// SPDX-License-Identifier: GPL-2.0-only /* * drivers/soc/tegra/pmc.c * * Copyright (c) 2010 Google, Inc * Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. * * Author: * Colin Cross */ #define pr_fmt(fmt) "tegra-pmc: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PMC_CNTRL 0x0 #define PMC_CNTRL_INTR_POLARITY BIT(17) /* inverts INTR polarity */ #define PMC_CNTRL_CPU_PWRREQ_OE BIT(16) /* CPU pwr req enable */ #define PMC_CNTRL_CPU_PWRREQ_POLARITY BIT(15) /* CPU pwr req polarity */ #define PMC_CNTRL_SIDE_EFFECT_LP0 BIT(14) /* LP0 when CPU pwr gated */ #define PMC_CNTRL_SYSCLK_OE BIT(11) /* system clock enable */ #define PMC_CNTRL_SYSCLK_POLARITY BIT(10) /* sys clk polarity */ #define PMC_CNTRL_PWRREQ_POLARITY BIT(8) #define PMC_CNTRL_MAIN_RST BIT(4) #define PMC_WAKE_MASK 0x0c #define PMC_WAKE_LEVEL 0x10 #define PMC_WAKE_STATUS 0x14 #define PMC_SW_WAKE_STATUS 0x18 #define DPD_SAMPLE 0x020 #define DPD_SAMPLE_ENABLE BIT(0) #define DPD_SAMPLE_DISABLE (0 << 0) #define PWRGATE_TOGGLE 0x30 #define PWRGATE_TOGGLE_START BIT(8) #define REMOVE_CLAMPING 0x34 #define PWRGATE_STATUS 0x38 #define PMC_IMPL_E_33V_PWR 0x40 #define PMC_PWR_DET 0x48 #define PMC_SCRATCH0_MODE_RECOVERY BIT(31) #define PMC_SCRATCH0_MODE_BOOTLOADER BIT(30) #define PMC_SCRATCH0_MODE_RCM BIT(1) #define PMC_SCRATCH0_MODE_MASK (PMC_SCRATCH0_MODE_RECOVERY | \ PMC_SCRATCH0_MODE_BOOTLOADER | \ PMC_SCRATCH0_MODE_RCM) #define PMC_CPUPWRGOOD_TIMER 0xc8 #define PMC_CPUPWROFF_TIMER 0xcc #define PMC_COREPWRGOOD_TIMER 0x3c #define PMC_COREPWROFF_TIMER 0xe0 #define PMC_PWR_DET_VALUE 0xe4 #define PMC_SCRATCH41 0x140 #define PMC_WAKE2_MASK 0x160 #define PMC_WAKE2_LEVEL 0x164 #define PMC_WAKE2_STATUS 0x168 #define PMC_SW_WAKE2_STATUS 0x16c #define PMC_SENSOR_CTRL 0x1b0 #define PMC_SENSOR_CTRL_SCRATCH_WRITE BIT(2) #define PMC_SENSOR_CTRL_ENABLE_RST BIT(1) #define PMC_RST_STATUS_POR 0 #define PMC_RST_STATUS_WATCHDOG 1 #define PMC_RST_STATUS_SENSOR 2 #define PMC_RST_STATUS_SW_MAIN 3 #define PMC_RST_STATUS_LP0 4 #define PMC_RST_STATUS_AOTAG 5 #define IO_DPD_REQ 0x1b8 #define IO_DPD_REQ_CODE_IDLE (0U << 30) #define IO_DPD_REQ_CODE_OFF (1U << 30) #define IO_DPD_REQ_CODE_ON (2U << 30) #define IO_DPD_REQ_CODE_MASK (3U << 30) #define IO_DPD_STATUS 0x1bc #define IO_DPD2_REQ 0x1c0 #define IO_DPD2_STATUS 0x1c4 #define SEL_DPD_TIM 0x1c8 #define PMC_SCRATCH54 0x258 #define PMC_SCRATCH54_DATA_SHIFT 8 #define PMC_SCRATCH54_ADDR_SHIFT 0 #define PMC_SCRATCH55 0x25c #define PMC_SCRATCH55_RESET_TEGRA BIT(31) #define PMC_SCRATCH55_CNTRL_ID_SHIFT 27 #define PMC_SCRATCH55_PINMUX_SHIFT 24 #define PMC_SCRATCH55_16BITOP BIT(15) #define PMC_SCRATCH55_CHECKSUM_SHIFT 16 #define PMC_SCRATCH55_I2CSLV1_SHIFT 0 #define GPU_RG_CNTRL 0x2d4 /* Tegra186 and later */ #define WAKE_AOWAKE_CNTRL(x) (0x000 + ((x) << 2)) #define WAKE_AOWAKE_CNTRL_LEVEL (1 << 3) #define WAKE_AOWAKE_MASK_W(x) (0x180 + ((x) << 2)) #define WAKE_AOWAKE_MASK_R(x) (0x300 + ((x) << 2)) #define WAKE_AOWAKE_STATUS_W(x) (0x30c + ((x) << 2)) #define WAKE_AOWAKE_STATUS_R(x) (0x48c + ((x) << 2)) #define WAKE_AOWAKE_TIER0_ROUTING(x) (0x4b4 + ((x) << 2)) #define WAKE_AOWAKE_TIER1_ROUTING(x) (0x4c0 + ((x) << 2)) #define WAKE_AOWAKE_TIER2_ROUTING(x) (0x4cc + ((x) << 2)) #define WAKE_AOWAKE_CTRL 0x4f4 #define WAKE_AOWAKE_CTRL_INTR_POLARITY BIT(0) /* for secure PMC */ #define TEGRA_SMC_PMC 0xc2fffe00 #define TEGRA_SMC_PMC_READ 0xaa #define TEGRA_SMC_PMC_WRITE 0xbb struct tegra_powergate { struct generic_pm_domain genpd; struct tegra_pmc *pmc; unsigned int id; struct clk **clks; unsigned int num_clks; struct reset_control *reset; }; struct tegra_io_pad_soc { enum tegra_io_pad id; unsigned int dpd; unsigned int voltage; const char *name; }; struct tegra_pmc_regs { unsigned int scratch0; unsigned int dpd_req; unsigned int dpd_status; unsigned int dpd2_req; unsigned int dpd2_status; unsigned int rst_status; unsigned int rst_source_shift; unsigned int rst_source_mask; unsigned int rst_level_shift; unsigned int rst_level_mask; }; struct tegra_wake_event { const char *name; unsigned int id; unsigned int irq; struct { unsigned int instance; unsigned int pin; } gpio; }; #define TEGRA_WAKE_IRQ(_name, _id, _irq) \ { \ .name = _name, \ .id = _id, \ .irq = _irq, \ .gpio = { \ .instance = UINT_MAX, \ .pin = UINT_MAX, \ }, \ } #define TEGRA_WAKE_GPIO(_name, _id, _instance, _pin) \ { \ .name = _name, \ .id = _id, \ .irq = 0, \ .gpio = { \ .instance = _instance, \ .pin = _pin, \ }, \ } struct tegra_pmc_soc { unsigned int num_powergates; const char *const *powergates; unsigned int num_cpu_powergates; const u8 *cpu_powergates; bool has_tsense_reset; bool has_gpu_clamps; bool needs_mbist_war; bool has_impl_33v_pwr; bool maybe_tz_only; const struct tegra_io_pad_soc *io_pads; unsigned int num_io_pads; const struct pinctrl_pin_desc *pin_descs; unsigned int num_pin_descs; const struct tegra_pmc_regs *regs; void (*init)(struct tegra_pmc *pmc); void (*setup_irq_polarity)(struct tegra_pmc *pmc, struct device_node *np, bool invert); int (*irq_set_wake)(struct irq_data *data, unsigned int on); int (*irq_set_type)(struct irq_data *data, unsigned int type); const char * const *reset_sources; unsigned int num_reset_sources; const char * const *reset_levels; unsigned int num_reset_levels; /* * These describe events that can wake the system from sleep (i.e. * LP0 or SC7). Wakeup from other sleep states (such as LP1 or LP2) * are dealt with in the LIC. */ const struct tegra_wake_event *wake_events; unsigned int num_wake_events; }; static const char * const tegra186_reset_sources[] = { "SYS_RESET", "AOWDT", "MCCPLEXWDT", "BPMPWDT", "SCEWDT", "SPEWDT", "APEWDT", "BCCPLEXWDT", "SENSOR", "AOTAG", "VFSENSOR", "SWREST", "SC7", "HSM", "CORESIGHT" }; static const char * const tegra186_reset_levels[] = { "L0", "L1", "L2", "WARM" }; static const char * const tegra30_reset_sources[] = { "POWER_ON_RESET", "WATCHDOG", "SENSOR", "SW_MAIN", "LP0" }; static const char * const tegra210_reset_sources[] = { "POWER_ON_RESET", "WATCHDOG", "SENSOR", "SW_MAIN", "LP0", "AOTAG" }; /** * struct tegra_pmc - NVIDIA Tegra PMC * @dev: pointer to PMC device structure * @base: pointer to I/O remapped register region * @wake: pointer to I/O remapped region for WAKE registers * @aotag: pointer to I/O remapped region for AOTAG registers * @scratch: pointer to I/O remapped region for scratch registers * @clk: pointer to pclk clock * @soc: pointer to SoC data structure * @tz_only: flag specifying if the PMC can only be accessed via TrustZone * @debugfs: pointer to debugfs entry * @rate: currently configured rate of pclk * @suspend_mode: lowest suspend mode available * @cpu_good_time: CPU power good time (in microseconds) * @cpu_off_time: CPU power off time (in microsecends) * @core_osc_time: core power good OSC time (in microseconds) * @core_pmu_time: core power good PMU time (in microseconds) * @core_off_time: core power off time (in microseconds) * @corereq_high: core power request is active-high * @sysclkreq_high: system clock request is active-high * @combined_req: combined power request for CPU & core * @cpu_pwr_good_en: CPU power good signal is enabled * @lp0_vec_phys: physical base address of the LP0 warm boot code * @lp0_vec_size: size of the LP0 warm boot code * @powergates_available: Bitmap of available power gates * @powergates_lock: mutex for power gate register access * @pctl_dev: pin controller exposed by the PMC * @domain: IRQ domain provided by the PMC * @irq: chip implementation for the IRQ domain * @clk_nb: pclk clock changes handler */ struct tegra_pmc { struct device *dev; void __iomem *base; void __iomem *wake; void __iomem *aotag; void __iomem *scratch; struct clk *clk; struct dentry *debugfs; const struct tegra_pmc_soc *soc; bool tz_only; unsigned long rate; enum tegra_suspend_mode suspend_mode; u32 cpu_good_time; u32 cpu_off_time; u32 core_osc_time; u32 core_pmu_time; u32 core_off_time; bool corereq_high; bool sysclkreq_high; bool combined_req; bool cpu_pwr_good_en; u32 lp0_vec_phys; u32 lp0_vec_size; DECLARE_BITMAP(powergates_available, TEGRA_POWERGATE_MAX); struct mutex powergates_lock; struct pinctrl_dev *pctl_dev; struct irq_domain *domain; struct irq_chip irq; struct notifier_block clk_nb; }; static struct tegra_pmc *pmc = &(struct tegra_pmc) { .base = NULL, .suspend_mode = TEGRA_SUSPEND_NONE, }; static inline struct tegra_powergate * to_powergate(struct generic_pm_domain *domain) { return container_of(domain, struct tegra_powergate, genpd); } static u32 tegra_pmc_readl(struct tegra_pmc *pmc, unsigned long offset) { struct arm_smccc_res res; if (pmc->tz_only) { arm_smccc_smc(TEGRA_SMC_PMC, TEGRA_SMC_PMC_READ, offset, 0, 0, 0, 0, 0, &res); if (res.a0) { if (pmc->dev) dev_warn(pmc->dev, "%s(): SMC failed: %lu\n", __func__, res.a0); else pr_warn("%s(): SMC failed: %lu\n", __func__, res.a0); } return res.a1; } return readl(pmc->base + offset); } static void tegra_pmc_writel(struct tegra_pmc *pmc, u32 value, unsigned long offset) { struct arm_smccc_res res; if (pmc->tz_only) { arm_smccc_smc(TEGRA_SMC_PMC, TEGRA_SMC_PMC_WRITE, offset, value, 0, 0, 0, 0, &res); if (res.a0) { if (pmc->dev) dev_warn(pmc->dev, "%s(): SMC failed: %lu\n", __func__, res.a0); else pr_warn("%s(): SMC failed: %lu\n", __func__, res.a0); } } else { writel(value, pmc->base + offset); } } static u32 tegra_pmc_scratch_readl(struct tegra_pmc *pmc, unsigned long offset) { if (pmc->tz_only) return tegra_pmc_readl(pmc, offset); return readl(pmc->scratch + offset); } static void tegra_pmc_scratch_writel(struct tegra_pmc *pmc, u32 value, unsigned long offset) { if (pmc->tz_only) tegra_pmc_writel(pmc, value, offset); else writel(value, pmc->scratch + offset); } /* * TODO Figure out a way to call this with the struct tegra_pmc * passed in. * This currently doesn't work because readx_poll_timeout() can only operate * on functions that take a single argument. */ static inline bool tegra_powergate_state(int id) { if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps) return (tegra_pmc_readl(pmc, GPU_RG_CNTRL) & 0x1) == 0; else return (tegra_pmc_readl(pmc, PWRGATE_STATUS) & BIT(id)) != 0; } static inline bool tegra_powergate_is_valid(struct tegra_pmc *pmc, int id) { return (pmc->soc && pmc->soc->powergates[id]); } static inline bool tegra_powergate_is_available(struct tegra_pmc *pmc, int id) { return test_bit(id, pmc->powergates_available); } static int tegra_powergate_lookup(struct tegra_pmc *pmc, const char *name) { unsigned int i; if (!pmc || !pmc->soc || !name) return -EINVAL; for (i = 0; i < pmc->soc->num_powergates; i++) { if (!tegra_powergate_is_valid(pmc, i)) continue; if (!strcmp(name, pmc->soc->powergates[i])) return i; } return -ENODEV; } /** * tegra_powergate_set() - set the state of a partition * @pmc: power management controller * @id: partition ID * @new_state: new state of the partition */ static int tegra_powergate_set(struct tegra_pmc *pmc, unsigned int id, bool new_state) { bool status; int err; if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps) return -EINVAL; mutex_lock(&pmc->powergates_lock); if (tegra_powergate_state(id) == new_state) { mutex_unlock(&pmc->powergates_lock); return 0; } tegra_pmc_writel(pmc, PWRGATE_TOGGLE_START | id, PWRGATE_TOGGLE); err = readx_poll_timeout(tegra_powergate_state, id, status, status == new_state, 10, 100000); mutex_unlock(&pmc->powergates_lock); return err; } static int __tegra_powergate_remove_clamping(struct tegra_pmc *pmc, unsigned int id) { u32 mask; mutex_lock(&pmc->powergates_lock); /* * On Tegra124 and later, the clamps for the GPU are controlled by a * separate register (with different semantics). */ if (id == TEGRA_POWERGATE_3D) { if (pmc->soc->has_gpu_clamps) { tegra_pmc_writel(pmc, 0, GPU_RG_CNTRL); goto out; } } /* * Tegra 2 has a bug where PCIE and VDE clamping masks are * swapped relatively to the partition ids */ if (id == TEGRA_POWERGATE_VDEC) mask = (1 << TEGRA_POWERGATE_PCIE); else if (id == TEGRA_POWERGATE_PCIE) mask = (1 << TEGRA_POWERGATE_VDEC); else mask = (1 << id); tegra_pmc_writel(pmc, mask, REMOVE_CLAMPING); out: mutex_unlock(&pmc->powergates_lock); return 0; } static void tegra_powergate_disable_clocks(struct tegra_powergate *pg) { unsigned int i; for (i = 0; i < pg->num_clks; i++) clk_disable_unprepare(pg->clks[i]); } static int tegra_powergate_enable_clocks(struct tegra_powergate *pg) { unsigned int i; int err; for (i = 0; i < pg->num_clks; i++) { err = clk_prepare_enable(pg->clks[i]); if (err) goto out; } return 0; out: while (i--) clk_disable_unprepare(pg->clks[i]); return err; } int __weak tegra210_clk_handle_mbist_war(unsigned int id) { return 0; } static int tegra_powergate_power_up(struct tegra_powergate *pg, bool disable_clocks) { int err; err = reset_control_assert(pg->reset); if (err) return err; usleep_range(10, 20); err = tegra_powergate_set(pg->pmc, pg->id, true); if (err < 0) return err; usleep_range(10, 20); err = tegra_powergate_enable_clocks(pg); if (err) goto disable_clks; usleep_range(10, 20); err = __tegra_powergate_remove_clamping(pg->pmc, pg->id); if (err) goto disable_clks; usleep_range(10, 20); err = reset_control_deassert(pg->reset); if (err) goto powergate_off; usleep_range(10, 20); if (pg->pmc->soc->needs_mbist_war) err = tegra210_clk_handle_mbist_war(pg->id); if (err) goto disable_clks; if (disable_clocks) tegra_powergate_disable_clocks(pg); return 0; disable_clks: tegra_powergate_disable_clocks(pg); usleep_range(10, 20); powergate_off: tegra_powergate_set(pg->pmc, pg->id, false); return err; } static int tegra_powergate_power_down(struct tegra_powergate *pg) { int err; err = tegra_powergate_enable_clocks(pg); if (err) return err; usleep_range(10, 20); err = reset_control_assert(pg->reset); if (err) goto disable_clks; usleep_range(10, 20); tegra_powergate_disable_clocks(pg); usleep_range(10, 20); err = tegra_powergate_set(pg->pmc, pg->id, false); if (err) goto assert_resets; return 0; assert_resets: tegra_powergate_enable_clocks(pg); usleep_range(10, 20); reset_control_deassert(pg->reset); usleep_range(10, 20); disable_clks: tegra_powergate_disable_clocks(pg); return err; } static int tegra_genpd_power_on(struct generic_pm_domain *domain) { struct tegra_powergate *pg = to_powergate(domain); struct device *dev = pg->pmc->dev; int err; err = tegra_powergate_power_up(pg, true); if (err) { dev_err(dev, "failed to turn on PM domain %s: %d\n", pg->genpd.name, err); goto out; } reset_control_release(pg->reset); out: return err; } static int tegra_genpd_power_off(struct generic_pm_domain *domain) { struct tegra_powergate *pg = to_powergate(domain); struct device *dev = pg->pmc->dev; int err; err = reset_control_acquire(pg->reset); if (err < 0) { pr_err("failed to acquire resets: %d\n", err); return err; } err = tegra_powergate_power_down(pg); if (err) { dev_err(dev, "failed to turn off PM domain %s: %d\n", pg->genpd.name, err); reset_control_release(pg->reset); } return err; } /** * tegra_powergate_power_on() - power on partition * @id: partition ID */ int tegra_powergate_power_on(unsigned int id) { if (!tegra_powergate_is_available(pmc, id)) return -EINVAL; return tegra_powergate_set(pmc, id, true); } EXPORT_SYMBOL(tegra_powergate_power_on); /** * tegra_powergate_power_off() - power off partition * @id: partition ID */ int tegra_powergate_power_off(unsigned int id) { if (!tegra_powergate_is_available(pmc, id)) return -EINVAL; return tegra_powergate_set(pmc, id, false); } EXPORT_SYMBOL(tegra_powergate_power_off); /** * tegra_powergate_is_powered() - check if partition is powered * @pmc: power management controller * @id: partition ID */ static int tegra_powergate_is_powered(struct tegra_pmc *pmc, unsigned int id) { if (!tegra_powergate_is_valid(pmc, id)) return -EINVAL; return tegra_powergate_state(id); } /** * tegra_powergate_remove_clamping() - remove power clamps for partition * @id: partition ID */ int tegra_powergate_remove_clamping(unsigned int id) { if (!tegra_powergate_is_available(pmc, id)) return -EINVAL; return __tegra_powergate_remove_clamping(pmc, id); } EXPORT_SYMBOL(tegra_powergate_remove_clamping); /** * tegra_powergate_sequence_power_up() - power up partition * @id: partition ID * @clk: clock for partition * @rst: reset for partition * * Must be called with clk disabled, and returns with clk enabled. */ int tegra_powergate_sequence_power_up(unsigned int id, struct clk *clk, struct reset_control *rst) { struct tegra_powergate *pg; int err; if (!tegra_powergate_is_available(pmc, id)) return -EINVAL; pg = kzalloc(sizeof(*pg), GFP_KERNEL); if (!pg) return -ENOMEM; pg->id = id; pg->clks = &clk; pg->num_clks = 1; pg->reset = rst; pg->pmc = pmc; err = tegra_powergate_power_up(pg, false); if (err) dev_err(pmc->dev, "failed to turn on partition %d: %d\n", id, err); kfree(pg); return err; } EXPORT_SYMBOL(tegra_powergate_sequence_power_up); /** * tegra_get_cpu_powergate_id() - convert from CPU ID to partition ID * @pmc: power management controller * @cpuid: CPU partition ID * * Returns the partition ID corresponding to the CPU partition ID or a * negative error code on failure. */ static int tegra_get_cpu_powergate_id(struct tegra_pmc *pmc, unsigned int cpuid) { if (pmc->soc && cpuid < pmc->soc->num_cpu_powergates) return pmc->soc->cpu_powergates[cpuid]; return -EINVAL; } /** * tegra_pmc_cpu_is_powered() - check if CPU partition is powered * @cpuid: CPU partition ID */ bool tegra_pmc_cpu_is_powered(unsigned int cpuid) { int id; id = tegra_get_cpu_powergate_id(pmc, cpuid); if (id < 0) return false; return tegra_powergate_is_powered(pmc, id); } /** * tegra_pmc_cpu_power_on() - power on CPU partition * @cpuid: CPU partition ID */ int tegra_pmc_cpu_power_on(unsigned int cpuid) { int id; id = tegra_get_cpu_powergate_id(pmc, cpuid); if (id < 0) return id; return tegra_powergate_set(pmc, id, true); } /** * tegra_pmc_cpu_remove_clamping() - remove power clamps for CPU partition * @cpuid: CPU partition ID */ int tegra_pmc_cpu_remove_clamping(unsigned int cpuid) { int id; id = tegra_get_cpu_powergate_id(pmc, cpuid); if (id < 0) return id; return tegra_powergate_remove_clamping(id); } static int tegra_pmc_restart_notify(struct notifier_block *this, unsigned long action, void *data) { const char *cmd = data; u32 value; value = tegra_pmc_scratch_readl(pmc, pmc->soc->regs->scratch0); value &= ~PMC_SCRATCH0_MODE_MASK; if (cmd) { if (strcmp(cmd, "recovery") == 0) value |= PMC_SCRATCH0_MODE_RECOVERY; if (strcmp(cmd, "bootloader") == 0) value |= PMC_SCRATCH0_MODE_BOOTLOADER; if (strcmp(cmd, "forced-recovery") == 0) value |= PMC_SCRATCH0_MODE_RCM; } tegra_pmc_scratch_writel(pmc, value, pmc->soc->regs->scratch0); /* reset everything but PMC_SCRATCH0 and PMC_RST_STATUS */ value = tegra_pmc_readl(pmc, PMC_CNTRL); value |= PMC_CNTRL_MAIN_RST; tegra_pmc_writel(pmc, value, PMC_CNTRL); return NOTIFY_DONE; } static struct notifier_block tegra_pmc_restart_handler = { .notifier_call = tegra_pmc_restart_notify, .priority = 128, }; static int powergate_show(struct seq_file *s, void *data) { unsigned int i; int status; seq_printf(s, " powergate powered\n"); seq_printf(s, "------------------\n"); for (i = 0; i < pmc->soc->num_powergates; i++) { status = tegra_powergate_is_powered(pmc, i); if (status < 0) continue; seq_printf(s, " %9s %7s\n", pmc->soc->powergates[i], status ? "yes" : "no"); } return 0; } DEFINE_SHOW_ATTRIBUTE(powergate); static int tegra_powergate_debugfs_init(void) { pmc->debugfs = debugfs_create_file("powergate", S_IRUGO, NULL, NULL, &powergate_fops); if (!pmc->debugfs) return -ENOMEM; return 0; } static int tegra_powergate_of_get_clks(struct tegra_powergate *pg, struct device_node *np) { struct clk *clk; unsigned int i, count; int err; count = of_clk_get_parent_count(np); if (count == 0) return -ENODEV; pg->clks = kcalloc(count, sizeof(clk), GFP_KERNEL); if (!pg->clks) return -ENOMEM; for (i = 0; i < count; i++) { pg->clks[i] = of_clk_get(np, i); if (IS_ERR(pg->clks[i])) { err = PTR_ERR(pg->clks[i]); goto err; } } pg->num_clks = count; return 0; err: while (i--) clk_put(pg->clks[i]); kfree(pg->clks); return err; } static int tegra_powergate_of_get_resets(struct tegra_powergate *pg, struct device_node *np, bool off) { struct device *dev = pg->pmc->dev; int err; pg->reset = of_reset_control_array_get_exclusive_released(np); if (IS_ERR(pg->reset)) { err = PTR_ERR(pg->reset); dev_err(dev, "failed to get device resets: %d\n", err); return err; } err = reset_control_acquire(pg->reset); if (err < 0) { pr_err("failed to acquire resets: %d\n", err); goto out; } if (off) { err = reset_control_assert(pg->reset); } else { err = reset_control_deassert(pg->reset); if (err < 0) goto out; reset_control_release(pg->reset); } out: if (err) { reset_control_release(pg->reset); reset_control_put(pg->reset); } return err; } static int tegra_powergate_add(struct tegra_pmc *pmc, struct device_node *np) { struct device *dev = pmc->dev; struct tegra_powergate *pg; int id, err = 0; bool off; pg = kzalloc(sizeof(*pg), GFP_KERNEL); if (!pg) return -ENOMEM; id = tegra_powergate_lookup(pmc, np->name); if (id < 0) { dev_err(dev, "powergate lookup failed for %pOFn: %d\n", np, id); err = -ENODEV; goto free_mem; } /* * Clear the bit for this powergate so it cannot be managed * directly via the legacy APIs for controlling powergates. */ clear_bit(id, pmc->powergates_available); pg->id = id; pg->genpd.name = np->name; pg->genpd.power_off = tegra_genpd_power_off; pg->genpd.power_on = tegra_genpd_power_on; pg->pmc = pmc; off = !tegra_powergate_is_powered(pmc, pg->id); err = tegra_powergate_of_get_clks(pg, np); if (err < 0) { dev_err(dev, "failed to get clocks for %pOFn: %d\n", np, err); goto set_available; } err = tegra_powergate_of_get_resets(pg, np, off); if (err < 0) { dev_err(dev, "failed to get resets for %pOFn: %d\n", np, err); goto remove_clks; } if (!IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) { if (off) WARN_ON(tegra_powergate_power_up(pg, true)); goto remove_resets; } err = pm_genpd_init(&pg->genpd, NULL, off); if (err < 0) { dev_err(dev, "failed to initialise PM domain %pOFn: %d\n", np, err); goto remove_resets; } err = of_genpd_add_provider_simple(np, &pg->genpd); if (err < 0) { dev_err(dev, "failed to add PM domain provider for %pOFn: %d\n", np, err); goto remove_genpd; } dev_dbg(dev, "added PM domain %s\n", pg->genpd.name); return 0; remove_genpd: pm_genpd_remove(&pg->genpd); remove_resets: reset_control_put(pg->reset); remove_clks: while (pg->num_clks--) clk_put(pg->clks[pg->num_clks]); kfree(pg->clks); set_available: set_bit(id, pmc->powergates_available); free_mem: kfree(pg); return err; } static int tegra_powergate_init(struct tegra_pmc *pmc, struct device_node *parent) { struct device_node *np, *child; int err = 0; np = of_get_child_by_name(parent, "powergates"); if (!np) return 0; for_each_child_of_node(np, child) { err = tegra_powergate_add(pmc, child); if (err < 0) { of_node_put(child); break; } } of_node_put(np); return err; } static void tegra_powergate_remove(struct generic_pm_domain *genpd) { struct tegra_powergate *pg = to_powergate(genpd); reset_control_put(pg->reset); while (pg->num_clks--) clk_put(pg->clks[pg->num_clks]); kfree(pg->clks); set_bit(pg->id, pmc->powergates_available); kfree(pg); } static void tegra_powergate_remove_all(struct device_node *parent) { struct generic_pm_domain *genpd; struct device_node *np, *child; np = of_get_child_by_name(parent, "powergates"); if (!np) return; for_each_child_of_node(np, child) { of_genpd_del_provider(child); genpd = of_genpd_remove_last(child); if (IS_ERR(genpd)) continue; tegra_powergate_remove(genpd); } of_node_put(np); } static const struct tegra_io_pad_soc * tegra_io_pad_find(struct tegra_pmc *pmc, enum tegra_io_pad id) { unsigned int i; for (i = 0; i < pmc->soc->num_io_pads; i++) if (pmc->soc->io_pads[i].id == id) return &pmc->soc->io_pads[i]; return NULL; } static int tegra_io_pad_get_dpd_register_bit(struct tegra_pmc *pmc, enum tegra_io_pad id, unsigned long *request, unsigned long *status, u32 *mask) { const struct tegra_io_pad_soc *pad; pad = tegra_io_pad_find(pmc, id); if (!pad) { dev_err(pmc->dev, "invalid I/O pad ID %u\n", id); return -ENOENT; } if (pad->dpd == UINT_MAX) return -ENOTSUPP; *mask = BIT(pad->dpd % 32); if (pad->dpd < 32) { *status = pmc->soc->regs->dpd_status; *request = pmc->soc->regs->dpd_req; } else { *status = pmc->soc->regs->dpd2_status; *request = pmc->soc->regs->dpd2_req; } return 0; } static int tegra_io_pad_prepare(struct tegra_pmc *pmc, enum tegra_io_pad id, unsigned long *request, unsigned long *status, u32 *mask) { unsigned long rate, value; int err; err = tegra_io_pad_get_dpd_register_bit(pmc, id, request, status, mask); if (err) return err; if (pmc->clk) { rate = pmc->rate; if (!rate) { dev_err(pmc->dev, "failed to get clock rate\n"); return -ENODEV; } tegra_pmc_writel(pmc, DPD_SAMPLE_ENABLE, DPD_SAMPLE); /* must be at least 200 ns, in APB (PCLK) clock cycles */ value = DIV_ROUND_UP(1000000000, rate); value = DIV_ROUND_UP(200, value); tegra_pmc_writel(pmc, value, SEL_DPD_TIM); } return 0; } static int tegra_io_pad_poll(struct tegra_pmc *pmc, unsigned long offset, u32 mask, u32 val, unsigned long timeout) { u32 value; timeout = jiffies + msecs_to_jiffies(timeout); while (time_after(timeout, jiffies)) { value = tegra_pmc_readl(pmc, offset); if ((value & mask) == val) return 0; usleep_range(250, 1000); } return -ETIMEDOUT; } static void tegra_io_pad_unprepare(struct tegra_pmc *pmc) { if (pmc->clk) tegra_pmc_writel(pmc, DPD_SAMPLE_DISABLE, DPD_SAMPLE); } /** * tegra_io_pad_power_enable() - enable power to I/O pad * @id: Tegra I/O pad ID for which to enable power * * Returns: 0 on success or a negative error code on failure. */ int tegra_io_pad_power_enable(enum tegra_io_pad id) { unsigned long request, status; u32 mask; int err; mutex_lock(&pmc->powergates_lock); err = tegra_io_pad_prepare(pmc, id, &request, &status, &mask); if (err < 0) { dev_err(pmc->dev, "failed to prepare I/O pad: %d\n", err); goto unlock; } tegra_pmc_writel(pmc, IO_DPD_REQ_CODE_OFF | mask, request); err = tegra_io_pad_poll(pmc, status, mask, 0, 250); if (err < 0) { dev_err(pmc->dev, "failed to enable I/O pad: %d\n", err); goto unlock; } tegra_io_pad_unprepare(pmc); unlock: mutex_unlock(&pmc->powergates_lock); return err; } EXPORT_SYMBOL(tegra_io_pad_power_enable); /** * tegra_io_pad_power_disable() - disable power to I/O pad * @id: Tegra I/O pad ID for which to disable power * * Returns: 0 on success or a negative error code on failure. */ int tegra_io_pad_power_disable(enum tegra_io_pad id) { unsigned long request, status; u32 mask; int err; mutex_lock(&pmc->powergates_lock); err = tegra_io_pad_prepare(pmc, id, &request, &status, &mask); if (err < 0) { dev_err(pmc->dev, "failed to prepare I/O pad: %d\n", err); goto unlock; } tegra_pmc_writel(pmc, IO_DPD_REQ_CODE_ON | mask, request); err = tegra_io_pad_poll(pmc, status, mask, mask, 250); if (err < 0) { dev_err(pmc->dev, "failed to disable I/O pad: %d\n", err); goto unlock; } tegra_io_pad_unprepare(pmc); unlock: mutex_unlock(&pmc->powergates_lock); return err; } EXPORT_SYMBOL(tegra_io_pad_power_disable); static int tegra_io_pad_is_powered(struct tegra_pmc *pmc, enum tegra_io_pad id) { unsigned long request, status; u32 mask, value; int err; err = tegra_io_pad_get_dpd_register_bit(pmc, id, &request, &status, &mask); if (err) return err; value = tegra_pmc_readl(pmc, status); return !(value & mask); } static int tegra_io_pad_set_voltage(struct tegra_pmc *pmc, enum tegra_io_pad id, int voltage) { const struct tegra_io_pad_soc *pad; u32 value; pad = tegra_io_pad_find(pmc, id); if (!pad) return -ENOENT; if (pad->voltage == UINT_MAX) return -ENOTSUPP; mutex_lock(&pmc->powergates_lock); if (pmc->soc->has_impl_33v_pwr) { value = tegra_pmc_readl(pmc, PMC_IMPL_E_33V_PWR); if (voltage == TEGRA_IO_PAD_VOLTAGE_1V8) value &= ~BIT(pad->voltage); else value |= BIT(pad->voltage); tegra_pmc_writel(pmc, value, PMC_IMPL_E_33V_PWR); } else { /* write-enable PMC_PWR_DET_VALUE[pad->voltage] */ value = tegra_pmc_readl(pmc, PMC_PWR_DET); value |= BIT(pad->voltage); tegra_pmc_writel(pmc, value, PMC_PWR_DET); /* update I/O voltage */ value = tegra_pmc_readl(pmc, PMC_PWR_DET_VALUE); if (voltage == TEGRA_IO_PAD_VOLTAGE_1V8) value &= ~BIT(pad->voltage); else value |= BIT(pad->voltage); tegra_pmc_writel(pmc, value, PMC_PWR_DET_VALUE); } mutex_unlock(&pmc->powergates_lock); usleep_range(100, 250); return 0; } static int tegra_io_pad_get_voltage(struct tegra_pmc *pmc, enum tegra_io_pad id) { const struct tegra_io_pad_soc *pad; u32 value; pad = tegra_io_pad_find(pmc, id); if (!pad) return -ENOENT; if (pad->voltage == UINT_MAX) return -ENOTSUPP; if (pmc->soc->has_impl_33v_pwr) value = tegra_pmc_readl(pmc, PMC_IMPL_E_33V_PWR); else value = tegra_pmc_readl(pmc, PMC_PWR_DET_VALUE); if ((value & BIT(pad->voltage)) == 0) return TEGRA_IO_PAD_VOLTAGE_1V8; return TEGRA_IO_PAD_VOLTAGE_3V3; } /** * tegra_io_rail_power_on() - enable power to I/O rail * @id: Tegra I/O pad ID for which to enable power * * See also: tegra_io_pad_power_enable() */ int tegra_io_rail_power_on(unsigned int id) { return tegra_io_pad_power_enable(id); } EXPORT_SYMBOL(tegra_io_rail_power_on); /** * tegra_io_rail_power_off() - disable power to I/O rail * @id: Tegra I/O pad ID for which to disable power * * See also: tegra_io_pad_power_disable() */ int tegra_io_rail_power_off(unsigned int id) { return tegra_io_pad_power_disable(id); } EXPORT_SYMBOL(tegra_io_rail_power_off); #ifdef CONFIG_PM_SLEEP enum tegra_suspend_mode tegra_pmc_get_suspend_mode(void) { return pmc->suspend_mode; } void tegra_pmc_set_suspend_mode(enum tegra_suspend_mode mode) { if (mode < TEGRA_SUSPEND_NONE || mode >= TEGRA_MAX_SUSPEND_MODE) return; pmc->suspend_mode = mode; } void tegra_pmc_enter_suspend_mode(enum tegra_suspend_mode mode) { unsigned long long rate = 0; u64 ticks; u32 value; switch (mode) { case TEGRA_SUSPEND_LP1: rate = 32768; break; case TEGRA_SUSPEND_LP2: rate = pmc->rate; break; default: break; } if (WARN_ON_ONCE(rate == 0)) rate = 100000000; ticks = pmc->cpu_good_time * rate + USEC_PER_SEC - 1; do_div(ticks, USEC_PER_SEC); tegra_pmc_writel(pmc, ticks, PMC_CPUPWRGOOD_TIMER); ticks = pmc->cpu_off_time * rate + USEC_PER_SEC - 1; do_div(ticks, USEC_PER_SEC); tegra_pmc_writel(pmc, ticks, PMC_CPUPWROFF_TIMER); value = tegra_pmc_readl(pmc, PMC_CNTRL); value &= ~PMC_CNTRL_SIDE_EFFECT_LP0; value |= PMC_CNTRL_CPU_PWRREQ_OE; tegra_pmc_writel(pmc, value, PMC_CNTRL); } #endif static int tegra_pmc_parse_dt(struct tegra_pmc *pmc, struct device_node *np) { u32 value, values[2]; if (of_property_read_u32(np, "nvidia,suspend-mode", &value)) { } else { switch (value) { case 0: pmc->suspend_mode = TEGRA_SUSPEND_LP0; break; case 1: pmc->suspend_mode = TEGRA_SUSPEND_LP1; break; case 2: pmc->suspend_mode = TEGRA_SUSPEND_LP2; break; default: pmc->suspend_mode = TEGRA_SUSPEND_NONE; break; } } pmc->suspend_mode = tegra_pm_validate_suspend_mode(pmc->suspend_mode); if (of_property_read_u32(np, "nvidia,cpu-pwr-good-time", &value)) pmc->suspend_mode = TEGRA_SUSPEND_NONE; pmc->cpu_good_time = value; if (of_property_read_u32(np, "nvidia,cpu-pwr-off-time", &value)) pmc->suspend_mode = TEGRA_SUSPEND_NONE; pmc->cpu_off_time = value; if (of_property_read_u32_array(np, "nvidia,core-pwr-good-time", values, ARRAY_SIZE(values))) pmc->suspend_mode = TEGRA_SUSPEND_NONE; pmc->core_osc_time = values[0]; pmc->core_pmu_time = values[1]; if (of_property_read_u32(np, "nvidia,core-pwr-off-time", &value)) pmc->suspend_mode = TEGRA_SUSPEND_NONE; pmc->core_off_time = value; pmc->corereq_high = of_property_read_bool(np, "nvidia,core-power-req-active-high"); pmc->sysclkreq_high = of_property_read_bool(np, "nvidia,sys-clock-req-active-high"); pmc->combined_req = of_property_read_bool(np, "nvidia,combined-power-req"); pmc->cpu_pwr_good_en = of_property_read_bool(np, "nvidia,cpu-pwr-good-en"); if (of_property_read_u32_array(np, "nvidia,lp0-vec", values, ARRAY_SIZE(values))) if (pmc->suspend_mode == TEGRA_SUSPEND_LP0) pmc->suspend_mode = TEGRA_SUSPEND_LP1; pmc->lp0_vec_phys = values[0]; pmc->lp0_vec_size = values[1]; return 0; } static void tegra_pmc_init(struct tegra_pmc *pmc) { if (pmc->soc->init) pmc->soc->init(pmc); } static void tegra_pmc_init_tsense_reset(struct tegra_pmc *pmc) { static const char disabled[] = "emergency thermal reset disabled"; u32 pmu_addr, ctrl_id, reg_addr, reg_data, pinmux; struct device *dev = pmc->dev; struct device_node *np; u32 value, checksum; if (!pmc->soc->has_tsense_reset) return; np = of_get_child_by_name(pmc->dev->of_node, "i2c-thermtrip"); if (!np) { dev_warn(dev, "i2c-thermtrip node not found, %s.\n", disabled); return; } if (of_property_read_u32(np, "nvidia,i2c-controller-id", &ctrl_id)) { dev_err(dev, "I2C controller ID missing, %s.\n", disabled); goto out; } if (of_property_read_u32(np, "nvidia,bus-addr", &pmu_addr)) { dev_err(dev, "nvidia,bus-addr missing, %s.\n", disabled); goto out; } if (of_property_read_u32(np, "nvidia,reg-addr", ®_addr)) { dev_err(dev, "nvidia,reg-addr missing, %s.\n", disabled); goto out; } if (of_property_read_u32(np, "nvidia,reg-data", ®_data)) { dev_err(dev, "nvidia,reg-data missing, %s.\n", disabled); goto out; } if (of_property_read_u32(np, "nvidia,pinmux-id", &pinmux)) pinmux = 0; value = tegra_pmc_readl(pmc, PMC_SENSOR_CTRL); value |= PMC_SENSOR_CTRL_SCRATCH_WRITE; tegra_pmc_writel(pmc, value, PMC_SENSOR_CTRL); value = (reg_data << PMC_SCRATCH54_DATA_SHIFT) | (reg_addr << PMC_SCRATCH54_ADDR_SHIFT); tegra_pmc_writel(pmc, value, PMC_SCRATCH54); value = PMC_SCRATCH55_RESET_TEGRA; value |= ctrl_id << PMC_SCRATCH55_CNTRL_ID_SHIFT; value |= pinmux << PMC_SCRATCH55_PINMUX_SHIFT; value |= pmu_addr << PMC_SCRATCH55_I2CSLV1_SHIFT; /* * Calculate checksum of SCRATCH54, SCRATCH55 fields. Bits 23:16 will * contain the checksum and are currently zero, so they are not added. */ checksum = reg_addr + reg_data + (value & 0xff) + ((value >> 8) & 0xff) + ((value >> 24) & 0xff); checksum &= 0xff; checksum = 0x100 - checksum; value |= checksum << PMC_SCRATCH55_CHECKSUM_SHIFT; tegra_pmc_writel(pmc, value, PMC_SCRATCH55); value = tegra_pmc_readl(pmc, PMC_SENSOR_CTRL); value |= PMC_SENSOR_CTRL_ENABLE_RST; tegra_pmc_writel(pmc, value, PMC_SENSOR_CTRL); dev_info(pmc->dev, "emergency thermal reset enabled\n"); out: of_node_put(np); } static int tegra_io_pad_pinctrl_get_groups_count(struct pinctrl_dev *pctl_dev) { struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev); return pmc->soc->num_io_pads; } static const char *tegra_io_pad_pinctrl_get_group_name(struct pinctrl_dev *pctl, unsigned int group) { struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl); return pmc->soc->io_pads[group].name; } static int tegra_io_pad_pinctrl_get_group_pins(struct pinctrl_dev *pctl_dev, unsigned int group, const unsigned int **pins, unsigned int *num_pins) { struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev); *pins = &pmc->soc->io_pads[group].id; *num_pins = 1; return 0; } static const struct pinctrl_ops tegra_io_pad_pinctrl_ops = { .get_groups_count = tegra_io_pad_pinctrl_get_groups_count, .get_group_name = tegra_io_pad_pinctrl_get_group_name, .get_group_pins = tegra_io_pad_pinctrl_get_group_pins, .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, .dt_free_map = pinconf_generic_dt_free_map, }; static int tegra_io_pad_pinconf_get(struct pinctrl_dev *pctl_dev, unsigned int pin, unsigned long *config) { enum pin_config_param param = pinconf_to_config_param(*config); struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev); const struct tegra_io_pad_soc *pad; int ret; u32 arg; pad = tegra_io_pad_find(pmc, pin); if (!pad) return -EINVAL; switch (param) { case PIN_CONFIG_POWER_SOURCE: ret = tegra_io_pad_get_voltage(pmc, pad->id); if (ret < 0) return ret; arg = ret; break; case PIN_CONFIG_LOW_POWER_MODE: ret = tegra_io_pad_is_powered(pmc, pad->id); if (ret < 0) return ret; arg = !ret; break; default: return -EINVAL; } *config = pinconf_to_config_packed(param, arg); return 0; } static int tegra_io_pad_pinconf_set(struct pinctrl_dev *pctl_dev, unsigned int pin, unsigned long *configs, unsigned int num_configs) { struct tegra_pmc *pmc = pinctrl_dev_get_drvdata(pctl_dev); const struct tegra_io_pad_soc *pad; enum pin_config_param param; unsigned int i; int err; u32 arg; pad = tegra_io_pad_find(pmc, pin); if (!pad) return -EINVAL; for (i = 0; i < num_configs; ++i) { param = pinconf_to_config_param(configs[i]); arg = pinconf_to_config_argument(configs[i]); switch (param) { case PIN_CONFIG_LOW_POWER_MODE: if (arg) err = tegra_io_pad_power_disable(pad->id); else err = tegra_io_pad_power_enable(pad->id); if (err) return err; break; case PIN_CONFIG_POWER_SOURCE: if (arg != TEGRA_IO_PAD_VOLTAGE_1V8 && arg != TEGRA_IO_PAD_VOLTAGE_3V3) return -EINVAL; err = tegra_io_pad_set_voltage(pmc, pad->id, arg); if (err) return err; break; default: return -EINVAL; } } return 0; } static const struct pinconf_ops tegra_io_pad_pinconf_ops = { .pin_config_get = tegra_io_pad_pinconf_get, .pin_config_set = tegra_io_pad_pinconf_set, .is_generic = true, }; static struct pinctrl_desc tegra_pmc_pctl_desc = { .pctlops = &tegra_io_pad_pinctrl_ops, .confops = &tegra_io_pad_pinconf_ops, }; static int tegra_pmc_pinctrl_init(struct tegra_pmc *pmc) { int err; if (!pmc->soc->num_pin_descs) return 0; tegra_pmc_pctl_desc.name = dev_name(pmc->dev); tegra_pmc_pctl_desc.pins = pmc->soc->pin_descs; tegra_pmc_pctl_desc.npins = pmc->soc->num_pin_descs; pmc->pctl_dev = devm_pinctrl_register(pmc->dev, &tegra_pmc_pctl_desc, pmc); if (IS_ERR(pmc->pctl_dev)) { err = PTR_ERR(pmc->pctl_dev); dev_err(pmc->dev, "failed to register pin controller: %d\n", err); return err; } return 0; } static ssize_t reset_reason_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 value; value = tegra_pmc_readl(pmc, pmc->soc->regs->rst_status); value &= pmc->soc->regs->rst_source_mask; value >>= pmc->soc->regs->rst_source_shift; if (WARN_ON(value >= pmc->soc->num_reset_sources)) return sprintf(buf, "%s\n", "UNKNOWN"); return sprintf(buf, "%s\n", pmc->soc->reset_sources[value]); } static DEVICE_ATTR_RO(reset_reason); static ssize_t reset_level_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 value; value = tegra_pmc_readl(pmc, pmc->soc->regs->rst_status); value &= pmc->soc->regs->rst_level_mask; value >>= pmc->soc->regs->rst_level_shift; if (WARN_ON(value >= pmc->soc->num_reset_levels)) return sprintf(buf, "%s\n", "UNKNOWN"); return sprintf(buf, "%s\n", pmc->soc->reset_levels[value]); } static DEVICE_ATTR_RO(reset_level); static void tegra_pmc_reset_sysfs_init(struct tegra_pmc *pmc) { struct device *dev = pmc->dev; int err = 0; if (pmc->soc->reset_sources) { err = device_create_file(dev, &dev_attr_reset_reason); if (err < 0) dev_warn(dev, "failed to create attr \"reset_reason\": %d\n", err); } if (pmc->soc->reset_levels) { err = device_create_file(dev, &dev_attr_reset_level); if (err < 0) dev_warn(dev, "failed to create attr \"reset_level\": %d\n", err); } } static int tegra_pmc_irq_translate(struct irq_domain *domain, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { if (WARN_ON(fwspec->param_count < 2)) return -EINVAL; *hwirq = fwspec->param[0]; *type = fwspec->param[1]; return 0; } static int tegra_pmc_irq_alloc(struct irq_domain *domain, unsigned int virq, unsigned int num_irqs, void *data) { struct tegra_pmc *pmc = domain->host_data; const struct tegra_pmc_soc *soc = pmc->soc; struct irq_fwspec *fwspec = data; unsigned int i; int err = 0; if (WARN_ON(num_irqs > 1)) return -EINVAL; for (i = 0; i < soc->num_wake_events; i++) { const struct tegra_wake_event *event = &soc->wake_events[i]; if (fwspec->param_count == 2) { struct irq_fwspec spec; if (event->id != fwspec->param[0]) continue; err = irq_domain_set_hwirq_and_chip(domain, virq, event->id, &pmc->irq, pmc); if (err < 0) break; spec.fwnode = &pmc->dev->of_node->fwnode; spec.param_count = 3; spec.param[0] = GIC_SPI; spec.param[1] = event->irq; spec.param[2] = fwspec->param[1]; err = irq_domain_alloc_irqs_parent(domain, virq, num_irqs, &spec); break; } if (fwspec->param_count == 3) { if (event->gpio.instance != fwspec->param[0] || event->gpio.pin != fwspec->param[1]) continue; err = irq_domain_set_hwirq_and_chip(domain, virq, event->id, &pmc->irq, pmc); /* * GPIOs don't have an equivalent interrupt in the * parent controller (GIC). However some code, such * as the one in irq_get_irqchip_state(), require a * valid IRQ chip to be set. Make sure that's the * case by passing NULL here, which will install a * dummy IRQ chip for the interrupt in the parent * domain. */ if (domain->parent) irq_domain_set_hwirq_and_chip(domain->parent, virq, 0, NULL, NULL); break; } } /* * For interrupts that don't have associated wake events, assign a * dummy hardware IRQ number. This is used in the ->irq_set_type() * and ->irq_set_wake() callbacks to return early for these IRQs. */ if (i == soc->num_wake_events) { err = irq_domain_set_hwirq_and_chip(domain, virq, ULONG_MAX, &pmc->irq, pmc); /* * Interrupts without a wake event don't have a corresponding * interrupt in the parent controller (GIC). Pass NULL for the * chip here, which causes a dummy IRQ chip to be installed * for the interrupt in the parent domain, to make this * explicit. */ if (domain->parent) irq_domain_set_hwirq_and_chip(domain->parent, virq, 0, NULL, NULL); } return err; } static const struct irq_domain_ops tegra_pmc_irq_domain_ops = { .translate = tegra_pmc_irq_translate, .alloc = tegra_pmc_irq_alloc, }; static int tegra210_pmc_irq_set_wake(struct irq_data *data, unsigned int on) { struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data); unsigned int offset, bit; u32 value; if (data->hwirq == ULONG_MAX) return 0; offset = data->hwirq / 32; bit = data->hwirq % 32; /* clear wake status */ tegra_pmc_writel(pmc, 0, PMC_SW_WAKE_STATUS); tegra_pmc_writel(pmc, 0, PMC_SW_WAKE2_STATUS); tegra_pmc_writel(pmc, 0, PMC_WAKE_STATUS); tegra_pmc_writel(pmc, 0, PMC_WAKE2_STATUS); /* enable PMC wake */ if (data->hwirq >= 32) offset = PMC_WAKE2_MASK; else offset = PMC_WAKE_MASK; value = tegra_pmc_readl(pmc, offset); if (on) value |= BIT(bit); else value &= ~BIT(bit); tegra_pmc_writel(pmc, value, offset); return 0; } static int tegra210_pmc_irq_set_type(struct irq_data *data, unsigned int type) { struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data); unsigned int offset, bit; u32 value; if (data->hwirq == ULONG_MAX) return 0; offset = data->hwirq / 32; bit = data->hwirq % 32; if (data->hwirq >= 32) offset = PMC_WAKE2_LEVEL; else offset = PMC_WAKE_LEVEL; value = tegra_pmc_readl(pmc, offset); switch (type) { case IRQ_TYPE_EDGE_RISING: case IRQ_TYPE_LEVEL_HIGH: value |= BIT(bit); break; case IRQ_TYPE_EDGE_FALLING: case IRQ_TYPE_LEVEL_LOW: value &= ~BIT(bit); break; case IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING: value ^= BIT(bit); break; default: return -EINVAL; } tegra_pmc_writel(pmc, value, offset); return 0; } static int tegra186_pmc_irq_set_wake(struct irq_data *data, unsigned int on) { struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data); unsigned int offset, bit; u32 value; /* nothing to do if there's no associated wake event */ if (WARN_ON(data->hwirq == ULONG_MAX)) return 0; offset = data->hwirq / 32; bit = data->hwirq % 32; /* clear wake status */ writel(0x1, pmc->wake + WAKE_AOWAKE_STATUS_W(data->hwirq)); /* route wake to tier 2 */ value = readl(pmc->wake + WAKE_AOWAKE_TIER2_ROUTING(offset)); if (!on) value &= ~(1 << bit); else value |= 1 << bit; writel(value, pmc->wake + WAKE_AOWAKE_TIER2_ROUTING(offset)); /* enable wakeup event */ writel(!!on, pmc->wake + WAKE_AOWAKE_MASK_W(data->hwirq)); return 0; } static int tegra186_pmc_irq_set_type(struct irq_data *data, unsigned int type) { struct tegra_pmc *pmc = irq_data_get_irq_chip_data(data); u32 value; /* nothing to do if there's no associated wake event */ if (data->hwirq == ULONG_MAX) return 0; value = readl(pmc->wake + WAKE_AOWAKE_CNTRL(data->hwirq)); switch (type) { case IRQ_TYPE_EDGE_RISING: case IRQ_TYPE_LEVEL_HIGH: value |= WAKE_AOWAKE_CNTRL_LEVEL; break; case IRQ_TYPE_EDGE_FALLING: case IRQ_TYPE_LEVEL_LOW: value &= ~WAKE_AOWAKE_CNTRL_LEVEL; break; case IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING: value ^= WAKE_AOWAKE_CNTRL_LEVEL; break; default: return -EINVAL; } writel(value, pmc->wake + WAKE_AOWAKE_CNTRL(data->hwirq)); return 0; } static int tegra_pmc_irq_init(struct tegra_pmc *pmc) { struct irq_domain *parent = NULL; struct device_node *np; np = of_irq_find_parent(pmc->dev->of_node); if (np) { parent = irq_find_host(np); of_node_put(np); } if (!parent) return 0; pmc->irq.name = dev_name(pmc->dev); pmc->irq.irq_mask = irq_chip_mask_parent; pmc->irq.irq_unmask = irq_chip_unmask_parent; pmc->irq.irq_eoi = irq_chip_eoi_parent; pmc->irq.irq_set_affinity = irq_chip_set_affinity_parent; pmc->irq.irq_set_type = pmc->soc->irq_set_type; pmc->irq.irq_set_wake = pmc->soc->irq_set_wake; pmc->domain = irq_domain_add_hierarchy(parent, 0, 96, pmc->dev->of_node, &tegra_pmc_irq_domain_ops, pmc); if (!pmc->domain) { dev_err(pmc->dev, "failed to allocate domain\n"); return -ENOMEM; } return 0; } static int tegra_pmc_clk_notify_cb(struct notifier_block *nb, unsigned long action, void *ptr) { struct tegra_pmc *pmc = container_of(nb, struct tegra_pmc, clk_nb); struct clk_notifier_data *data = ptr; switch (action) { case PRE_RATE_CHANGE: mutex_lock(&pmc->powergates_lock); break; case POST_RATE_CHANGE: pmc->rate = data->new_rate; /* fall through */ case ABORT_RATE_CHANGE: mutex_unlock(&pmc->powergates_lock); break; default: WARN_ON_ONCE(1); return notifier_from_errno(-EINVAL); } return NOTIFY_OK; } static int tegra_pmc_probe(struct platform_device *pdev) { void __iomem *base; struct resource *res; int err; /* * Early initialisation should have configured an initial * register mapping and setup the soc data pointer. If these * are not valid then something went badly wrong! */ if (WARN_ON(!pmc->base || !pmc->soc)) return -ENODEV; err = tegra_pmc_parse_dt(pmc, pdev->dev.of_node); if (err < 0) return err; /* take over the memory region from the early initialization */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "wake"); if (res) { pmc->wake = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmc->wake)) return PTR_ERR(pmc->wake); } else { pmc->wake = base; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "aotag"); if (res) { pmc->aotag = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmc->aotag)) return PTR_ERR(pmc->aotag); } else { pmc->aotag = base; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "scratch"); if (res) { pmc->scratch = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pmc->scratch)) return PTR_ERR(pmc->scratch); } else { pmc->scratch = base; } pmc->clk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(pmc->clk)) { err = PTR_ERR(pmc->clk); if (err != -ENOENT) { dev_err(&pdev->dev, "failed to get pclk: %d\n", err); return err; } pmc->clk = NULL; } /* * PCLK clock rate can't be retrieved using CLK API because it * causes lockup if CPU enters LP2 idle state from some other * CLK notifier, hence we're caching the rate's value locally. */ if (pmc->clk) { pmc->clk_nb.notifier_call = tegra_pmc_clk_notify_cb; err = clk_notifier_register(pmc->clk, &pmc->clk_nb); if (err) { dev_err(&pdev->dev, "failed to register clk notifier\n"); return err; } pmc->rate = clk_get_rate(pmc->clk); } pmc->dev = &pdev->dev; tegra_pmc_init(pmc); tegra_pmc_init_tsense_reset(pmc); tegra_pmc_reset_sysfs_init(pmc); if (IS_ENABLED(CONFIG_DEBUG_FS)) { err = tegra_powergate_debugfs_init(); if (err < 0) goto cleanup_sysfs; } err = register_restart_handler(&tegra_pmc_restart_handler); if (err) { dev_err(&pdev->dev, "unable to register restart handler, %d\n", err); goto cleanup_debugfs; } err = tegra_pmc_pinctrl_init(pmc); if (err) goto cleanup_restart_handler; err = tegra_powergate_init(pmc, pdev->dev.of_node); if (err < 0) goto cleanup_powergates; err = tegra_pmc_irq_init(pmc); if (err < 0) goto cleanup_powergates; mutex_lock(&pmc->powergates_lock); iounmap(pmc->base); pmc->base = base; mutex_unlock(&pmc->powergates_lock); platform_set_drvdata(pdev, pmc); return 0; cleanup_powergates: tegra_powergate_remove_all(pdev->dev.of_node); cleanup_restart_handler: unregister_restart_handler(&tegra_pmc_restart_handler); cleanup_debugfs: debugfs_remove(pmc->debugfs); cleanup_sysfs: device_remove_file(&pdev->dev, &dev_attr_reset_reason); device_remove_file(&pdev->dev, &dev_attr_reset_level); clk_notifier_unregister(pmc->clk, &pmc->clk_nb); return err; } #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM) static int tegra_pmc_suspend(struct device *dev) { struct tegra_pmc *pmc = dev_get_drvdata(dev); tegra_pmc_writel(pmc, virt_to_phys(tegra_resume), PMC_SCRATCH41); return 0; } static int tegra_pmc_resume(struct device *dev) { struct tegra_pmc *pmc = dev_get_drvdata(dev); tegra_pmc_writel(pmc, 0x0, PMC_SCRATCH41); return 0; } static SIMPLE_DEV_PM_OPS(tegra_pmc_pm_ops, tegra_pmc_suspend, tegra_pmc_resume); #endif static const char * const tegra20_powergates[] = { [TEGRA_POWERGATE_CPU] = "cpu", [TEGRA_POWERGATE_3D] = "3d", [TEGRA_POWERGATE_VENC] = "venc", [TEGRA_POWERGATE_VDEC] = "vdec", [TEGRA_POWERGATE_PCIE] = "pcie", [TEGRA_POWERGATE_L2] = "l2", [TEGRA_POWERGATE_MPE] = "mpe", }; static const struct tegra_pmc_regs tegra20_pmc_regs = { .scratch0 = 0x50, .dpd_req = 0x1b8, .dpd_status = 0x1bc, .dpd2_req = 0x1c0, .dpd2_status = 0x1c4, .rst_status = 0x1b4, .rst_source_shift = 0x0, .rst_source_mask = 0x7, .rst_level_shift = 0x0, .rst_level_mask = 0x0, }; static void tegra20_pmc_init(struct tegra_pmc *pmc) { u32 value, osc, pmu, off; /* Always enable CPU power request */ value = tegra_pmc_readl(pmc, PMC_CNTRL); value |= PMC_CNTRL_CPU_PWRREQ_OE; tegra_pmc_writel(pmc, value, PMC_CNTRL); value = tegra_pmc_readl(pmc, PMC_CNTRL); if (pmc->sysclkreq_high) value &= ~PMC_CNTRL_SYSCLK_POLARITY; else value |= PMC_CNTRL_SYSCLK_POLARITY; if (pmc->corereq_high) value &= ~PMC_CNTRL_PWRREQ_POLARITY; else value |= PMC_CNTRL_PWRREQ_POLARITY; /* configure the output polarity while the request is tristated */ tegra_pmc_writel(pmc, value, PMC_CNTRL); /* now enable the request */ value = tegra_pmc_readl(pmc, PMC_CNTRL); value |= PMC_CNTRL_SYSCLK_OE; tegra_pmc_writel(pmc, value, PMC_CNTRL); /* program core timings which are applicable only for suspend state */ if (pmc->suspend_mode != TEGRA_SUSPEND_NONE) { osc = DIV_ROUND_UP(pmc->core_osc_time * 8192, 1000000); pmu = DIV_ROUND_UP(pmc->core_pmu_time * 32768, 1000000); off = DIV_ROUND_UP(pmc->core_off_time * 32768, 1000000); tegra_pmc_writel(pmc, ((osc << 8) & 0xff00) | (pmu & 0xff), PMC_COREPWRGOOD_TIMER); tegra_pmc_writel(pmc, off, PMC_COREPWROFF_TIMER); } } static void tegra20_pmc_setup_irq_polarity(struct tegra_pmc *pmc, struct device_node *np, bool invert) { u32 value; value = tegra_pmc_readl(pmc, PMC_CNTRL); if (invert) value |= PMC_CNTRL_INTR_POLARITY; else value &= ~PMC_CNTRL_INTR_POLARITY; tegra_pmc_writel(pmc, value, PMC_CNTRL); } static const struct tegra_pmc_soc tegra20_pmc_soc = { .num_powergates = ARRAY_SIZE(tegra20_powergates), .powergates = tegra20_powergates, .num_cpu_powergates = 0, .cpu_powergates = NULL, .has_tsense_reset = false, .has_gpu_clamps = false, .needs_mbist_war = false, .has_impl_33v_pwr = false, .maybe_tz_only = false, .num_io_pads = 0, .io_pads = NULL, .num_pin_descs = 0, .pin_descs = NULL, .regs = &tegra20_pmc_regs, .init = tegra20_pmc_init, .setup_irq_polarity = tegra20_pmc_setup_irq_polarity, .reset_sources = NULL, .num_reset_sources = 0, .reset_levels = NULL, .num_reset_levels = 0, }; static const char * const tegra30_powergates[] = { [TEGRA_POWERGATE_CPU] = "cpu0", [TEGRA_POWERGATE_3D] = "3d0", [TEGRA_POWERGATE_VENC] = "venc", [TEGRA_POWERGATE_VDEC] = "vdec", [TEGRA_POWERGATE_PCIE] = "pcie", [TEGRA_POWERGATE_L2] = "l2", [TEGRA_POWERGATE_MPE] = "mpe", [TEGRA_POWERGATE_HEG] = "heg", [TEGRA_POWERGATE_SATA] = "sata", [TEGRA_POWERGATE_CPU1] = "cpu1", [TEGRA_POWERGATE_CPU2] = "cpu2", [TEGRA_POWERGATE_CPU3] = "cpu3", [TEGRA_POWERGATE_CELP] = "celp", [TEGRA_POWERGATE_3D1] = "3d1", }; static const u8 tegra30_cpu_powergates[] = { TEGRA_POWERGATE_CPU, TEGRA_POWERGATE_CPU1, TEGRA_POWERGATE_CPU2, TEGRA_POWERGATE_CPU3, }; static const struct tegra_pmc_soc tegra30_pmc_soc = { .num_powergates = ARRAY_SIZE(tegra30_powergates), .powergates = tegra30_powergates, .num_cpu_powergates = ARRAY_SIZE(tegra30_cpu_powergates), .cpu_powergates = tegra30_cpu_powergates, .has_tsense_reset = true, .has_gpu_clamps = false, .needs_mbist_war = false, .has_impl_33v_pwr = false, .maybe_tz_only = false, .num_io_pads = 0, .io_pads = NULL, .num_pin_descs = 0, .pin_descs = NULL, .regs = &tegra20_pmc_regs, .init = tegra20_pmc_init, .setup_irq_polarity = tegra20_pmc_setup_irq_polarity, .reset_sources = tegra30_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra30_reset_sources), .reset_levels = NULL, .num_reset_levels = 0, }; static const char * const tegra114_powergates[] = { [TEGRA_POWERGATE_CPU] = "crail", [TEGRA_POWERGATE_3D] = "3d", [TEGRA_POWERGATE_VENC] = "venc", [TEGRA_POWERGATE_VDEC] = "vdec", [TEGRA_POWERGATE_MPE] = "mpe", [TEGRA_POWERGATE_HEG] = "heg", [TEGRA_POWERGATE_CPU1] = "cpu1", [TEGRA_POWERGATE_CPU2] = "cpu2", [TEGRA_POWERGATE_CPU3] = "cpu3", [TEGRA_POWERGATE_CELP] = "celp", [TEGRA_POWERGATE_CPU0] = "cpu0", [TEGRA_POWERGATE_C0NC] = "c0nc", [TEGRA_POWERGATE_C1NC] = "c1nc", [TEGRA_POWERGATE_DIS] = "dis", [TEGRA_POWERGATE_DISB] = "disb", [TEGRA_POWERGATE_XUSBA] = "xusba", [TEGRA_POWERGATE_XUSBB] = "xusbb", [TEGRA_POWERGATE_XUSBC] = "xusbc", }; static const u8 tegra114_cpu_powergates[] = { TEGRA_POWERGATE_CPU0, TEGRA_POWERGATE_CPU1, TEGRA_POWERGATE_CPU2, TEGRA_POWERGATE_CPU3, }; static const struct tegra_pmc_soc tegra114_pmc_soc = { .num_powergates = ARRAY_SIZE(tegra114_powergates), .powergates = tegra114_powergates, .num_cpu_powergates = ARRAY_SIZE(tegra114_cpu_powergates), .cpu_powergates = tegra114_cpu_powergates, .has_tsense_reset = true, .has_gpu_clamps = false, .needs_mbist_war = false, .has_impl_33v_pwr = false, .maybe_tz_only = false, .num_io_pads = 0, .io_pads = NULL, .num_pin_descs = 0, .pin_descs = NULL, .regs = &tegra20_pmc_regs, .init = tegra20_pmc_init, .setup_irq_polarity = tegra20_pmc_setup_irq_polarity, .reset_sources = tegra30_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra30_reset_sources), .reset_levels = NULL, .num_reset_levels = 0, }; static const char * const tegra124_powergates[] = { [TEGRA_POWERGATE_CPU] = "crail", [TEGRA_POWERGATE_3D] = "3d", [TEGRA_POWERGATE_VENC] = "venc", [TEGRA_POWERGATE_PCIE] = "pcie", [TEGRA_POWERGATE_VDEC] = "vdec", [TEGRA_POWERGATE_MPE] = "mpe", [TEGRA_POWERGATE_HEG] = "heg", [TEGRA_POWERGATE_SATA] = "sata", [TEGRA_POWERGATE_CPU1] = "cpu1", [TEGRA_POWERGATE_CPU2] = "cpu2", [TEGRA_POWERGATE_CPU3] = "cpu3", [TEGRA_POWERGATE_CELP] = "celp", [TEGRA_POWERGATE_CPU0] = "cpu0", [TEGRA_POWERGATE_C0NC] = "c0nc", [TEGRA_POWERGATE_C1NC] = "c1nc", [TEGRA_POWERGATE_SOR] = "sor", [TEGRA_POWERGATE_DIS] = "dis", [TEGRA_POWERGATE_DISB] = "disb", [TEGRA_POWERGATE_XUSBA] = "xusba", [TEGRA_POWERGATE_XUSBB] = "xusbb", [TEGRA_POWERGATE_XUSBC] = "xusbc", [TEGRA_POWERGATE_VIC] = "vic", [TEGRA_POWERGATE_IRAM] = "iram", }; static const u8 tegra124_cpu_powergates[] = { TEGRA_POWERGATE_CPU0, TEGRA_POWERGATE_CPU1, TEGRA_POWERGATE_CPU2, TEGRA_POWERGATE_CPU3, }; #define TEGRA_IO_PAD(_id, _dpd, _voltage, _name) \ ((struct tegra_io_pad_soc) { \ .id = (_id), \ .dpd = (_dpd), \ .voltage = (_voltage), \ .name = (_name), \ }) #define TEGRA_IO_PIN_DESC(_id, _dpd, _voltage, _name) \ ((struct pinctrl_pin_desc) { \ .number = (_id), \ .name = (_name) \ }) #define TEGRA124_IO_PAD_TABLE(_pad) \ /* .id .dpd .voltage .name */ \ _pad(TEGRA_IO_PAD_AUDIO, 17, UINT_MAX, "audio"), \ _pad(TEGRA_IO_PAD_BB, 15, UINT_MAX, "bb"), \ _pad(TEGRA_IO_PAD_CAM, 36, UINT_MAX, "cam"), \ _pad(TEGRA_IO_PAD_COMP, 22, UINT_MAX, "comp"), \ _pad(TEGRA_IO_PAD_CSIA, 0, UINT_MAX, "csia"), \ _pad(TEGRA_IO_PAD_CSIB, 1, UINT_MAX, "csb"), \ _pad(TEGRA_IO_PAD_CSIE, 44, UINT_MAX, "cse"), \ _pad(TEGRA_IO_PAD_DSI, 2, UINT_MAX, "dsi"), \ _pad(TEGRA_IO_PAD_DSIB, 39, UINT_MAX, "dsib"), \ _pad(TEGRA_IO_PAD_DSIC, 40, UINT_MAX, "dsic"), \ _pad(TEGRA_IO_PAD_DSID, 41, UINT_MAX, "dsid"), \ _pad(TEGRA_IO_PAD_HDMI, 28, UINT_MAX, "hdmi"), \ _pad(TEGRA_IO_PAD_HSIC, 19, UINT_MAX, "hsic"), \ _pad(TEGRA_IO_PAD_HV, 38, UINT_MAX, "hv"), \ _pad(TEGRA_IO_PAD_LVDS, 57, UINT_MAX, "lvds"), \ _pad(TEGRA_IO_PAD_MIPI_BIAS, 3, UINT_MAX, "mipi-bias"), \ _pad(TEGRA_IO_PAD_NAND, 13, UINT_MAX, "nand"), \ _pad(TEGRA_IO_PAD_PEX_BIAS, 4, UINT_MAX, "pex-bias"), \ _pad(TEGRA_IO_PAD_PEX_CLK1, 5, UINT_MAX, "pex-clk1"), \ _pad(TEGRA_IO_PAD_PEX_CLK2, 6, UINT_MAX, "pex-clk2"), \ _pad(TEGRA_IO_PAD_PEX_CNTRL, 32, UINT_MAX, "pex-cntrl"), \ _pad(TEGRA_IO_PAD_SDMMC1, 33, UINT_MAX, "sdmmc1"), \ _pad(TEGRA_IO_PAD_SDMMC3, 34, UINT_MAX, "sdmmc3"), \ _pad(TEGRA_IO_PAD_SDMMC4, 35, UINT_MAX, "sdmmc4"), \ _pad(TEGRA_IO_PAD_SYS_DDC, 58, UINT_MAX, "sys_ddc"), \ _pad(TEGRA_IO_PAD_UART, 14, UINT_MAX, "uart"), \ _pad(TEGRA_IO_PAD_USB0, 9, UINT_MAX, "usb0"), \ _pad(TEGRA_IO_PAD_USB1, 10, UINT_MAX, "usb1"), \ _pad(TEGRA_IO_PAD_USB2, 11, UINT_MAX, "usb2"), \ _pad(TEGRA_IO_PAD_USB_BIAS, 12, UINT_MAX, "usb_bias") static const struct tegra_io_pad_soc tegra124_io_pads[] = { TEGRA124_IO_PAD_TABLE(TEGRA_IO_PAD) }; static const struct pinctrl_pin_desc tegra124_pin_descs[] = { TEGRA124_IO_PAD_TABLE(TEGRA_IO_PIN_DESC) }; static const struct tegra_pmc_soc tegra124_pmc_soc = { .num_powergates = ARRAY_SIZE(tegra124_powergates), .powergates = tegra124_powergates, .num_cpu_powergates = ARRAY_SIZE(tegra124_cpu_powergates), .cpu_powergates = tegra124_cpu_powergates, .has_tsense_reset = true, .has_gpu_clamps = true, .needs_mbist_war = false, .has_impl_33v_pwr = false, .maybe_tz_only = false, .num_io_pads = ARRAY_SIZE(tegra124_io_pads), .io_pads = tegra124_io_pads, .num_pin_descs = ARRAY_SIZE(tegra124_pin_descs), .pin_descs = tegra124_pin_descs, .regs = &tegra20_pmc_regs, .init = tegra20_pmc_init, .setup_irq_polarity = tegra20_pmc_setup_irq_polarity, .reset_sources = tegra30_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra30_reset_sources), .reset_levels = NULL, .num_reset_levels = 0, }; static const char * const tegra210_powergates[] = { [TEGRA_POWERGATE_CPU] = "crail", [TEGRA_POWERGATE_3D] = "3d", [TEGRA_POWERGATE_VENC] = "venc", [TEGRA_POWERGATE_PCIE] = "pcie", [TEGRA_POWERGATE_MPE] = "mpe", [TEGRA_POWERGATE_SATA] = "sata", [TEGRA_POWERGATE_CPU1] = "cpu1", [TEGRA_POWERGATE_CPU2] = "cpu2", [TEGRA_POWERGATE_CPU3] = "cpu3", [TEGRA_POWERGATE_CPU0] = "cpu0", [TEGRA_POWERGATE_C0NC] = "c0nc", [TEGRA_POWERGATE_SOR] = "sor", [TEGRA_POWERGATE_DIS] = "dis", [TEGRA_POWERGATE_DISB] = "disb", [TEGRA_POWERGATE_XUSBA] = "xusba", [TEGRA_POWERGATE_XUSBB] = "xusbb", [TEGRA_POWERGATE_XUSBC] = "xusbc", [TEGRA_POWERGATE_VIC] = "vic", [TEGRA_POWERGATE_IRAM] = "iram", [TEGRA_POWERGATE_NVDEC] = "nvdec", [TEGRA_POWERGATE_NVJPG] = "nvjpg", [TEGRA_POWERGATE_AUD] = "aud", [TEGRA_POWERGATE_DFD] = "dfd", [TEGRA_POWERGATE_VE2] = "ve2", }; static const u8 tegra210_cpu_powergates[] = { TEGRA_POWERGATE_CPU0, TEGRA_POWERGATE_CPU1, TEGRA_POWERGATE_CPU2, TEGRA_POWERGATE_CPU3, }; #define TEGRA210_IO_PAD_TABLE(_pad) \ /* .id .dpd .voltage .name */ \ _pad(TEGRA_IO_PAD_AUDIO, 17, 5, "audio"), \ _pad(TEGRA_IO_PAD_AUDIO_HV, 61, 18, "audio-hv"), \ _pad(TEGRA_IO_PAD_CAM, 36, 10, "cam"), \ _pad(TEGRA_IO_PAD_CSIA, 0, UINT_MAX, "csia"), \ _pad(TEGRA_IO_PAD_CSIB, 1, UINT_MAX, "csib"), \ _pad(TEGRA_IO_PAD_CSIC, 42, UINT_MAX, "csic"), \ _pad(TEGRA_IO_PAD_CSID, 43, UINT_MAX, "csid"), \ _pad(TEGRA_IO_PAD_CSIE, 44, UINT_MAX, "csie"), \ _pad(TEGRA_IO_PAD_CSIF, 45, UINT_MAX, "csif"), \ _pad(TEGRA_IO_PAD_DBG, 25, 19, "dbg"), \ _pad(TEGRA_IO_PAD_DEBUG_NONAO, 26, UINT_MAX, "debug-nonao"), \ _pad(TEGRA_IO_PAD_DMIC, 50, 20, "dmic"), \ _pad(TEGRA_IO_PAD_DP, 51, UINT_MAX, "dp"), \ _pad(TEGRA_IO_PAD_DSI, 2, UINT_MAX, "dsi"), \ _pad(TEGRA_IO_PAD_DSIB, 39, UINT_MAX, "dsib"), \ _pad(TEGRA_IO_PAD_DSIC, 40, UINT_MAX, "dsic"), \ _pad(TEGRA_IO_PAD_DSID, 41, UINT_MAX, "dsid"), \ _pad(TEGRA_IO_PAD_EMMC, 35, UINT_MAX, "emmc"), \ _pad(TEGRA_IO_PAD_EMMC2, 37, UINT_MAX, "emmc2"), \ _pad(TEGRA_IO_PAD_GPIO, 27, 21, "gpio"), \ _pad(TEGRA_IO_PAD_HDMI, 28, UINT_MAX, "hdmi"), \ _pad(TEGRA_IO_PAD_HSIC, 19, UINT_MAX, "hsic"), \ _pad(TEGRA_IO_PAD_LVDS, 57, UINT_MAX, "lvds"), \ _pad(TEGRA_IO_PAD_MIPI_BIAS, 3, UINT_MAX, "mipi-bias"), \ _pad(TEGRA_IO_PAD_PEX_BIAS, 4, UINT_MAX, "pex-bias"), \ _pad(TEGRA_IO_PAD_PEX_CLK1, 5, UINT_MAX, "pex-clk1"), \ _pad(TEGRA_IO_PAD_PEX_CLK2, 6, UINT_MAX, "pex-clk2"), \ _pad(TEGRA_IO_PAD_PEX_CNTRL, UINT_MAX, 11, "pex-cntrl"), \ _pad(TEGRA_IO_PAD_SDMMC1, 33, 12, "sdmmc1"), \ _pad(TEGRA_IO_PAD_SDMMC3, 34, 13, "sdmmc3"), \ _pad(TEGRA_IO_PAD_SPI, 46, 22, "spi"), \ _pad(TEGRA_IO_PAD_SPI_HV, 47, 23, "spi-hv"), \ _pad(TEGRA_IO_PAD_UART, 14, 2, "uart"), \ _pad(TEGRA_IO_PAD_USB0, 9, UINT_MAX, "usb0"), \ _pad(TEGRA_IO_PAD_USB1, 10, UINT_MAX, "usb1"), \ _pad(TEGRA_IO_PAD_USB2, 11, UINT_MAX, "usb2"), \ _pad(TEGRA_IO_PAD_USB3, 18, UINT_MAX, "usb3"), \ _pad(TEGRA_IO_PAD_USB_BIAS, 12, UINT_MAX, "usb-bias") static const struct tegra_io_pad_soc tegra210_io_pads[] = { TEGRA210_IO_PAD_TABLE(TEGRA_IO_PAD) }; static const struct pinctrl_pin_desc tegra210_pin_descs[] = { TEGRA210_IO_PAD_TABLE(TEGRA_IO_PIN_DESC) }; static const struct tegra_wake_event tegra210_wake_events[] = { TEGRA_WAKE_IRQ("rtc", 16, 2), }; static const struct tegra_pmc_soc tegra210_pmc_soc = { .num_powergates = ARRAY_SIZE(tegra210_powergates), .powergates = tegra210_powergates, .num_cpu_powergates = ARRAY_SIZE(tegra210_cpu_powergates), .cpu_powergates = tegra210_cpu_powergates, .has_tsense_reset = true, .has_gpu_clamps = true, .needs_mbist_war = true, .has_impl_33v_pwr = false, .maybe_tz_only = true, .num_io_pads = ARRAY_SIZE(tegra210_io_pads), .io_pads = tegra210_io_pads, .num_pin_descs = ARRAY_SIZE(tegra210_pin_descs), .pin_descs = tegra210_pin_descs, .regs = &tegra20_pmc_regs, .init = tegra20_pmc_init, .setup_irq_polarity = tegra20_pmc_setup_irq_polarity, .irq_set_wake = tegra210_pmc_irq_set_wake, .irq_set_type = tegra210_pmc_irq_set_type, .reset_sources = tegra210_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra210_reset_sources), .reset_levels = NULL, .num_reset_levels = 0, .num_wake_events = ARRAY_SIZE(tegra210_wake_events), .wake_events = tegra210_wake_events, }; #define TEGRA186_IO_PAD_TABLE(_pad) \ /* .id .dpd .voltage .name */ \ _pad(TEGRA_IO_PAD_CSIA, 0, UINT_MAX, "csia"), \ _pad(TEGRA_IO_PAD_CSIB, 1, UINT_MAX, "csib"), \ _pad(TEGRA_IO_PAD_DSI, 2, UINT_MAX, "dsi"), \ _pad(TEGRA_IO_PAD_MIPI_BIAS, 3, UINT_MAX, "mipi-bias"), \ _pad(TEGRA_IO_PAD_PEX_CLK_BIAS, 4, UINT_MAX, "pex-clk-bias"), \ _pad(TEGRA_IO_PAD_PEX_CLK3, 5, UINT_MAX, "pex-clk3"), \ _pad(TEGRA_IO_PAD_PEX_CLK2, 6, UINT_MAX, "pex-clk2"), \ _pad(TEGRA_IO_PAD_PEX_CLK1, 7, UINT_MAX, "pex-clk1"), \ _pad(TEGRA_IO_PAD_USB0, 9, UINT_MAX, "usb0"), \ _pad(TEGRA_IO_PAD_USB1, 10, UINT_MAX, "usb1"), \ _pad(TEGRA_IO_PAD_USB2, 11, UINT_MAX, "usb2"), \ _pad(TEGRA_IO_PAD_USB_BIAS, 12, UINT_MAX, "usb-bias"), \ _pad(TEGRA_IO_PAD_UART, 14, UINT_MAX, "uart"), \ _pad(TEGRA_IO_PAD_AUDIO, 17, UINT_MAX, "audio"), \ _pad(TEGRA_IO_PAD_HSIC, 19, UINT_MAX, "hsic"), \ _pad(TEGRA_IO_PAD_DBG, 25, UINT_MAX, "dbg"), \ _pad(TEGRA_IO_PAD_HDMI_DP0, 28, UINT_MAX, "hdmi-dp0"), \ _pad(TEGRA_IO_PAD_HDMI_DP1, 29, UINT_MAX, "hdmi-dp1"), \ _pad(TEGRA_IO_PAD_PEX_CNTRL, 32, UINT_MAX, "pex-cntrl"), \ _pad(TEGRA_IO_PAD_SDMMC2_HV, 34, 5, "sdmmc2-hv"), \ _pad(TEGRA_IO_PAD_SDMMC4, 36, UINT_MAX, "sdmmc4"), \ _pad(TEGRA_IO_PAD_CAM, 38, UINT_MAX, "cam"), \ _pad(TEGRA_IO_PAD_DSIB, 40, UINT_MAX, "dsib"), \ _pad(TEGRA_IO_PAD_DSIC, 41, UINT_MAX, "dsic"), \ _pad(TEGRA_IO_PAD_DSID, 42, UINT_MAX, "dsid"), \ _pad(TEGRA_IO_PAD_CSIC, 43, UINT_MAX, "csic"), \ _pad(TEGRA_IO_PAD_CSID, 44, UINT_MAX, "csid"), \ _pad(TEGRA_IO_PAD_CSIE, 45, UINT_MAX, "csie"), \ _pad(TEGRA_IO_PAD_CSIF, 46, UINT_MAX, "csif"), \ _pad(TEGRA_IO_PAD_SPI, 47, UINT_MAX, "spi"), \ _pad(TEGRA_IO_PAD_UFS, 49, UINT_MAX, "ufs"), \ _pad(TEGRA_IO_PAD_DMIC_HV, 52, 2, "dmic-hv"), \ _pad(TEGRA_IO_PAD_EDP, 53, UINT_MAX, "edp"), \ _pad(TEGRA_IO_PAD_SDMMC1_HV, 55, 4, "sdmmc1-hv"), \ _pad(TEGRA_IO_PAD_SDMMC3_HV, 56, 6, "sdmmc3-hv"), \ _pad(TEGRA_IO_PAD_CONN, 60, UINT_MAX, "conn"), \ _pad(TEGRA_IO_PAD_AUDIO_HV, 61, 1, "audio-hv"), \ _pad(TEGRA_IO_PAD_AO_HV, UINT_MAX, 0, "ao-hv") static const struct tegra_io_pad_soc tegra186_io_pads[] = { TEGRA186_IO_PAD_TABLE(TEGRA_IO_PAD) }; static const struct pinctrl_pin_desc tegra186_pin_descs[] = { TEGRA186_IO_PAD_TABLE(TEGRA_IO_PIN_DESC) }; static const struct tegra_pmc_regs tegra186_pmc_regs = { .scratch0 = 0x2000, .dpd_req = 0x74, .dpd_status = 0x78, .dpd2_req = 0x7c, .dpd2_status = 0x80, .rst_status = 0x70, .rst_source_shift = 0x2, .rst_source_mask = 0x3c, .rst_level_shift = 0x0, .rst_level_mask = 0x3, }; static void tegra186_pmc_setup_irq_polarity(struct tegra_pmc *pmc, struct device_node *np, bool invert) { struct resource regs; void __iomem *wake; u32 value; int index; index = of_property_match_string(np, "reg-names", "wake"); if (index < 0) { dev_err(pmc->dev, "failed to find PMC wake registers\n"); return; } of_address_to_resource(np, index, ®s); wake = ioremap_nocache(regs.start, resource_size(®s)); if (!wake) { dev_err(pmc->dev, "failed to map PMC wake registers\n"); return; } value = readl(wake + WAKE_AOWAKE_CTRL); if (invert) value |= WAKE_AOWAKE_CTRL_INTR_POLARITY; else value &= ~WAKE_AOWAKE_CTRL_INTR_POLARITY; writel(value, wake + WAKE_AOWAKE_CTRL); iounmap(wake); } static const struct tegra_wake_event tegra186_wake_events[] = { TEGRA_WAKE_GPIO("power", 29, 1, TEGRA186_AON_GPIO(FF, 0)), TEGRA_WAKE_IRQ("rtc", 73, 10), }; static const struct tegra_pmc_soc tegra186_pmc_soc = { .num_powergates = 0, .powergates = NULL, .num_cpu_powergates = 0, .cpu_powergates = NULL, .has_tsense_reset = false, .has_gpu_clamps = false, .needs_mbist_war = false, .has_impl_33v_pwr = true, .maybe_tz_only = false, .num_io_pads = ARRAY_SIZE(tegra186_io_pads), .io_pads = tegra186_io_pads, .num_pin_descs = ARRAY_SIZE(tegra186_pin_descs), .pin_descs = tegra186_pin_descs, .regs = &tegra186_pmc_regs, .init = NULL, .setup_irq_polarity = tegra186_pmc_setup_irq_polarity, .irq_set_wake = tegra186_pmc_irq_set_wake, .irq_set_type = tegra186_pmc_irq_set_type, .reset_sources = tegra186_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra186_reset_sources), .reset_levels = tegra186_reset_levels, .num_reset_levels = ARRAY_SIZE(tegra186_reset_levels), .num_wake_events = ARRAY_SIZE(tegra186_wake_events), .wake_events = tegra186_wake_events, }; static const struct tegra_io_pad_soc tegra194_io_pads[] = { { .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK_BIAS, .dpd = 4, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK3, .dpd = 5, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 7, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_EQOS, .dpd = 8, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK2_BIAS, .dpd = 9, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 10, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_DAP3, .dpd = 11, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_DAP5, .dpd = 12, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PWR_CTL, .dpd = 15, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SOC_GPIO53, .dpd = 16, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_GP_PWM2, .dpd = 18, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_GP_PWM3, .dpd = 19, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SOC_GPIO12, .dpd = 20, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SOC_GPIO13, .dpd = 21, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SOC_GPIO10, .dpd = 22, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_UART4, .dpd = 23, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_UART5, .dpd = 24, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_DBG, .dpd = 25, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_HDMI_DP3, .dpd = 26, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_HDMI_DP2, .dpd = 27, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_HDMI_DP0, .dpd = 28, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_HDMI_DP1, .dpd = 29, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = 32, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_CTL2, .dpd = 33, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_L0_RST_N, .dpd = 34, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_L1_RST_N, .dpd = 35, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SDMMC4, .dpd = 36, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_PEX_L5_RST_N, .dpd = 37, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIC, .dpd = 43, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSID, .dpd = 44, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIE, .dpd = 45, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIF, .dpd = 46, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SPI, .dpd = 47, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_UFS, .dpd = 49, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIG, .dpd = 50, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CSIH, .dpd = 51, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_EDP, .dpd = 53, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SDMMC1_HV, .dpd = 55, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_SDMMC3_HV, .dpd = 56, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_CONN, .dpd = 60, .voltage = UINT_MAX }, { .id = TEGRA_IO_PAD_AUDIO_HV, .dpd = 61, .voltage = UINT_MAX }, }; static const struct tegra_pmc_regs tegra194_pmc_regs = { .scratch0 = 0x2000, .dpd_req = 0x74, .dpd_status = 0x78, .dpd2_req = 0x7c, .dpd2_status = 0x80, .rst_status = 0x70, .rst_source_shift = 0x2, .rst_source_mask = 0x7c, .rst_level_shift = 0x0, .rst_level_mask = 0x3, }; static const char * const tegra194_reset_sources[] = { "SYS_RESET_N", "AOWDT", "BCCPLEXWDT", "BPMPWDT", "SCEWDT", "SPEWDT", "APEWDT", "LCCPLEXWDT", "SENSOR", "AOTAG", "VFSENSOR", "MAINSWRST", "SC7", "HSM", "CSITE", "RCEWDT", "PVA0WDT", "PVA1WDT", "L1A_ASYNC", "BPMPBOOT", "FUSECRC", }; static const struct tegra_wake_event tegra194_wake_events[] = { TEGRA_WAKE_GPIO("power", 29, 1, TEGRA194_AON_GPIO(EE, 4)), TEGRA_WAKE_IRQ("rtc", 73, 10), }; static const struct tegra_pmc_soc tegra194_pmc_soc = { .num_powergates = 0, .powergates = NULL, .num_cpu_powergates = 0, .cpu_powergates = NULL, .has_tsense_reset = false, .has_gpu_clamps = false, .needs_mbist_war = false, .has_impl_33v_pwr = false, .maybe_tz_only = false, .num_io_pads = ARRAY_SIZE(tegra194_io_pads), .io_pads = tegra194_io_pads, .regs = &tegra194_pmc_regs, .init = NULL, .setup_irq_polarity = tegra186_pmc_setup_irq_polarity, .irq_set_wake = tegra186_pmc_irq_set_wake, .irq_set_type = tegra186_pmc_irq_set_type, .reset_sources = tegra194_reset_sources, .num_reset_sources = ARRAY_SIZE(tegra194_reset_sources), .reset_levels = tegra186_reset_levels, .num_reset_levels = ARRAY_SIZE(tegra186_reset_levels), .num_wake_events = ARRAY_SIZE(tegra194_wake_events), .wake_events = tegra194_wake_events, }; static const struct of_device_id tegra_pmc_match[] = { { .compatible = "nvidia,tegra194-pmc", .data = &tegra194_pmc_soc }, { .compatible = "nvidia,tegra186-pmc", .data = &tegra186_pmc_soc }, { .compatible = "nvidia,tegra210-pmc", .data = &tegra210_pmc_soc }, { .compatible = "nvidia,tegra132-pmc", .data = &tegra124_pmc_soc }, { .compatible = "nvidia,tegra124-pmc", .data = &tegra124_pmc_soc }, { .compatible = "nvidia,tegra114-pmc", .data = &tegra114_pmc_soc }, { .compatible = "nvidia,tegra30-pmc", .data = &tegra30_pmc_soc }, { .compatible = "nvidia,tegra20-pmc", .data = &tegra20_pmc_soc }, { } }; static struct platform_driver tegra_pmc_driver = { .driver = { .name = "tegra-pmc", .suppress_bind_attrs = true, .of_match_table = tegra_pmc_match, #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM) .pm = &tegra_pmc_pm_ops, #endif }, .probe = tegra_pmc_probe, }; builtin_platform_driver(tegra_pmc_driver); static bool __init tegra_pmc_detect_tz_only(struct tegra_pmc *pmc) { u32 value, saved; saved = readl(pmc->base + pmc->soc->regs->scratch0); value = saved ^ 0xffffffff; if (value == 0xffffffff) value = 0xdeadbeef; /* write pattern and read it back */ writel(value, pmc->base + pmc->soc->regs->scratch0); value = readl(pmc->base + pmc->soc->regs->scratch0); /* if we read all-zeroes, access is restricted to TZ only */ if (value == 0) { pr_info("access to PMC is restricted to TZ\n"); return true; } /* restore original value */ writel(saved, pmc->base + pmc->soc->regs->scratch0); return false; } /* * Early initialization to allow access to registers in the very early boot * process. */ static int __init tegra_pmc_early_init(void) { const struct of_device_id *match; struct device_node *np; struct resource regs; unsigned int i; bool invert; mutex_init(&pmc->powergates_lock); np = of_find_matching_node_and_match(NULL, tegra_pmc_match, &match); if (!np) { /* * Fall back to legacy initialization for 32-bit ARM only. All * 64-bit ARM device tree files for Tegra are required to have * a PMC node. * * This is for backwards-compatibility with old device trees * that didn't contain a PMC node. Note that in this case the * SoC data can't be matched and therefore powergating is * disabled. */ if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) { pr_warn("DT node not found, powergating disabled\n"); regs.start = 0x7000e400; regs.end = 0x7000e7ff; regs.flags = IORESOURCE_MEM; pr_warn("Using memory region %pR\n", ®s); } else { /* * At this point we're not running on Tegra, so play * nice with multi-platform kernels. */ return 0; } } else { /* * Extract information from the device tree if we've found a * matching node. */ if (of_address_to_resource(np, 0, ®s) < 0) { pr_err("failed to get PMC registers\n"); of_node_put(np); return -ENXIO; } } pmc->base = ioremap_nocache(regs.start, resource_size(®s)); if (!pmc->base) { pr_err("failed to map PMC registers\n"); of_node_put(np); return -ENXIO; } if (np) { pmc->soc = match->data; if (pmc->soc->maybe_tz_only) pmc->tz_only = tegra_pmc_detect_tz_only(pmc); /* Create a bitmap of the available and valid partitions */ for (i = 0; i < pmc->soc->num_powergates; i++) if (pmc->soc->powergates[i]) set_bit(i, pmc->powergates_available); /* * Invert the interrupt polarity if a PMC device tree node * exists and contains the nvidia,invert-interrupt property. */ invert = of_property_read_bool(np, "nvidia,invert-interrupt"); pmc->soc->setup_irq_polarity(pmc, np, invert); of_node_put(np); } return 0; } early_initcall(tegra_pmc_early_init);