, &mvi->wq_list); schedule_delayed_work(&mwq->work_q, HZ * 2); } else ret = -ENOMEM; return ret; } static void mvs_sig_time_out(unsigned long tphy) { struct mvs_phy *phy = (struct mvs_phy *)tphy; struct mvs_info *mvi = phy->mvi; u8 phy_no; for (phy_no = 0; phy_no < mvi->chip->n_phy; phy_no++) { if (&mvi->phy[phy_no] == phy) { mv_dprintk("Get signature time out, reset phy %d\n", phy_no+mvi->id*mvi->chip->n_phy); MVS_CHIP_DISP->phy_reset(mvi, phy_no, 1); } } } static void mvs_sig_remove_timer(struct mvs_phy *phy) { if (phy->timer.function) del_timer(&phy->timer); phy->timer.function = NULL; } void mvs_int_port(struct mvs_info *mvi, int phy_no, u32 events) { u32 tmp; struct sas_ha_struct *sas_ha = mvi->sas; struct mvs_phy *phy = &mvi->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; phy->irq_status = MVS_CHIP_DISP->read_port_irq_stat(mvi, phy_no); mv_dprintk("port %d ctrl sts=0x%X.\n", phy_no+mvi->id*mvi->chip->n_phy, MVS_CHIP_DISP->read_phy_ctl(mvi, phy_no)); mv_dprintk("Port %d irq sts = 0x%X\n", phy_no+mvi->id*mvi->chip->n_phy, phy->irq_status); /* * events is port event now , * we need check the interrupt status which belongs to per port. */ if (phy->irq_status & PHYEV_DCDR_ERR) mv_dprintk("port %d STP decoding error.\n", phy_no+mvi->id*mvi->chip->n_phy); if (phy->irq_status & PHYEV_POOF) { if (!(phy->phy_event & PHY_PLUG_OUT)) { int dev_sata = phy->phy_type & PORT_TYPE_SATA; int ready; mvs_release_task(mvi, phy_no, NULL); phy->phy_event |= PHY_PLUG_OUT; mvs_handle_event(mvi, (void *)(unsigned long)phy_no, PHY_PLUG_EVENT); ready = mvs_is_phy_ready(mvi, phy_no); if (!ready) mv_dprintk("phy%d Unplug Notice\n", phy_no + mvi->id * mvi->chip->n_phy); if (ready || dev_sata) { if (MVS_CHIP_DISP->stp_reset) MVS_CHIP_DISP->stp_reset(mvi, phy_no); else MVS_CHIP_DISP->phy_reset(mvi, phy_no, 0); return; } } } if (phy->irq_status & PHYEV_COMWAKE) { tmp = MVS_CHIP_DISP->read_port_irq_mask(mvi, phy_no); MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no, tmp | PHYEV_SIG_FIS); if (phy->timer.function == NULL) { phy->timer.data = (unsigned long)phy; phy->timer.function = mvs_sig_time_out; phy->timer.expires = jiffies + 10*HZ; add_timer(&phy->timer); } } if (phy->irq_status & (PHYEV_SIG_FIS | PHYEV_ID_DONE)) { phy->phy_status = mvs_is_phy_ready(mvi, phy_no); mvs_sig_remove_timer(phy); mv_dprintk("notify plug in on phy[%d]\n", phy_no); if (phy->phy_status) { mdelay(10); MVS_CHIP_DISP->detect_porttype(mvi, phy_no); if (phy->phy_type & PORT_TYPE_SATA) { tmp = MVS_CHIP_DISP->read_port_irq_mask( mvi, phy_no); tmp &= ~PHYEV_SIG_FIS; MVS_CHIP_DISP->write_port_irq_mask(mvi, phy_no, tmp); } mvs_update_phyinfo(mvi, phy_no, 0); mvs_bytes_dmaed(mvi, phy_no); /* whether driver is going to handle hot plug */ if (phy->phy_event & PHY_PLUG_OUT) { mvs_port_notify_formed(sas_phy, 0); phy->phy_event &= ~PHY_PLUG_OUT; } } else { mv_dprintk("plugin interrupt but phy%d is gone\n", phy_no + mvi->id*mvi->chip->n_phy); } } else if (phy->irq_status & PHYEV_BROAD_CH) { mv_dprintk("port %d broadcast change.\n", phy_no + mvi->id*mvi->chip->n_phy); /* exception for Samsung disk drive*/ mdelay(1000); sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); } MVS_CHIP_DISP->write_port_irq_stat(mvi, phy_no, phy->irq_status); } int mvs_int_rx(struct mvs_info *mvi, bool self_clear) { u32 rx_prod_idx, rx_desc; bool attn = false; /* the first dword in the RX ring is special: it contains * a mirror of the hardware's RX producer index, so that * we don't have to stall the CPU reading that register. * The actual RX ring is offset by one dword, due to this. */ rx_prod_idx = mvi->rx_cons; mvi->rx_cons = le32_to_cpu(mvi->rx[0]); if (mvi->rx_cons == 0xfff) /* h/w hasn't touched RX ring yet */ return 0; /* The CMPL_Q may come late, read from register and try again * note: if coalescing is enabled, * it will need to read from register every time for sure */ if (unlikely(mvi->rx_cons == rx_prod_idx)) mvi->rx_cons = MVS_CHIP_DISP->rx_update(mvi) & RX_RING_SZ_MASK; if (mvi->rx_cons == rx_prod_idx) return 0; while (mvi->rx_cons != rx_prod_idx) { /* increment our internal RX consumer pointer */ rx_prod_idx = (rx_prod_idx + 1) & (MVS_RX_RING_SZ - 1); rx_desc = le32_to_cpu(mvi->rx[rx_prod_idx + 1]); if (likely(rx_desc & RXQ_DONE)) mvs_slot_complete(mvi, rx_desc, 0); if (rx_desc & RXQ_ATTN) { attn = true; } else if (rx_desc & RXQ_ERR) { if (!(rx_desc & RXQ_DONE)) mvs_slot_complete(mvi, rx_desc, 0); } else if (rx_desc & RXQ_SLOT_RESET) { mvs_slot_free(mvi, rx_desc); } } if (attn && self_clear) MVS_CHIP_DISP->int_full(mvi); return 0; }